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Abstract
Ever since its discovery, the double-stranded DNA contained in the
mitochondria of eukaryotes has fascinated researchers because of its
bacterial endosymbiotic origin, crucial role in encoding subunits of the
respiratory complexes, compact nature, and specific inheritance
mechanisms. In the last few years, high-throughput sequencing techniques
have accelerated the sequencing of mitochondrial genomes (mitogenomes)
and uncovered the great diversity of organizations, gene contents, and
modes of replication and transcription found in living eukaryotes. Some
early divergent lineages of unicellular eukaryotes retain certain synteny and
gene content resembling those observed in the genomes of
alphaproteobacteria (the inferred closest living group of mitochondria),
whereas others adapted to anaerobic environments have drastically
reduced or even lost the mitogenome. In the three main multicellular
lineages of eukaryotes, mitogenomes have pursued diverse evolutionary
trajectories in which different types of molecules (circular versus linear and
single versus multipartite), gene structures (with or without self-splicing
introns), gene contents, gene orders, genetic codes, and transfer RNA
editing mechanisms have been selected. Whereas animals have evolved a
rather compact mitochondrial genome between 11 and 50 Kb in length with
a highly conserved gene content in bilaterians, plants exhibit large
mitochondrial genomes of 66 Kb to 11.3 Mb with large intergenic repetitions
prone to recombination, and fungal mitogenomes have intermediate sizes
of 12 to 236 Kb.
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Introduction
Mitochondria are specialized organelles of eukaryotic cells 
in charge of essential roles, including the supply of energy  
(in the form of ATP) through aerobic respiration (oxidative  
phosphorylation, or OXPHOS), the biosynthesis of different  
types of lipids and iron–sulfur clusters, programmed cell death 
(apoptosis), calcium homeostasis, and the reaction to stressors, 
among many others1. The most intriguing feature of mitochondria 
is arguably their endosymbiotic origin2 (for a recent retrospective,  
see 3). All mitochondria descend from an ancestor related to extant 
alphaproteobacteria4 which integrated into a host cell related 
to extant Asgard archaea5. However, owing to potential biases  
affecting phylogenetic inference, the precise closest living sister 
groups of neither the symbiont nor the host are known6. Though  
still under debate7, the integration likely occurred late during 
eukaryogenesis8. The endosymbiosis was a complex evolution-
ary process, which likely implied incremental steps, including  
the acquisition of the protein and RNA import machinery, the  
modification of the endosymbiont membranes, the massive 
gene transfer to the nucleus, the forming of the inner membrane  
invaginations, the coordination of biochemical pathways, and the 
integration of mitochondrial division into the cell cycle6. As a  
result, mitochondria exhibit mosaic proteomes with about 
1000 proteins of mixed evolutionary origins9. Most proteins of  
alphaproteobacterial origin are involved in aerobic respiration  
and ribosomal function, whereas proteins of eukaryotic origin are 
generally in charge of nuclear–mitochondria signaling6.

Despite the massive loss (due to functional redundancy) or  
transfer of genes to the nucleus during the endosymbiosis of  
mitochondria, these organelles still retain a reduced set of  
protein-coding genes that are replicated, transcribed, and  
translated independently from the nuclear genome. Remarkably, 
these mitochondrial protein-coding genes are translated using 
genetic codes different from the standard (nuclear) genetic 
code in many living eukaryotes10. Several hypotheses have 
been postulated to explain the evolutionary persistence of a  
mitochondrial genome (hereafter mitogenome) in eukaryote 
cells despite the evolutionary pressure to centralize genetic  
information in the nucleus11. Proteins of the respiratory com-
plexes encoded by the mitogenome are highly hydrophobic 
and thus would be difficult to import and insert into the inner  
mitochondrial membrane if produced in the cytosol. In addition, 
the possibility of mis-targeting the proteins to the endoplasmic  
reticulum would be a crucial problem to solve11. Theoretically, 
it is also conceivable that co-location of genes in the same  
compartment as their gene products could facilitate direct  
regulatory coupling and redox control12.

Mitogenomes are double-stranded DNA molecules of variable  
size that generally are found as circular, linear, or branched  
forms13. Each cell may contain more than 1000 mitogenomes (the 
so-called chondriome), showing length and site heteroplasmy 
(nucleotide [nt] variation) and allowing the accumulation of  
mutations without immediate deleterious effects14. The mitogenome 
population of an individual is constantly varying and subjected  
both to genetic drift, as some mitogenomes may segregate more  
frequently than others by chance, and to selection, as those  
molecules that provide higher energy production or that replicate 

more often may be transmitted more efficiently15. Genetic  
bottlenecks and recombination can also have profound effects 
on heteroplasmy. The relative influence of genetic drift and  
selection on mitogenomes depends on their inheritance  
mechanism, which varies among animals, fungi, and plants16. 
Maternal inheritance of mitogenomes due to selective degrada-
tion of paternal ones is the prevalent mechanism in animals and 
plants17, although remarkable exceptions of paternal leakage 
producing doubly uniparental inheritance (DUI) have been  
reported in, for example, mussels18, the bladder campion,  
Silene vulgaris19, and very exceptional cases in humans20. In  
fungi, there are a variety of inheritance patterns during sexual  
reproduction21–23. In Ascomycota yeasts, biparental inheritance 
of mitochondria in the zygote is common, but later on, one of 
the parental mitogenomes is usually eliminated21. In filamentous  
Ascomycota, mitochondria are generally inherited from the 
larger of the two cells involved in the mating process22,23. In  
Basidiomycota, both uniparental and biparental inheritance  
modes are reported21.

The replication24 and transcription25 of mitogenomes have been 
best studied in vertebrates as the original experimental studies to 
identify the different proteins were performed in this group26,27. 
The control region of the vertebrate mitogenome has the origin of 
replication of one strand and the origins for transcription of both 
strands, whereas the origin of replication for the opposite strand 
is located within a cluster of transfer RNA (tRNA) genes between 
the cox1 and nad2 genes28. The traditional strand displacement 
model for replication of mammal mitogenomes implies initiation 
from the origin of replication using a transcript as primer. After  
replication of the first strand exposes the origin of replication 
of the lagging strand, its replication is initiated24,28. Alternative  
models of strand-coupled replication involving the incorporation  
of RNA fragments in the newly synthesized lagging strand  
(implying the formation of Okazaki fragments) have been also  
proposed29. The enzyme in charge of mitogenome replication 
in mammals is the nucleus-encoded DNA polymerase γ, which 
belongs to the family A DNA polymerases and contains a proof-
reading 3′–5′ exonuclease24,28. In plant and fungi mitogenomes, a 
recombination-dependent or rolling circle mechanism similar to 
bacteriophage T4 DNA replication or both have been proposed30. 
Whether there are specific origins of replication and their putative 
location are not known. The enzymes in charge of mitogenome  
replication in Arabidopsis are DNA polymerase IA and IB, 
also belonging to the family A DNA polymerases30. Whereas  
animal mitogenomes have been shown to evolve faster than their 
nuclear counterparts, the mitogenomes of plants and fungi evolved  
generally slower than the corresponding nuclear genomes22. It has 
been postulated that the different replication models of plant and 
fungal versus vertebrate mitogenomes imply different repairing 
capacities that affect fidelity of the copies, which may explain main 
differences in evolutionary rates31.

The enzyme in charge of transcription is a DNA-depend-
ent RNA polymerase related to RNA polymerases in T3 and T7  
bacteriophages25. A long primary polycistronic transcript is  
synthesized and later cleaved by the RNase P and RNase Z at 
the 5′ and 3′ ends of the intervening tRNAs, respectively25. This  
“tRNA punctuation model” cannot explain the processing of the 
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primary transcript outside vertebrates, as tRNA genes in other  
eukaryote mitogenomes either are frequently grouped together 
in clusters or simply have been massively lost. Alternatively, 
in humans, Fas-activated serine/threonine kinases (FASTKs) 
have been shown to be involved in the processing of transcript  
precursors derived from adjacent genes that lack an interven-
ing tRNA32. These proteins have a conserved C-terminal RAP  
domain, which might have a putative endonuclease activity and 
could represent a more general (outside vertebrates) mitochon-
drial RNA processing mechanism25. After cleavage, a poly-A 
tail is added to the 3′ end of the individual messenger RNAs  
(mRNAs) by a polyadenylic acid RNA polymerase. This  
polyadenylation is crucial as it completes the stop codons of  
several genes.

The tRNA maturation involves a chemical modification by  
several enzymes of the first position of the tRNA anticodon to 
facilitate non–Watson-Crick (wobble) base pairing25. This is  
critical as the tRNA repertoire of mitogenomes is often reduced 
and the modification expands codon recognition during mitochon-
drial translation. In addition, editing of the aminoacyl acceptor  
stems is a widespread mechanism occurring during the post- 
transcriptional processing of mitochondrial tRNAs33. Finally, it is 
important to note that, in some species, the existence of a reduced 
set of tRNA genes in the mitogenome is compensated by the 
import of nucleus-encoded tRNAs from the cytosol. These striking  
differences in tRNA processing and maturation result in deviations 
from the standard genetic code34. Translation of mRNAs occurs in 
the mitochondrial ribosomes. Each mitoribosome is formed by a 
small subunit (SSU), which binds mRNAs and tRNAs, and a large 
subunit (LSU), which catalyzes the formation of peptide bonds. 
Several of the proteins (except in animals) and the SSU and LSU 
rRNAs that form both subunits are encoded by mitogenomes. In 
some species, the mitogenome also encodes the 5S rRNA. Other 
non-coding RNAs such as the H1 RNA (the RNA component of 
the RNAseP), the RMRP (involved in 5.8S RNA processing), 
the hTERC (the RNA component of telomerase), and various  
microRNAs are encoded by the nuclear genome and imported into 
the mitochondria35. In mammals, RNA import is ATP-dependent 
and requires the presence of the membrane potential, a specific 
channel in the outer mitochondrial membrane, and the involve-
ment of the polynucleotide phosphorylase (PNPASE), a 3′-to-5′  
exoribonuclease and poly-A polymerase located in the mito-
chondrial intermembrane space35,36. Mitoribosome assembly is  
performed at the so-called mitochondrial RNA granules25. In the 
mitochondria, the mitogenomes are not present as naked DNA but 
packaged with proteins (the most essential is the mitochondrial 
transcription factor A, or TFAM) in the so-called nucleoids, which 
are required for correct mitogenome replication, transcription,  
and translation37.

In the last several years, the development of high-throughput 
sequencing techniques has enormously accelerated the sequencing 
of mitogenomes (there were over 10,000 reference sequences in  
the National Center for Biotechnology Information [NCBI] 
organelle genome database as of November 2019; Figure 1),  
widening our view of their diversity. Here, I will review the most 
recent data available on the structure and gene content of the  
mitogenomes of the different groups of living eukaryotes within  
an evolutionary context.

1. Animal mitochondrial genome structure
The mitogenomes of bilaterian animals are extremely compact 
(Figure 2). They are normally organized into a single circular  
molecule of about 16 Kb (ranging from 11 to 50 Kb) in length. 
Remarkably, however, in dicyemids (rhombozoans) and some  
rotifers, nematodes, thrips, and lice, the mitogenome is divided 
into multiple circular mini-chromosomes38. Bilaterian animal 
mitogenomes normally contain 13 protein-coding genes (nad1–6, 
4L; cob; cox1–3; and atp6 and 8), which encode different subu-
nits of the enzyme complexes of the OXPHOS system; two rRNA 
genes; and 22 tRNA genes (Figure 2). As an exception, the atp8 
gene is absent in most nematodes38 and flatworms39 and has been 
difficult to annotate in some bivalves40. Furthermore, the mitog-
enome of the only species of arrow worm (phylum Chaetognatha) 
thus far sequenced lacks the atp6 and 8 genes and all tRNA genes 
but trnM41. All bilaterian mitochondrial genes lack introns, and  
the only reported exception is the cox1 gene of one annelid42. In 
general, genes abut with almost no intergenic regions, and the  
only exceptions are the so-called control regions that contain 
the origins of replication and transcription. The synteny is rather  
conserved within the different bilaterian phyla, although some (for 
example, Mollusca43) are more prone to gene rearrangements than 
others (for example, Arthopoda44). Within Chordata, the mitog-
enome organization of vertebrates is highly conserved whereas 
that of ascidians is hypervariable45. Gene rearrangements between  
relatively closely related taxa usually involve trn genes (but not  
only) and are particularly frequent around the control regions, 
through the tandem duplication and random loss (TDRL)  
mechanism, which explains translocations46 but not inversions.

The structures of the mitogenomes of the earliest lineages of  
metazoans (that is, Porifera, Ctenophora, Placozoa, and Cnidaria) 
differ variously from the above described for bilaterian animals 
(Figure 2). Whereas the mitogenome of Ctenophora is 10 to 11 Kb 
in length, those of most of Cnidaria and Porifera are 16 to 20 Kb 
(although some sea anemones and calcareous sponges can reach 
up to 77 to 81 Kb) and that of Placozoa is 32 to 43 Kb47. One  
notable difference is the presence of linear mitogenomes in cal-
careous sponges and several cnidarians48,49. In some cnidarians, 
the linear mitogenome is organized into a single chromosome 
with terminal inverted repeats47, whereas in other cnidarians49,50 
and calcareous sponges48, there are multipartite mitogenomes. A  
second striking feature of the mitogenomes of non-bilaterian  
animals is the different gene content and the presence of introns 
in some genes. Additional mitochondrial protein-coding genes 
reported in non-bilaterian animal taxa are the following: atp9 in  
most sponge mitogenomes; polB encoding a family B DNA  
polymerase in the placozoan and some jellyfish mitogenomes;  
mutS encoding a mismatch repair protein in the mitogenomes of 
some corals; and tatC encoding the twin-arginine translocase  
subunit C in the mitogenome of the sponge family Oscarellidae47  
(Figure 2). On the other hand, ctenophores, placozoans, and  
calcareous sponges lack the atp8 gene. The number of trn 
genes also differs between non-bilaterian and bilaterian animal  
mitogenomes. Those of  demosponges and placozoans have in  
addition the trnI(CAU) and trnR(UCU) genes, whereas cnidar-
ian mitogenomes (and independently one group of sponges51) 
have reduced their set to only trnM and trnW47 and those of  
ctenophores have lost all of their trn genes52. The presence of  
self-splicing introns of groups I and II (typical of bacteria and 
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Figure 1. Currently sequenced complete mitogenomes. Complete mitogenome sequences are available at the organelle genomes 
database, which is part of the National Center for Biotechnology Information Reference Sequence project. Release 7/11/19 was downloaded 
and mitogenomes were separated by groups (Metazoa, Fungi, Archaeplastida, and other eukaryotes). The proportion (percentage) of 
sequenced mitogenomes to the estimated number of species per group53 is shown above each bar.

viruses) has been reported in cox1 and nad5 genes of different  
species of corals, sponges, and placozoans47. Group I and II introns 
contain internal heg (encoding homing endonucleases) and matR 
(encoding reverse transcriptases) genes, respectively54,55. It is  
postulated that the introns and many of the extra protein-coding  
genes (except atp9 and tatC) were likely acquired through  
horizontal transfer47.

Metazoa and their unicellular closest sister groups form the  
Holozoa. Within non-metazoan Holozoa, the mitogenomes of the 
choanoflagellate Monosiga brevicollis, the filasterean Capsaspora  
owczarzaki and Ministeria vibrans, and the ichthyosporean  
Amoebidium parasiticum have been sequenced56. These mitog-
enomes are relatively large: 76, 197, 56, and 300 Kb, respectively. 
The variation in length is due to differences in repeats in non- 
coding regions. All are linear (with multiple chromosomes in  
A. parasiticum) except that of M. brevicollis, which is circular. 
All have the core set of genes found in bilaterian animals (except 
the atp8 gene in C. owczarzaki) and the atp9 gene found in the 
mitogenomes of sponges (Figure 2). In addition, the mitogenomes 
of non-metazoan Holozoa have several rps and rpl genes encoding  
proteins of the small and large ribosomal subunits (Figure 2).  

The ccmC and ccmF genes encoding proteins assisting in cyto-
chrome c biogenesis are exclusive to C. owczarzaki56, whereas  
the tatC gene is found only in M. brevicollis. The mitogenome of  
A. parasiticum is particularly rich in introns; there are 21 from 
group I and two from group II56.

2. Fungal mitochondrial genome structure
Fungal mitochondrial DNAs are usually considered circular but 
may well exist as linear molecules in vivo (with inverted repeats 
at the ends57–59). Linearization has occurred independently several  
times in fungi (and other eukaryotes) and, according to one  
hypothesis, may have been triggered by the integration of linear 
mitochondrial plasmids often carrying the dpoB gene, which 
encodes a DNA polymerase B58,60. Fungal mitogenomes largely 
vary between 12 and 236 Kb57–59,61 in length and are highly dynamic: 
important differences in sizes have been reported even between 
strains and individuals within the same species62–64. The variations  
in genome length and genetic diversity are attributed to differences  
in the number of introns, intergenic regions, and tandem  
repeats22,65–67. Another remarkable feature of fungal mitogenomes 
is that they use several genetic codes. The typical mitochon-
drial genome of dikarya fungi (Ascomycota and Basidiomycota)  
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contains 14 protein-coding genes (nad1–6, 4L; cob; cox1–3; and 
atp6, 8, and 9), the rrnL and rrnS genes, and a variable number 
(20 to 31) of trn genes22,69 (Figure 2). The presence of the rps3 
(originally named var1) gene70,71 is widespread in dikarya fungal 
mitogenomes but is not present in all. A remarkable variation 
from the consensus is the lack of the nad genes in some yeasts 
(family Saccharomycetaceae)72. A scattered distribution of the 
rnpB gene that encodes for the RNA subunit of the mitochon-
drial RNAse P is found in fungal mitogenomes69. Genes are 
generally encoded in one strand in Ascomycota and in both 
in Basidiomycota. Introns are mostly of group I and normally 
contain heg genes22. For instance, up to 43 group I introns have  
been reported in Agaricus bisporus73. Gene rearrangements are  
frequent among dikarya mitogenomes and are most likely the  
result of intrachromosomal recombination events69. The  
mitogenomes of early divergent lineages of fungi (for example,  
Mucoromycetes and Chytridiomycetes) have been less well 
studied74,75 (Figure 1). The ones reported have the genes  
encoding the 14 OXPHOS complex subunits and the two 
rRNAs75; some Mucoromycetes have, in addition, the rnpB 
and rps3 genes74; the polB gene as well as heg genes within 
group I introns have been found in the chytridiomycete  
Synchytrium endobioticum58. An interesting feature of several 
of these mitogenomes is the drastic reduction in the number of 
trn genes to only five to nine in several chytridiomycete species  
such as Hyaloraphidium curvatum57, Monoblepharella sp.76,  
or S. endobioticum58. Moreover, several of the mitogenomes of 
early divergent lineages of fungi have the cox1 and rrnS genes  
divided into two fragments, separated by one or several genes, 
either at the same strand or at opposite strands75.

The circular mitogenome of Nuclearia simplex of 74 Kb in  
length represents the Nucleariida, which are the unicellular  
sister group of fungi within Holomycota77. This mitogenome 
has the same set of OXPHOS complex subunit genes typically  
found in fungal mitogenomes. In addition, it has the rps11 and 
12 genes (Figure 2). The rrnL and rrnS genes and a total of  
25 trn genes are present77. Remarkably, this mitogenome contains 
a high number of introns (21 of group I and one of group II) and  
two to 10 unassigned open reading frames (ORFs).

3. Plant mitochondrial genome structure
In green plants (Viridiplantae), research effort has been  
preferentially concentrated in plastids; thus, the major-
ity of the diversity of mitogenomes awaits further exploration  
(Figure 1). Mitogenomes have been sequenced in angiosperms 
(for example, 78), acrogymnosperms79, ferns80, lycophytes81–83, 
mosses84–86, liverworts87, and green algae88 (Figure 1).

The main feature that characterizes the mitogenomes of flowering  
plants (angiosperms) is their relatively large length, which varies 
a 100-fold range from 66 Kb of that of the parasitic plant Viscum 
scurruloideum89 to 11.3 Mb of that of the eudicotyledon Silene 
conica90. Within an angiosperm mitochondria, there could be  
several subgenomic isoforms with alternative arrangements 
resulting from homologous recombination that could have linear, 
branched, and circular structures91. The angiosperm mitogenomes 
generally encode in both strands for a core set of 24 protein-coding 
genes: nad1–7, 9, 4L; cob; cox1–3; atp1, 4, 6, 8, and 9; the ccmB, 

C, Fc, and Fn genes encoding proteins assisting in cytochrome  
c biogenesis; the tatC (also referred to as mttB); and matR89  
(Figure 2). In addition, angiosperm mitogenomes may have differ-
ent combinations of rps and rpl genes as well as sdh3 and 4 genes 
encoding succinate dehydrogenase subunits of OXPHOS com-
plex II89 (Figure 2). Notably, the parasitic plant V. scurruloideum 
lacks all nad genes89. Most angiosperm mitogenomes have homing  
group II introns in several protein-coding genes92, whereas the  
presence of group I introns has been reported only in the cox1 
gene and has been inferred to result from an original horizontal 
gene transfer from fungi, and subsequent transfers occurred from 
one angiosperm to another93. Angiosperm mitogenomes have the  
rrn5 gene, which encodes the rRNA 5S of the large subunit in  
addition to the rrnS and rrnL genes. No angiosperm mitogenome  
has a complete set of trn genes and thus translation relies on  
nucleus-encoded tRNAs that are imported from the cytosol. In 
particular, trnA, R, L, T, and V genes are generally missing in 
angiosperm mitogenomes94. The number of trn genes varies from 
only three to eight in Viscum89 and Silene90 to 17 to 29 genes in 
many species94. Some of these trn genes have group I introns95. 
Notably, a small fraction of the mitochondrial trn genes are  
derived from the chloroplast genome94.

Variation in size of angiosperm mitogenomes is attributed mostly 
to differences in the number and length of non-coding regions96 
and to intracellular transfers from the nucleus and the chloroplast 
genomes90. Differences in intron length97 and horizontal gene  
transfer events98 also account for size disparity. Intergenic regions 
in angiosperm mitogenomes are formed mostly by repeats of  
variable length well above 1 Kb. The dynamic nature of angiosperm 
mitogenomes relies mostly on large non-tandem repeats, which 
are responsible for rearrangements and changes in size through  
homologous recombination99. The high recombination activity 
implies that gene order varies extensively even at the intra-specific 
level.

The core set of 24 protein-coding genes defined for angiosperms plus 
the three rrn genes are generally conserved in acrogymnosperms,  
ferns, spikemosses, mosses, liverworts, and green algae mitog-
enomes (Figure 2). However, the number of rps and rpl genes  
varies substantially in the mitogenomes of these lineages. The 
number of introns within genes varies between 20 and 40 and  
most are of group II. Within acrogymnosperms, mitogenome 
research has been focused mostly on the early divergent lineages 
corresponding to genera Cycas, Ginkgo, and Welwitschia79. As 
in angiosperms, the mitogenomes of the three above-mentioned 
acrogymnosperms are relatively large: 415, 346, and 979 Kb, 
respectively. The Welwitschia mitogenome has a reduced set of  
trn genes79. The mitogenome of Pinus taeda is available at  
GenBank (MF991879; unpublished) and has the same protein- 
coding gene content found in Cycas and Ginkgo and many 
angiosperms, as well as 38 trn genes, which is higher than usual.

Thus far, the mitogenomes of Ophioglossum californicum and  
Psilotum nudum represent the ferns (Pteridophytina80). They are 
372 Kb (one circular chromosome) and 628 Kb (two circular  
chromosomes) in length, respectively (Figure 2). The difference 
in length is due to repetitive intergenic sequences as the gene  
content of both species is virtually the same as that found in  
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Cycas and Ginkgo and many angiosperms80. The nad genes are  
particularly intron-rich and thus rather long. For instance, the  
Psilotum nad1 gene is 21 Kb in length. The mitogenomes of  
spikemosses and quillworts (Lycophytina) have been sequenced 
in the three families within the group (that is, Selaginellaceae81,  
Isoetaceae82, and Lycopodiaceae83). These genomes are 413, 
58, and 183 Kb in length, respectively (Figure 2). From the core 
set of 24 genes, all three representatives lack the ccm genes81–83  
(Figure 2). Also, atp4 is missing in Selaginellaceae, nad7 in  
Lycopodiaceae, and matR in Isoetaceae and Selaginellaceae. 
The set of accessory genes found in angiosperm mitogenomes is 
found almost complete in the Lycopodiaceae mitogenome83 but  
heavily reduced in the Isoetaceae82 and Selaginellaceae81  
mitogenomes (Figure 2). The Selaginellaceae mitogenome 
lacks the rrn5 gene and has no trn genes80. The moss (Briophy-
tina) mitogenomes are 100 to 141 Kb in length84,85. They lack the 
matR gene (Figure 2). Synteny is largely conserved among moss  
mitogenomes85. The mitogenomes of representatives of the three 
main liverwort lineages—Haplomitriopsida100, Jungermanniop-
sida101,102, and Marchantiopsida87,103—are circular molecules of 152 
to 187 Kb in length that lack the nad7101,102 and ccm100 genes in 
some species (Figure 2). These mitogenomes have up to 20 to 24  
unassigned ORFs. Green algae (Chlorophyta) mitogenomes vary 
between 16 and 130 Kb in length because of the presence of  
numerous tandem repeats88. Whereas the mitogenomes of  
Prasinophytina are bigger and have the nad10 gene as an addition 
to the angiosperm core set, the mitogenomes of Chlorophytina are 
smaller and show two different gene contents in Chlamydomon-
adales and Sphaeropleales, respectively88,104. The mitogenomes 
of Chlamydomonadales are generally linear with palindromic  
telomeres (but see 105) and lack many core genes (nad3, 7, 9, 
4L; cox2 and 3; atp1, 4, 6, 8, and 9; all rps and rpl; and tatC88),  
whereas those of Sphaeropleales have a more complete set of 
OXPHOS genes, lacking only atp1, 4, and 8 (Figure 2). All  
mitogenomes of green algae lack the ccm, matR, and rrn5  
genes88. The number of trn genes varies between 23 and 27 in  
Prasinophytina but in Chlamydomonadales has been reduced to 
only three or four88; it is remarkable that, in Sphaeropleales, all  
four trnL are missing104. A notable feature of Chlorophytina 
mitogenomes is that rrnL and rrnS genes are fragmented. In 
Chlamydomonadales, these two genes are highly fragmented 
and the fragments are scattered across the chromosome, whereas 
in Sphaeropleales, the rrnL and rrnS consist of four and two  
fragments, respectively88,104. Another interesting feature of 
green algae mitogenomes is the evolutionary history of the cox2  
gene104. This gene is complete in the mitogenomes of Prasino-
phytina and divided into two fragments, cox2a and cox2b, in  
Chlorophytina. Whereas in Sphaeropleales, the cox2a is in 
the mitogenome and the cox2b is in the nuclear genome, in 
Chlamydomonadales, both fragments have been transferred to the  
nuclear genome104. Finally, it is important to note that  
Chlorophyta mitogenomes show important variations in the  
genetic code104.

Green plants (Viridiplantae) and their unicellular close sister  
groups form the Archaeplastida. Within non-green plant Archae-
plastida, the mitogenomes of Glaucophyta are circular and  
between 33 and 52 Kb in length106. These mitogenomes have the 
nad11 gene as an addition to the angiosperm core set but lack the 

ccm, tatC, and matR genes (Figure 2). They also encode several  
rpl and rps genes as well as the sdh3 and 4 genes (Figure 2).  
There are two to 10 unassigned ORFs. Genes generally lack 
introns106. These mitogenomes have trn genes sufficient to produce  
tRNAs that decode all codons but ACN (Threonine)106. The  
mitogenomes of Rhodophyta are circular molecules of 25 to  
30 Kb in length107,108. They lack some of the genes of the  
angiosperm core set (nad7 and 9; atp1; ccm; and matR) and  
have few rpl and rps genes (Figure 2).

4. Other eukaryote mitogenome structures
The characterization of mitogenomes from early diverging  
(mostly unicellular) lineages of eukaryotes (Amoebozoa,  
Heterokonta, Alveolata, Rhizaria, Cryptophyta, Centrohelida, 
Haptophyta, and Excavata) is key to understanding the evo-
lutionary history of mitogenomes and their great diversity109. 
The number of these mitogenomes that are being sequenced is  
growing fast but is still comparatively small given the high  
diversity of these lineages (Figure 1).

Within Amoebozoa, the mitogenomes of Conosea110 and  
Lobosea111 have similar sizes of 29 to 58 Kb (Figure 2). These  
circular mitogenomes generally have a core set of 19 OXPHOS  
subunit protein-coding genes (nad1–7, 9, 11, 4L; cob; cox1–3;  
atp1, 4, 6, 8, and 9) and several rps and rpl genes and unassigned 
ORFs110–112, although different species may have lost variously  
some of these genes; an extreme case is that of the free-living 
lobosean Vannella croatica, which lacks the nad3, 7, and 9; atp1, 
4, 6, and 8; and all rps and rpl genes113. The rrnS and rrnL genes 
and 13 to 25 trn genes are present110–112. Most (if not all) genes  
are encoded in the same strand, and most trn genes are grouped 
into a single or few clusters. The cox1 and 2 genes may be  
fused114 and contain group I introns with heg genes113. The tufA 
gene, which encodes for an elongation factor, has been reported 
in the lobosean Vermamoeba vermiformis (GenBank accession 
number: GU828005; unpublished). Interestingly, amoebozoan 
mitogenomes generally show little synteny and are highly  
divergent in sequence, even between individuals morphologically 
identified as belonging to the same species115.

Within Straminopiles (or Heterokonta), the size and gene  
content of the mitogenomes of the main groups are generally 
conserved (Figure 2). Several mitogenomes of Ochrophyta 
algae from families Chrysophyceae116, Phaeophyceae117,  
Eustigmatophyceae118, and Bacillariophyceae (diatoms119) have 
been sequenced. The circular genomes normally vary in size 
between 34 and 77 Kb, depending on intervening sequences 
of variable length. They code generally for the same protein- 
coding and rrn genes found in Amoebozoa mitogenomes except 
atp1 (only present in Eustigmatophyceae118). In addition, they 
encode the rrn5, tatA (not in all), and tatC genes. Remarkably, 
in Phaeopyceae, the cox2 gene shows an in-frame insertion of  
about 3 Kb (1000 amino acids117). The circular mitogenomes 
of Oomycota are compact and differ in size between the orders  
Peronosporales (38 Kb), Saprolegniales (47 to 49 Kb), and  
Pythiales (55 Kb120). The gene content common to the three orders 
includes the same core set of OXPHOS system protein-coding 
genes found in Amoebozoa mitogenomes120 (Figure 2). An inter-
esting addition to the RNA gene set is the presence of the ssrA 
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gene, which encodes for a transfer-messenger RNA that releases  
translation complexes when stalled on mRNAs lacking a stop 
codon121. The larger sizes of the Saprolegniales and Pythiales 
mitogenomes are due to duplication events in several genes120.  
The mitochondrial genome of Cafileria marina represents the 
Bigyra122. It is a circular molecule of 43 Kb, which has the same 
gene content as Amoebozoa mitogenomes122. Remarkably, the 
nad11 gene in many Heterokonta is split into two fragments; 
in several groups (for example, all Eustigmatophyceae, some  
Bacillariophyceae, and some Bygira), one of the fragments is  
relocated to the nuclear genome118. The mitogenomes of  
Blastocystis are exceptional within Heterokonta as the species 
of this genus have mitochondrion-related organelles instead of  
true mitochondria123. These mitogenomes are circular and of  
only 28 Kb in length, have a highly biased codon usage, and lack 
the cox, cob, and atp genes123 (Figure 2).

Within Alveolata, the mitogenomes of Ciliophora are linear  
(with long inverted repeats in the terminal regions) and have a 
relatively large size of 40 to 76 Kb124 (Figure 2). They are highly 
compact with small intergenic regions. They normally have a core 
set of 14 OXPHOS system protein-coding genes (they lack nad11, 
cox3, and atp1, 4, 6, and 8) and a variable number of accessory 
rps and rpl genes124 (Figure 2). In addition, these mitogenomes 
have 21 or 22 unassigned ORFs, which encode proteins as large 
as 1300 amino acids125. They have a reduced set of four to eight 
trn genes124. Hence, nucleus-encoded tRNAs need to be imported 
to complete translation. Some of the genes, like nad1 and the two 
rrn genes, are usually found fragmented125. An exceptional case is 
that of Nyctotherus ovalis as the organelle genome is located in  
the hydrogenosome126. This mitogenome of 48 Kb has the nad 
genes but lacks the cox, cob, and atp genes as well as most rps, 
rpl, and trn genes126. The mitogenomes of apicomplexans are the 
smallest known (only 6 to 7 Kb127), whereas those of dinoflagel-
lates are relatively large (from 90119 to 326 Kb128) (Figure 2). 
The gene contents of the mitogenomes of apicomplexans and  
dinoflagellates are minimum with only three protein-coding  
genes (cox1 and 3  and cob), two fragmented rRNA genes and 
no trn genes128 (Figure 2). The rRNA fragments are coded on  
both strands of the mitogenome and not in linear order128. In  
the P. falciparum mitogenome, up to 12 and 15 fragments need 
to be assembled (through a yet-unknown mechanism) into the 
ribosome to form the small (804 nt) and large (1233 nt) rRNAs,  
respectively129. A certain degree of synteny of the fragmented  
genes is conserved among related taxa, and the fragmentation 
of the rrn genes was suggested to have occurred in the common  
ancestor of apicomplexans and dinoflagellates129. In dinoflagel-
lates, the diatom endosymbionts have mitogenomes with more  
canonical gene contents (see Ochrophyta mitogenomes119).

Within Rhizaria, only mitogenomes of Cercozoa but not of 
Foraminifera and Radiolaria are available (Figure 2). Within  
Cercozoa, the mitogenomes of Lotharella oceanica and 
Bigelowiella natans130 and of Spongospora subterranea131 and  
Plasmodiophora brassicae132 represent Filosa and Endomyxa, 
respectively. The linear mitogenomes of L. oceanica and B. natans 
are 36 to 37 Kb in length and have terminal inverted repeats. They 
contain the same core set of OXPHOS system protein-coding  
genes of Amoebozoa except nad11 and atp4 as well as several 

rps and rpl genes. The nad6 and nad9 genes are duplicated in  
L. oceanica. No introns were found. Other genes involved in  
transcription, RNA processing, or protein import are missing130. 
The circular mitogenome of S. subterranea is 38 Kb in length 
whereas that of P. brassicae is 115 Kb long, including a 12.5-Kb  
repeat132. The gene contents of both mitogenomes are the same 
as those of Filosa plus polB and rnpB (Stjelja et al.132 2019).  
Up to 54 and five introns were found in P. brassicae and  
S. subterranea, respectively. Seven of the introns in P. brassi-
cae were of group II. In total, 19 unassigned ORFs, most within  
introns, were inferred132. The difference in number of introns, 
the long repeat, and intergenic regions may largely account for  
the different in lengths between the two mitogenomes.

The mitogenomes of Haptophyta133, Centrohelida134, and  
Cryptophyta135 have been sequenced. (Sometimes these lineages 
have been grouped together within Hacrobia, although the  
monophyly of this group is highly controversial136.) The mitog-
enomes of the Haptophyta are circular molecules of 29 to 34 Kb 
(Figure 2). The intron-less genes are transcribed from the same 
strand. These mitogenomes have a reduced representation of 
OXPHOS system protein-coding genes, lacking nad7, 9, and 11 
and atp1 and 8 and having only four and one rps and rpl genes,  
respectively133. In contrast, the circular mitogenome of Marophrys sp.  
representing the Centrohelida is 113 Kb in length134 and has a 
rather complete set of protein-coding genes, including nad1–11,  
4L; cox1–3; cob; atp1, 6, 8, and 9; 12 rps and seven rpl genes; 
sdh2–4; tufA; cox11; and polB (Figure 2). The genes cox1 and  
nad5 are partitioned whereas nad9 is duplicated. There are 19 
group I introns, most encoding heg genes. This mitogenome 
also has an rpo gene, which derives from integration of a mobile 
genetic element (linear plasmid) and encodes a single-subunit 
T7/T3-like RNA polymerase that is not involved in the transcrip-
tion of the mitogenome. There are up to 12 unassigned ORFs. The  
mitogenomes of Cryptophyta are circular molecules ranging in 
size from 37 to 54 Kb135 (Figure 2). The mitogenomes contain  
the same set of OXPHOS system protein-coding genes reported 
in Marophrys sp.; a slightly reduced set of rps and rpl genes; and  
sdh3 and 4 and tatA and C135. The genes cox1 and cob contain 
a group II intron in some species. Large syntenic blocks are  
conserved between species and a large repeat region is found135.

Within Excavata, mitogenomes are extremely diverse (Figure 2).  
The mitogenomes of Jakobida are the richest in gene  
content114,137 and the most similar to the transcriptional and  
translational machinery operons in bacterial genomes138; those 
of Heterolobosea are compact and gene-rich139; those of some  
Euglenozoa are arranged in specialized structures called kine-
toplasts140 and in Metamonada are simply absent as species 
either have highly reduced versions of mitochondria called  
mitochondrion-related organelles141,142 or completely lack them143 
because of their adaptation to anaerobic environments. Jakobid 
mitogenomes are mostly circular, of 67 to 100 Kb, and share 
a large core set of genes137,144,145, which include the OXPHOS  
system protein-coding genes reported for Marophrys sp. plus atp3  
and 4 and the accessory genes encoding the RNA polymerase 
(rpoA–D), several import transporters (secY and tatA and C),  
proteins for binding of the heme b cofactor to cytochrome c  
through the maturation system I (ccmA–C and F), and the RNAse 
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P (rnpB) (Figure 2). The mitogenome of Andalucia godoyi has, 
in addition, the cox15 encoding a protein involved in cytochrome 
c oxidase (COX) assembly137. These mitogenomes also have 
the ssrA gene137. The circular mitogenome of Naegleria fowleri 
as a representative of Heterolobosea is 49 Kb139 but is almost as 
rich in genes as the jakobid mitogenomes (Figure 2). Within  
Euglenozoa, the mitogenomes of Euglena, Diplonema, and  
Tripanosoma are radically different in organization but not in 
their reduced gene content140. The short linear mitogenome  
molecules of 5 to 8 Kb in length of Euglena contain only the  
nad1, 4, and 5; cob; and cox1–3 genes as well as fragmented 
and highly divergent rrnL and rrnS genes140. The mitogenome 
of Diplonema is organized into about 80 to 100 circles of 6 to  
7 Kb in length, each containing one or several (overlapping) gene  
fragments flanked by highly redundant non-coding regions140,146.  
The initial annotations of the mitogenome of Diplonema also 
reported the nad7 and 8 and atp6 genes in addition to the genes 
observed in Euglena140. However, a recent study147 demonstrated 
the presence of the nad2, 3, 6, 9, and 4L genes with highly  
divergent sequences. The mitochondrial protein-coding and  
rrn genes in Diplonema are highly fragmented, and gene  
pieces (or modules) are transcribed separately. The transcripts are 
end-processed to eliminate non-coding sequences and joined by 
an RNA ligase146. Two types of RNA editing (one adding uridine  
tails at the 3′ ends of modules and the other producing C-to-U 
and A-to-I substitutions) restore ORFs post-transcriptionally146. 
It is postulated that the origin of mitogenome and gene fragmen-
tation in diplonemids could be related to a mobile element that  
proliferated and propagated146. The molecular mechanism that 
ensures how chromosome loss is avoided during cell division is 
unknown146.

The kinetoplasts of Trypanosoma are the most complex  
mitogenomes within Euglenozoa. The kinetoplast is a single 
disk-shaped structure composed of dozens of maxicircles of  
20 Kb in length and thousands of minicircles of 1 Kb in  
length140. The maxicircles have the genes found in Diplonema 
plus rps12 and four unassigned ORFs. The minicircles encode 
small guide RNAs, which aid in post-transcriptional RNA  
editing140. In Euglenozoa, all tRNAs must be imported from the 
cytosol.

5. Conclusions and perspectives
The last few years have witnessed an astounding increase in 
the number of sequenced mitogenomes. The advent of high- 
throughput sequencing techniques has extended mitogenome  
characterization to non-model, understudied eukaryotes and has 
facilitated the sequencing of large, fragmented, or repeat-rich  
mitogenomes otherwise intractable with traditional cloning,  
standard/long polymerase chain reaction (PCR), and sequencing 
methods. The rich database of mitogenomes available is still 
taxon-biased. The proportion of mitogenomes sequenced to 
the number of species per lineage is generally less than 10%  
(and in many instances less than 1%) and reaches only 21% in  
mammals, the best sampled case (Figure 1). Yet a good-enough 
representation of most eukaryote groups is available not only to 
allow the consensus gene structures for the different groups to 
be inferred (Figure 2) but also to recognize the astonishing diversity  
of exceptions to these consensuses. The early notion—based  

exclusively on the study of bilaterian species—that mitogenomes  
are one single chromosome and are circular and compact 
(of merely 16 Kb in length) has been largely superseded 
as the mitogenome structure of other eukaryotes has been  
unraveled13,14,47,69,125. Mitogenomes are much more variable and 
dynamic than previously thought: their form can be circular,  
linear (with terminal inverted repeats), or branched; they can be 
organized into single or multipartite chromosomes; their sizes 
vary extensively from less than 10 Kb to more than 11 Mb and  
this is due mostly to changes in gene content and the presence of 
repeats in non-coding regions and of self-splicing introns. Their  
gene structure is also highly variable, including the presence 
of group I and II introns and the existence of partitioned genes  
(with the possibility of having one of the partitions in the nuclear 
genome).

The diversity of gene contents (Figure 2) allows the main trends 
during the evolutionary history of mitochondria to be inferred109. 
Alphaproteobacteria, the closest living group of mitochondria, 
have their genes encoding the subunits of the respiratory chain 
complexes and those encoding ribosomal proteins organized 
into operons, whose gene content and synteny are maintained in 
the mitogenomes of some unicellular eukaryotes, particularly  
jakobids and (to some extent) heteroloboseans. These bacterial 
operons also contain genes encoding proteins involved in  
protein transport, cytochrome c biogenesis, and DNA and RNA 
polymerization. All of these bacterial genes were inherited  
vertically into mitogenomes and later either maintained or  
eliminated variously depending of the evolutionary pathway,  
generating the great diversity in gene content, organization, 
and structure of mitogenomes which we observe in living  
eukaryotes (Figure 2). The genes cob, cox1 and 3, and rrnS 
and rrnL are conserved throughout all known mitogenomes. 
The genes nad1–6, 4L; cox2, atp6, 8, and 9 are also highly  
conserved but are missing in some lineages, namely Apicompl-
exa, Dinoflagellata, and Euglenozoa. The genes nad7 and 9, atp1  
and 4, sdh3 and 4, tatC, and rrn5 are generally found in  
unicellular eukaryotes and Archeoplastida (with the exception 
of Rhodophyta) but not in fungi and animals. The genes nad8 
and 10, atp3, and sdh2 are restricted mostly to Excavata,  
Centrohelida, and Cryptophyta. The genes rps and rpl have been 
generally lost in animals, fungi (with the exception of rps3), 
Euglenozoa, and Alveolata. The presence of rps16 and rpl1, 
11, 18–20, 27, 31–32, and 34–35 is restricted to Jakobida and 
a few more lineages. The genes ccmC, D, and F are found in  
Jakobida, Heterolobosea, and Viridiplantae. In addition, the  
gene content of mitogenomes has been enriched repeatedly  
through scattered horizontal gene transfer of several genes of  
viral, bacterial, plastid, or nuclear origin. For instance, the  
presence of group I and II introns of bacterial/viral origin, which 
include genes that encode their own maturases, is widespread 
except in bilaterian animals, and the gene matR is prevalent in 
Viridiplantae.

The sequencing of mitogenomes has been boosted by high- 
throughput sequencing techniques. The genome skimming 
approach is particularly useful for sequencing mitogenomes148. 
This technique consists of sequencing nuclear genomes at a low 
coverage. As a result, the recovery of high-copy fractions such as 
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mitogenomes, which are present in thousands of copies per cell, 
is enhanced. Genome skimming looks particularly promising  
for obtaining mitogenomes from museum and herbarium-preserved 
old material149. Several pipelines have been specifically designed  
to assemble mitogenomes from short reads150,151. Normally, the 
assembly is relatively straightforward, particularly if mitogenomes 
from closely related species are available and used as reference. 
However, the exceptions to this rule are plant mitogenomes, which 
are rather big and contain repeat regions prone to homologous 
recombination. These features have been a major drawback for 
long PCR amplification in the past and have seriously hindered 
assembly from short reads. In this regard, the use of technologies  
that produce long reads looks very promising for assembling  
plant mitogenomes152 and in general for eliminating assembly  
chimaeras of short reads that may arise when using too-distant  
references. Mitogenome-encoded proteins have conserved domains 
that provide significant results in sequence similarity or hidden 
Markov model searches, which also facilitate (almost) automatic  
annotation. Hence, the perspective that the mitogenome database 
will grow exponentially in number and diversity in the coming 
years is well grounded and soon it will be possible targeting all 
key taxa representing main lineages of eukaryotes and, in partic-
ular, those groups of unicellular eukaryotes that are known only 
through metabarcoding approaches or those unknown that may live 
in extreme environments. The orthology of mitochondrial genes  
is relatively easy to assess and the sequences of these mitoge-
nomes will allow species limits to be determined153, cryptic species  
diversity to be detected115, and robust trees to be reconstructed to 
help resolve ongoing phylogenetic controversies154. The recov-
ered trees could be used as evolutionary frameworks to compare  
changes in gene content and arrangement between sister taxa and 
infer the features of the mitogenomes of most recent common 
ancestors. This will provide us with an unprecedented view of the 
evolutionary transitions (gains, losses, and reorganizations) that 
occurred in mitogenomes during the diversification of eukaryo-
tes and will help us understand the evolutionary mechanisms  
(for example, selection versus random drift) that triggered changes.  
As more nuclear genomes become sequenced, we will be able 
to understand the origin of mitochondrial intergenic regions 
and repeats on one side and the ultimate fate of the missing  
mitochondrial genes in the different mitogenomes. As more  
mitogenome organizations are characterized and combined 
with advance technologies such as single-cell transcriptomics, 
it will be possible to gain insights into the variety of replication,  
transcription, and translation (including RNA editing and  
changes in genetic code) processes occurring outside verte-
brate mitogenomes and to further understand the evolution of the  
signaling occurring between the mitochondrial and the nuclear 
genomes.

Appendix: Brief key to mitochondrial genes and 
corresponding protein functions
1. OXPHOS system proteins
The mitochondrial electron transport chain is composed of  
four (I–IV) complexes inserted in the inner mitochondrial  
membrane155 that could be either physically connected in a  
supercomplex called the respirasome; connected only through 
redox reactions by two mobile molecules (the ubiquinone or  

Coenzyme Q and the cytochrome c) or dynamically shifting 
between the two extreme states156. A fifth (V) complex is required 
to transform the proton pumping occurring in complexes I, II, and 
IV into ATP.

The NADH dehydrogenase (complex I) catalyzes the oxidation  
of NADH to NAD+ and the transfer of electrons to ubiquinone.  
This complex of 44 protein subunits in humans is composed of 
a long hydrophobic membrane domain with the proton-pumping 
module and a hydrophilic peripheral domain with the NADH-
binding and ubiquinone-binding modules157. In bacteria, the  
complex I is encoded in the nuo operon, which consists of  
14 genes (nuoA–N). The genes nuoA, H, J, K, L, M, and N are 
homologs of mitochondrial genes nad3, 1, 6, 4L, 5, 4, and 2,  
respectively, which encode the chains inserted in the inner  
mitochondrial membrane. The genes nuoB, C, D, G, and I 
are homologs of mitochondrial genes nad10, 9, 7, 11, and 8,  
respectively, which encode subunits of the peripheral  
domain156.

The succinate dehydrogenase (complex II) catalyzes the oxidation  
of succinate to fumarate with the reduction of ubiquinone to  
ubiquinol. One hydrophilic domain has two subunits: a flavopro-
tein (SdhA) that binds the succinate and an iron–sulfur protein  
(SdhB). There is also a hydrophobic domain anchored in the 
inner membrane with two subunits: the cytochrome b560 (SdhC) 
and another cytochrome b (SdhD). Genes sdh2, 3, and 4 encode  
subunits B, C, and D, respectively.

The coenzyme Q-cytochrome c reductase (complex III) cata-
lyzes the oxidation of ubiquinol and the transfer of electrons to  
cytochrome c. This complex is made of three proteins in bacteria 
and up to 11 in humans. The gene cob encodes for cytochrome 
b, an integral membrane protein with two heme groups which  
binds the ubiquinol155.

The cytochrome c oxidase (COX) (complex IV) reduces  
molecular oxygen to water. The complex is fully integrated in 
the inner membrane and includes 13 to 17 protein subunits and  
several redox cofactors: a di-copper center (CuA) present in 
COX2, a heme group, and a binuclear heme a3-CuB center  
present in COX1158. The mitochondrial genes cox1, 2, and 3  
encode the corresponding subunits, which form the catalytic  
core and are the only ones present in bacteria.

The ATP synthase (complex V) produces ATP from ADP in the  
presence of a proton gradient across the membrane, which is  
generated by electron transport complexes of the respiratory  
chain. Complex V consists of two structural domains: F1,  
containing the extramembraneous catalytic core, and Fo,  
containing the membrane proton channel. Genes atp6, 8, and 
9 encode subunits of the Fo. Genes atp1 and 4 encode the alpha  
and beta subunits of the F1, respectively.

2. Ribosomal components
Mitochondrial ribosomes are composed of small and large  
subunits159. The genes rps1–4, 7, 8, 10–14, and 19 and rrnS  

Page 12 of 19

F1000Research 2020, 9(F1000 Faculty Rev):270 Last updated: 17 APR 2020



encode proteins and the rRNA (12S in animals, 15S in fungi, 
and 18S in plants), respectively, of the small subunit. The genes  
rpl2, 5, 6, 11, 14, 16, 19, 31 and rrnL encode proteins and 
the rRNA (16S in animals, 21S in fungi, and 26S in plants),  
respectively, of the large subunit159. The gene rrn5 encodes 
5S rRNA of the large subunit in plants and most unicellular  
eukaryotes160. In gammaproteobacteria, ribosomal protein 
genes are organized in operons combining rps and rpl genes as  
well as other genes such as tufA, rpoA–D, and secY138,161, a  
condition also found in some mitogenomes (for example, those of  
Jakobida).

3. Protein maturation
Cytochromes c are proteins with covalently attached heme  
b cofactors. The binding of the heme group relies on membrane-
associated proteins named cytochrome c maturation systems, 
one of which is System I or Ccm162. This system is organized 
into three functional modules: (1) transports the heme b, (2) has  
chaperoning function, and (3) performs the ligation. Genes  
ccmA–C encode three of the five subunits involved in  
module 1. Genes ccmFc and ccmFn encode proteins involved in  
module 3162.

Assembly of the redox cofactors requires the participation of a 
set of accessory proteins. In particular, gene cox11 encodes a  
protein involved in copper insertion158.

4. Transporters
Proteins can be secreted across a membrane either in their  
unfolded conformation (and later fold into their native  
structure) using the Secretory pathway or in their folded state 
using the Twin-arginine translocation (or SecY-independent)  
pathway. The genes involved in the two pathways are the sec  
and tat genes, respectively. The gene secY encodes for the  
central subunit of the secretory channel SecYEG. The genes  
tatA and tatC encode membrane-integrated subunits of the TAT 
channel163.

5. Processing proteins
The family B of DNA polymerases, such as the DNA polymerase  
II of Escherichia coli or the T4 DNA polymerase, have  
replicative and 3′–5′ exonuclease proofreading activities164. The 
polB (also referred to as dpoB) gene encodes these proteins.

The DNA-dependent RNA polymerase synthesizes RNA from 
a DNA template. In bacteria, the enzyme core is composed of 
five subunits: two α involved in assembly and transcriptional  
regulation, β and β′ involved in the catalysis, and ω involved in 
assembly, which are encoded by genes rpoA, B, and C165 and 
Z166, respectively. In addition, the σ transcription initiation  
factor, encoded by the rpoD gene, binds to the core, forming the 

holoenzyme. Archaeal and eukaryotic RNA polymerase core 
enzymes consist of 10 to 20 subunits167.

The DNA mismatch repair system in gammaproteobacteria such  
as E. coli recognizes differences in the methylation state. This  
system has to recognize the mispair, propagate the signal, select 
the appropriate strand, excise it, and resynthesize a new one. Gene 
mutS encodes for an ABC-family ATPase that recognizes the  
mispair168.

Ribonuclease P (RNase P) is an endonuclease that cleaves 
other RNA molecules at the junction between a single-stranded 
region and the 5′ end of a double-stranded region (for instance, 
in a tRNA precursor). The gene rnpB encodes for the RNA  
subunit169.

The ssrA gene encodes a transfer-messenger RNA that partici-
pates in the so-called ribosome rescue pathway. This molecule 
releases translation complexes when stalled on mRNAs lacking 
a stop codon. First, it acts as a tRNA, binding to the  
stalled ribosomes, then as a mRNA, adding an ssrA peptide tag to 
the C-terminus of the nascent polypeptide chain, which is targeted  
for proteolysis170.

Group I and II introns contain inside heg and matR genes,  
respectively, which encode RNA maturases. The maturases 
of group I have a homing endonuclease activity whereas 
those of group II have a reverse transcriptase activity. In addi-
tion, both have a ribozyme component, which catalyzes  
splicing54,55.

The gene tufA encodes for the protein synthesis elongation  
factor Tu (EF-Tu), which plays a central role in the elongation 
phase of protein synthesis by placing the aminoacyl-tRNA at the  
A site of the ribosome171.

Abbreviations
ATP, adenosine triphosphate; BP, base pair; CCM, cytochrome  
c maturation system; COB, apocytrochrome B; COX; cytochrome 
c oxidase; HEG, homing endonuclease; LSU, large ribosomal  
subunit; MAT, maturase; mRNA, messenger RNA; MUT,  
mutator; NAD, NAD dehydrogenase; nt, nucleotide; ORF, open 
reading frame; OXPHOS, oxidative phosphorylation; PCR, 
polymerase chain reaction; POLB, family B of DNA polymer-
ases; RNP, ribonuclease P; RPL, ribosomal protein of the large  
subunit; RPO, DNA-dependent RNA polymerase; RPS, ribos-
omal protein of the small subunit; RRNA, ribosomal RNA; SAR,  
Stramenopiles, Alveolata, Rhizaria; SDH, succinate dehydroge-
nase; SEC, Secretory; SSR, 10Sa RNA; SSU, small ribosomal  
subunit; TAT, Twin-arginine translocation; tRNA, transfer RNA; 
TUF, TU elongation factor.
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