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Abstract
Inflammatory bowel diseases are common, complex, immune-mediated
conditions with a sharply rising global prevalence. While major advances
since 2000 have provided strong mechanistic clues implicating a
de-regulation in the normal interaction among host genetics, immunity,
microbiome, and the environment, more recent progress has generated
entirely new hypotheses and also further refined older disease concepts. In
this review, we focus specifically on these novel developments in the
pathogenesis of ulcerative colitis.
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Introduction
The Inflammatory Bowel Diseases (IBDs), namely Ulcerative 
Colitis (UC) and Crohn’s disease (CD) (Table 1), are chronic  
immune-mediated conditions with a high prevalence in  
developed countries (>0.3%) and rapidly increasing incidence 
in newly industrialised countries (annual percentage change 
+14.9%)1,2. Global prevalence is projected to affect up to 30 
million individuals by 20253. Since its original description by  
Samuel Wilks in Morbid appearances in the intestine of Miss  
Bankes in 1859, the notably consistent features of UC that at 
once appear to be such strong clues have not yet led to a clear  
understanding of disease pathogenesis4. These clinical features 
include the almost-universal involvement of the rectum (the  
lowest part of the colon) as the first site where inflammation  
starts and the distinctively confluent nature of inflammation 
that ends with an abrupt demarcation and transition into normal  
colonic mucosa. Smoking is protective, and UC often presents  
after smoking cessation5. Furthermore, the development of  
appendicitis is protective against UC. On the other hand, UC 
(like CD) is clinically heterogeneous: only 30% and 15% of  
patients have extensive (affecting more than half of the colon) 
or aggressive (patients rapidly become unwell with features of  
systemic upset) colitis, respectively6. Approximately half of  

patients may develop a more complicated disease course, some 
by virtue of not responding to drug treatments7–9. Hence, like 
many complex diseases, diverse aetiological factors shape the  
initiation of UC and impact subsequent disease course and severity 
(Table 2).

The current platform of UC pathogenesis
A widely accepted framework suggests a complex contribution 
of environmental and host factors that increase the susceptibility 
of developing UC, and disease onset is triggered by events that  
perturb the mucosal barrier, alter the healthy balance of the gut 
microbiota, and abnormally stimulate gut immune responses.  
Here, we discuss the general aetiological factors that increase 
the risk of developing UC (Figure 1) and review the molecular  
underpinnings of the abnormal inflammatory process in this  
disease (Figure 2). We briefly cover the genetic, environmen-
tal, immune, and microbiome factors that currently frame our  
understanding of UC pathogenesis.

Genetics
Genetic studies (including genome-wide association [GWA],  
whole genome sequencing [WGS], and fine mapping studies)  
have been particularly successful in identifying 260 susceptibility  

Table 1. Summary of clinical features of Crohn’s disease and ulcerative colitis.

Crohn’s disease (CD) Ulcerative colitis (UC)

Incidence of inflammatory bowel disease (IBD)

Sex Higher incidence in females than in males Equal incidence in males and females

Global prevalence High incidence of CD in developed countries with high prevalence UC emerged before CD in developed countries; 
UC is more prevalent in newly industrialised 
countries

Clinical presentation

Symptomology Chronic diarrhoea, abdominal pain, fever, malnourishment, fatigue, 
and weight loss

Most commonly bloody diarrhoea with 
abdominal pain, urgency, and tenesmus; 
haematochezia is more common in UC

Serological 
markers

Antibodies to microbiota including anti-Saccharomyces cerevisiae 
antibodies; also, anti-OmpC, anti-I2, and anti-Cbir1 antibodies and 
antibodies against exocrine pancreas 

Anti-neutrophil cytoplasmic antibodies; also, 
antibodies to goblet cells

Gross pathology and histopathology

Affected areas Can affect the entire gastrointestinal tract (from mouth to anus); 
terminal ileum is often implicated

Affects the colon with potential backwash ileitis 
or rectal sparing in longstanding disease

Pattern of 
inflammation

Often patchy and discontinuous cobblestone pattern of 
inflammation with skip lesions

Continuous inflammation extending from the 
rectum proximally, often with a separate caecal 
patch

Penetrance Transmural inflammation of the entire bowel wall Inflammation restricted to the mucosal and 
submucosal layers (except in fulminant colitis)

Histopathology Thickened colon wall with non-caseating granulomas and deep 
fissures 
Fibrosis, lymphangiectasia, mural nerve hypertrophy, and Paneth 
cell metaplasia can sometimes be observed 
Granulomas are present in about half of Crohn’s patients

Distorted crypt architecture with shallow 
erosions and ulcers 
Goblet cell depletion, pseudopolyps, submucosal 
fibrosis, and mucosal atrophy can sometimes be 
observed

Complications

IBD complications Fistulas, strictures, perianal abscesses, and colonic and small 
bowel obstruction (from strictures, adhesions, or carcinoma)

Fulminant colitis, toxic megacolon perforation, 
and haemorrhage 
Colorectal cancer is more common in UC
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Table 2. Overview of recent advances in ulcerative colitis (UC).

The current platform of UC pathogenesis

Genetics 
    •    Most genetic factors (67% of susceptibility loci) are shared between UC and Crohn’s disease (CD) 
    •    Sixteen human leukocyte antigen (HLA) allelic associations (mostly class II) are described for UC 
    •    Outwith the HLA region, the ADCY7 gene has the strongest association with UC 
    •    UC-specific genes implicate epithelial dysfunction 
    •    There is low disease hereditability in UC (6.3% in monozygotic twins)

Environment 
    •    UC incidence rises before CD and this is associated with Westernisation 
    •    Westernisation factors—urban lifestyle, pollution, diet, antibiotics, better hygiene, and fewer infections—are associated with UC 
    •    Appendicitis and smoking are protective in UC; smoking cessation can precede UC 
    •    Patients with UC have a 30% increased risk of developing Parkinson’s disease

Microbiota 
    •    The UC gut microbiome, virome, and mycobiome is less diverse over time 
    •    Faecal microbial transplantation is effective in UC 
    •    It is not known if dysbiosis is a consequence, or initiator, of inflammation
    •    �There is depletion of protective (Ruminococcaceae and Lachnospiraceae) and enrichment of inflammatory (Enterobacteriaceae 

and Fusobacteriaceae) microbes

Epithelial barrier 
    •    An impaired epithelial barrier is a pathogenic factor for UC
    •    �An innate “at risk” barrier-specific genetic phenotype where exposure to additional injurious stimuli, such as non-steroidal  

anti-inflammatories and dietary components such as emulsifiers, may be the second trigger that precipitates colitis

Immune response 
    •    Neutrophils are “first responder” cells and undergo inflammatory cell death, which drives inflammation 
    •    Innate immune responses (neutrophils/macrophages) may promote a pathogenic adaptive (likely T-cell driven) response 
    •    How HLA allelic associations influence antigen presentation is not fully understood
    •    �UC immunity is more complex than simply a non-classical Th2 response given newly discovered Th19 and Th17 responses and 

effective interleukin (IL)-23 blockade therapy

New progress in the pathogenesis of UC

Mitochondria 
    •    Mitochondriopathy is a pathogenic process in UC
    •    �Loss of mitochondrial homeostasis leads to defective energy production, increased oxidative stress, and the release of  

pro-inflammatory damage-associated molecular patterns

Single-cell data 
    •    �New colonic epithelial cell subsets have been identified that can sense colonic luminal pH and set the epithelial cGMP tone in 

response; goblet cell remodelling also has important implications
    •    �Strong compartmentalisation around inflammatory monocytes and novel network hubs around the poorly characterised CD8+IL17+ 

T cells and microfold-like (M) cells are observed in UC
    •    �In some patients, inflammation-associated fibroblasts (IAFs) are expanded, enriched with many genes associated with colitis, 

fibrosis, and cancer
    •    �One of the most enriched genes in IAFs is oncostatin M (OSM); high mucosal OSM is associated with poor response to anti-tumour 

necrosis factor

loci (both common and rare genetic variants) associated with  
IBD10–14. There are several key findings. Firstly, most genetic  
factors are shared between UC and CD. In an initial analysis 
of 15 GWA datasets, Jostins et al. showed that 110 out of 163  
(67%) susceptibility loci were associated with both UC and  
CD11. These shared genes encode both innate and adaptive  
immune pathways, cytokine signalling, and immune sens-
ing (e.g. IL23-R, IL-12, JAK2, CARD9, TNFSF18, and IL-10).  
Many of these genes (70%) are also shared with other 
autoimmune diseases such as ankylosing spondylitis and psoria-
sis. Secondly, the strongest genetic signals within UC-specific loci 
are associated with the human leukocyte antigen (HLA) region  

in chromosome 6. Sixteen HLA allelic associations (mostly 
class II) are described for UC, including HLA DRB1*01*03 
for IBD colonic involvement on deeper fine mapping genetic  
analysis15. Further analyses show that these are associated 
with colonic involvement for UC and CD16. It is of interest to  
note that HLA allelic associations with extensive and aggres-
sive UC have been noted even prior to GWA studies17. Recent 
WGS of nearly 2,000 UC patients identified a new but rare  
missense variant (present in 0.6% of cases) in the adenylate 
cyclase 7 gene (ADCY7) that doubles the risk of UC12. Outwith 
the HLA region, the ADCY7 gene has the strongest genetic  
association observed with UC. ADCY7 is one of a family 
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Figure 1. General factors associated with increased susceptibility of UC. CD, Crohn’s disease; UC, ulcerative colitis.

Figure 2. Molecular mechanisms involved in the development of mucosal inflammation in UC. DAMPs, damage-associated molecular 
patterns; ER, endoplasmic reticulum; HLA, human leukocyte antigen; IL, interleukin; Mφ, macrophage; NSAID, non-steroidal anti-inflammatory 
drug; OSM, oncostatin M; ROS, reactive oxygen species; SCFA, short-chain fatty acid; TNF, tumour necrosis factor; UC, ulcerative colitis.
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of 10 enzymes that convert ATP to the ubiquitous second  
messenger cAMP. In addition to this, many UC-specific genes 
are involved in the regulation of epithelial barrier function  
(further discussed below). Thirdly, despite the identification of 
many susceptibility loci, genetics explain only 19% of disease  
heritability in UC18. The concordance rate amongst monozygotic 
twins for UC is only 6.3% (compared to nearly 60% in CD).  
Collectively, genetic factors confer a small but definite increase 
in susceptibility for UC. Many individuals, however, have no  
genetic predisposition when assessed by a polygenic risk score 
that accounts for all of the susceptibility loci19. This suggests a  
key role for aberrant adaptive immune responses and epithelial 
barrier dysfunction in UC disease pathogenesis. Non-genetic  
factors (notably epigenetics20,21) may also play an important  
role.

Environmental factors
The rapid rise of UC incidence in newly industrialised  
countries suggests that environmental factors are important1.  
This parallels the patterns observed in the Western world during 
the early 20th century. Specifically, UC appears first in urban  
areas, its incidence rising rapidly then slowing; subsequently, 
CD incidence rises and eventually approaches that of UC22.  
Westernisation is accompanied by new urban lifestyle,  
exposure to pollution, change in diet, access to antibiotics, bet-
ter hygiene, and fewer infections, all considered as general  
contributory factors23. Notwithstanding this, more specific  
environmental factors associated with UC have been known for 
some time. The strongest example is seen in the protective effect of  
cigarette smoking and the notable observation of new-onset 
UC in individuals who stop smoking. The global patterns of 
smoking and IBD are changing; an increasingly large former 
smoker population with UC in China is suggestive of a rapid 
expansion of the at-risk population24. The anti-inflammatory  
effect conferred by cigarette smoking in UC is intriguing and 
may be mediated by carbon monoxide25. Further examples  
include the protective effect of appendicitis against future  
development of UC26,27, the bimodal incidence with a second 
peak associated with older age in men28, and, more recently, the  
curious association with Parkinson’s disease (another condition  
associated with non-smoking and old age)29,30. These all provide 
more specific aetiological insights into the development of 
UC. Epidemiologic data have shown a potential protective 
effect of high dietary n-3 polyunsaturated fatty acids (PUFAs),  
present in oily fish31, and a diet high in red meat in the development 
of UC32–34.

Gut microbiota
The IBD gut microbiome is significantly less diverse and  
stable over time, as recently extensively characterised in the  
Integrative Human Microbiome Project ([iHMP], where 132 
IBD and healthy individuals were followed up longitudinally for  
1 year)35 and demonstrated in a case-control study involving  
1,800 IBD and irritable bowel syndrome patients36. A depletion 
of protective bacteria such as short-chain fatty acid (SCFA)- 
producing Ruminococcaceae and Lachnospiraceae that  
coincides with an expansion of pro-inflammatory microbes such 
as Enterobacteriaceae, including Escherichia coli, and Fusobac-
teriaceae has been noted37,38. These changes, however, are less  

obvious in UC compared to CD39. It is not known if dysbiosis 
is a consequence of, or plays a causal role in, gut inflammation 
in UC. In this regard, the virome and mycobiome are also less  
diverse in UC40–43. In the longitudinal iHMP, microbiome  
patterns did not predict the likelihood of a disease flare. To add 
to the complexity, a further study in UC showed that microbial  
abundance did not necessarily correlate with transcriptional  
activity44. Therapeutically, however, faecal microbial trans-
plantation (FMT) from healthy donors can treat UC. There are  
four controlled positive FMT clinical studies45–49. The restora-
tion of microbial diversity, including bacterial species respon-
sible for SCFA production in donor stool, has been suggested as 
an important contributor46,50. Hence, one of the main effects of  
dysbiosis in UC is likely to be a reduction in epithelial health 
or a state of epithelial dysfunction that further primes innate  
susceptibility to UC. In support of this, faecal diversion away 
from the rectum worsens inflammation, giving rise to “diversion  
colitis” in UC; the opposite is true for CD, where faecal diversion 
improves inflammation51.

Epithelial dysfunction
With the histologic observation of subepithelial inflammation,  
many studies implicate an impaired epithelial barrier as a  
pathogenic factor for UC. This is through either altered or  
impaired secretion (e.g. of antimicrobial peptides, damage-
associated molecular patterns, or mucus) or physical defects  
(e.g. from disruption of epithelial tight junctions or defective  
regeneration or detoxification) (Text box 1)52,53. GWA studies  
show UC-specific susceptibility genes that regulate epithelial 
morphogenesis (hepatocyte nuclear factor 4 α, Hnf4α54),  
adherens junction stability via E-cadherin (CDH-1), basement 
membrane anchoring and stability (via laminins, LAMB-1, and 
extracellular matrix, ECM1), tight junction assembly (guanine 

Text box 1. Mucosal compartments of the gut wall

Secreted mucus barrier
Mucus plays dual roles as a lubricant and a physical barrier 
between luminal contents and the intestinal epithelium. In the 
colon, an inner layer provides a bacteria-free environment 
adjacent to the epithelium, and the luminal less-viscous layer 
harbours the gut microflora.

Colonic epithelium
The single layer consists of intestinal epithelial cells (IECs), 
mostly absorptive colonocytes connected by tight junctions, 
interspersed with specialised epithelial lineages, including 
secretory goblet and enteroendocrine cells (EECs).

Lamina propria
The mucosal compartment beneath the epithelium supported 
by loose connective tissue and populated by resident immune 
cells such as macrophage and dendritic cells, along with 
mesenchymal cells.

Mesenchymal (stromal) cells
Mesenchymal cells of the intestinal lamina propria are a 
heterogeneous population of non-hematopoietic, non-epithelial 
cell types that contribute to the regulation of innate immunity and 
epithelial barrier maintenance with major intestinal tissue stromal 
cell subsets such as fibroblasts, α smooth muscle actin (α-SMA)-
expressing myofibroblasts, and perivascular pericytes.

Page 6 of 13

F1000Research 2020, 9(F1000 Faculty Rev):294 Last updated: 27 APR 2020



ability to resolve inflammation, restore homeostasis, and repair the 
UC mucosa81,82.

Abnormal immune response: adaptive
UC’s strong genetic associations with HLA (mostly class II) 
suggest that abnormal antigen(s) driving the aberrant T-cell  
response, which then further shape the pathologic cytokine  
milieu, are likely to be a crucial causative factor. How HLA  
influences commensal and/or self antigen presentation (and 
the identities of these) to T cells and thereafter downstream  
pathogenic T-cell response remains unclear and challenging. 
Approaches to study, screen, and define T-cell epitopes have 
improved considerably and progress is likely83. Traditionally, 
UC is associated with a Th2 response with high IL-4, IL-5, and  
IL-13, whereas CD has a more dominant Th1/Th17 response84. 
Earlier studies that show less IL-4 in UC, with CD1d-restricted 
natural killer T-cells producing IL-13, point to a non-classical 
Th2 response85. Some recent developments have overtaken this 
area. These include the identification of IL-23 as a key driver of 
Th17 responses86, genetic associations with IL-23 and its related 
genes11,87, and the presence of Th1788 (and Th989) cells in UC. 
The Th2 angle becomes less clear where anrukinzumab (a drug 
that blocks IL-13 by binding with IL-4Ra, a shared subunit for  
IL-13 and IL-4 receptors)90 and tralokinumab (a drug that  
blocks binding to both IL-13Ra and IL-13Ra2) are not effective  
in UC91. Blocking IL-23, however, is effective in UC, e.g.  
mirikizumab (anti-p19 subunit of IL-23)92 and ustekinumab  
(anti-p40 subunit of IL-23)93. The example of anti- TNF treat-
ment first used in CD and then shown to be equally effective in  
UC94 demonstrates that basing a translational approach on 
pure Th-cytokine profile may be oversimplified. Furthermore, 
although CD4 T cells are considered to be more important in IBD  
pathogenesis, it is CD8 T cell transcriptomic signatures that 
have been found to influence whether UC and CD adopt a more  
aggressive disease course (in this study, CD4 T signatures were 
not useful)95. New data characterising the adaptive immune  
populations at a transcriptomic (and at a single cell) level96 will  
yield many more new insights. The recent discovery of innate 
lymphoid cells (ILCs)97,98 as a further mediator of IL-23-driven  
inflammatory response in the colon99 is a further new dimension 
in UC.

New progress in the pathogenesis of UC
The mitochondria and UC
Recent progress has been driven by a strong focus on direct  
studies on the inflamed mucosa specifically in newly  
diagnosed or drug-naïve individuals38,100,101. Of interest, using 
a bulk RNAseq approach in 206 newly diagnosed paediatric 
UC individuals (PROTECT study), Haberman et al. showed a  
significant reduction in the expression of mitochondrial genes 
that encode the oxidative phosphorylation chain (responsible 
for energy production) and nuclear encoded genes such as 
PPARGC1A (responsible for mitochondrial biogenesis),  
implicating mitochondriopathy as a pathogenic process in UC100.  
Mitochondria are intracellular double-membrane-bound  
organelles with many essential physiological roles such as in 
energy production and the regulation of cell death and immune 
responses102. In the last 10 years, many seminal studies have  

nucleotide binding protein alpha 12, GNA12), ion transport  
(solute carrier family-26, SLC26A3)55, and epithelial health via  
endoplasmic reticulum stress (orsomucoid-1-like gene 3, 
ORMDL3)56. Of interest, a protein truncating genetic variant 
in RNF186, a single-exon ring finger E3 ligase with strong 
colonic epithelial expression, protects against UC; however, the  
underlying mechanism is not yet clear14,57. Hence, there is a poten-
tially innate “at risk” phenotype where exposure to additional 
injurious stimuli such as non-steroidal anti-inflammatories58  
(that reduce the synthesis of protective prostaglandins) and 
dietary components such as emulsifiers (that reduce the  
thickness of the mucus layer)59 may be the second trigger that  
precipitates colitis. As discussed earlier, dysbiosis results in  
loss of SCFA production35, which is essential for epithelial  
energy provision, mucus production, and proliferation in the  
colon. Hence, clinical trials involving butyrate60, propionic  
acid61, prebiotics62–66, and L-carnitine61, which facilitate SCFA 
transport, have demonstrated some efficacy in treating UC67.  
During active UC, key pro-inflammatory cytokines such as  
tumour necrosis factor-alpha (TNF-α), interferon (IFN)-γ, and 
interleukin (IL)-13 have direct deleterious effects on epithe-
lial barrier integrity68,69. Drugs that maintain remission in UC,  
such as mesalazine, may exert some of their therapeutic effect 
by maintaining epithelial health67. Hence, protecting the  
“at risk” or restoring colonic epithelial health may be a viable  
strategy to maintain long-term remission in UC.

Abnormal immune response: innate
In active UC, there is a complex inflammatory milieu of innate 
and adaptive immune cells infiltrating the lamina propria.  
Neutrophils, the short-lived “first responder” cells, are recruited 
in abundance with characteristic histology of “crypt abscesses”  
in UC, where neutrophils transmigrate across the colonic  
epithelium and die within the colonic crypts70. The UC inflam-
matory environment promotes neutrophil survival (potentially 
via HIF-1 and hypoxia)71,72. This increased survival escalates its  
inflammatory action and tissue damage (via many means,  
including the release of serine and matrix metalloproteases,  
reactive oxygen species, and pro-inflammatory cytokines)73. The 
high number of neutrophils undergo uncontrolled pro-inflammatory  
cell death (necrosis, necroptosis, and NETosis), which  
potentiates and amplifies the pro-inflammatory environment74,75. 
This is supported by high levels of s100a8/9 proteins (or  
calprotectin), usually found in neutrophils, that are released in 
blood and stool76–78 and a prominent serological response to self 
perinuclear anti p-neutrophil cytoplasmic antibodies (pANCA) 
in UC, both likely indirect indicators of uncontrolled neutrophil 
cell death79. Neutrophil extracellular traps (NETs) can act as a  
sump for immunogenic molecules that sustain the inflammatory 
response75. Hence, there is a rational paradigm that, following 
disease initiation, the preceding wave of innate inflammatory 
neutrophils and monocytes (with their pro-inflammatory cytokine 
repertoire, e.g. IL-1 family, IL-6, and TNF-α) creates an  
inflammatory milieu (nutritional, metabolic, and cytokine) that  
promotes a pathologic adaptive (likely T-cell) immune response80. 
Such a milieu can also shape newly arriving inflammatory  
monocytes, monocyte–macrophage function, their survival, 
and their phenotype, and further factors that influence the host’s  
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highlighted the mitochondria as the major previously unknown 
“jigsaw piece” in inflammation103. Mitochondrial dysfunction has 
long been implicated in UC, as far back as 1980104,105 (reviewed 
by Novak et al.106), but new data from the last 3 years have  
re-focused this concept100,107,108. Such dysregulation of genes 
that control mitochondrial function have been shown in earlier  
colonic microarray studies in UC109.

Functional studies show that mitochondria are sited in a 
uniquely damaging environment (in the colon, more so than 
other tissue sites)107,110. Loss of mitochondrial homeostasis  
(including mitophagy and the autophagic removal of damaged 
mitochondria—IBD GWAS susceptibility genes PARK7 and  
LRRK2) can lead to defective energy production111, increased 
mitochondrial oxidative stress107, and even the release of mito-
chondrial products (mitochondrial DNA) as pro-inflammatory 
DAMPs108,112. These lines of evidence contribute to key UC  
themes such as epithelial dysfunction, the pro-inflammatory 
mucosal milieu, and direct triggers of the inflammatory  
response. Such convergence of data has culminated in new 
approaches in targeting the pro-inflammatory mitochondria, for 
example mitochondrial anti-oxidant therapy in active UC.

Single cell profiling of the inflamed UC mucosa
Single cell RNA sequencing (scRNA) technology was developed 
in 2009 before becoming more widely available in 2014. It 
provides a comprehensive analysis and census of the cell  
populations (“who is all there?”) in a complex inflamed UC 
mucosal milieu113. In UC, three recent scRNA studies (Parikh  
et al.114, Smillie et al.96, and Kinchen et al.115—scRNA analyses 
on colonic epithelium, whole layer, and mesenchyme,  
respectively) have provided some compelling insights96,114. 
These studies have identified new and rare cell types, unique  
cell-type-specific expression, and deep cell–cell interaction and 
cell lineage relationships. Secondly, mucosal compartments that  
have previously received less attention—notably, the colonic 
mesenchyme—are now implicated as key mediators of  
inflammation116. Thirdly, they show entirely new disease angles 
and have unexpectedly reinvigorated some older mechanistic  
theories. We highlight the key findings below.

Colonic epithelium: novel cell population and cell-specific 
changes. A main question is whether there are specific subsets 
of colonic epithelial cells that display intrinsic molecular  
pathology that can be pathogenic drivers in UC. Both scRNA  
studies identified a previously unknown epithelial cell population  
characterised by distinct expression of the calcium-sensitive  
chloride channel bestrophin-4 (BEST4), the protease cathepsin 
E, and the OTOP2 gene. Intriguingly, this colonocyte likely  
has the ability to sense pH in the luminal environment and to 
set the epithelial cGMP tone in response. Smillie et al. showed  
that BEST4+ enterocytes are distinct from epithelial cells and 
they are also enriched in genes including otopetrins 2 and 3  
(OTOP2/3), proton channels that detect pH and underlie sour 
taste perception, and carbonic anhydrase VII (CA7). In another  
novel finding, Parikh et al. demonstrated a positional remod-
elling of goblet cells that coincides with downregulation of  
WFDC2, an anti-protease molecule that is expressed by goblet  

cells and inhibits bacterial growth. In vivo, WFDC2 preserves the 
integrity of tight junctions between epithelial cells and prevents  
invasion by commensal bacteria and mucosal inflammation.  
WFCD2 has been proposed as a regulator of innate immunity 
through inhibition of serine and cysteine proteases117.

Colonic epithelium: intrinsic changes associated with UC 
inflamed and non-inflamed mucosa. The sharp demarcation 
between inflamed and non-inflamed UC mucosa in the colon 
provides the unique opportunity for scRNA approaches to find  
distinct changes that may explain this transition from normal to 
affected mucosa. Interestingly, both areas exhibit many similar  
dysregulated gene expressions. This suggests a role for mucosal 
epigenetics: the transcriptional signature of UC precedes inflam-
mation, arises as the result of a dominance of regenerative over 
damage cues or even as a protective mechanism in anticipation 
of damage, and persists after resolution. All epithelial subtypes 
in the inflamed UC mucosa showed upregulation of several  
inflammatory pathways, notably IFN-γ signalling and cytokine  
production. Epithelial cells downregulated metabolic processes 
and induced genes that are needed to produce reactive oxygen  
species and for microbial killing. Absorptive and secretory pro-
genitor cells upregulated differentiation and cell migration  
pathways, which suggests an active attempt to repair colitis- 
induced damage.

Colonic immune cell population: dominant functional  
cellular hubs. In Smillie et al.’s study that explored the overall 
colonic immune cell population, cell–cell interaction analyses in 
the inflamed UC mucosa showed strong compartmentalisation  
around inflammatory monocytes and novel network hubs around 
the poorly characterised CD8+IL17+ T cells and microfold-like 
(M) cells that are usually rarely found in the healthy colon.  
CD8+IL17+ T cells induce IL17A/F, IL23R, and cytotoxic,  
co-stimulatory, and co-inhibitory programs in UC. M cells are  
typically associated with lymphoid tissue in the human small 
intestine, where they are important for recognition of the gut  
microbiota but are rarely found in the healthy colon118. A further 
striking cell–cell interaction hub is centred on a mesenchymal  
subset of inflammation-associated fibroblasts (IAFs)96. In  
some UC patients, IAFs are expanded nearly 190-fold and  
enriched with many genes associated with colitis, fibrosis, and  
cancer (including IL13RA2).

Colonic mesenchyme: a newly identified inflammatory  
component contributing to an anti-tumour necrosis factor 
response. In the mesenchyme-focused scRNA study, Kinchen 
et al. identified a distinct activated mesenchymal cell population  
that expressed TNF superfamily member 14 (TNFSF14),  
fibroblastic reticular cell-associated genes, IL-33, CCL19, and 
lysyl oxidases115. One of the most enriched genes in IAFs is  
oncostatin M (OSM), a putative risk gene, and its receptor  
OSMR10. In an earlier study38,119, West and colleagues identified 
significant overexpression of OSM in inflamed IBD mucosa116.  
OSM is part of the IL-6 cytokine family that can induce  
JAK-STAT, phosphatidylinositol-3-kinase (PI3K), and mitogen-
activated protein kinase (MAPK) downstream signalling  
pathways. Further characterisation showed that OSMR is highly 
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expressed in the mesenchyme (as later also shown to be the case). 
Using UC clinical trial datasets on anti-TNF treatment (infliximab 
and golimumab), high mucosal OSM expression is associated with 
poor response to anti-TNF120,121.

Future insights from scRNA studies. These recent studies  
provide a vast “library reference” level amount of data that the 
IBD research community is only beginning to assimilate and  
understand. Tantalising new discoveries such as epithelial pH 
sensing, the roles of new enterocytes marked by BEST4+, and  
colonic anti-bacterial responses mediated by WFDC2 and 
CD8+IL17+ T cells will require more detailed studies. These 
are early days of moving from census to understanding function 
and biology. Other leads such as OSMR blockade and CCL9  
inhibition are nearer to translation as potential therapeutic  
targets. The International Human Gut Atlas Project (https:// 
helmsleytrust.org/rfa/gut-cell-atlas) will generate an even larger 
compendium of scRNA data in the next 5 years. Rationalising  
these enormous data (with other -omics datasets, e.g. genetics  
and microbiome), or, in lay-terms, how we combine the  

knowledge of “what and where are the cells?” with “what 
genes?” and “what bacteria?”, will be both challenging and  
exciting122.

Concluding remarks
The rise of deep data encompassing all aspects of molecular 
and clinical phenotypes in increasingly larger human cohorts, 
allied with the rapid development of powerful computational  
analytical approaches, provides a platform to prioritise the  
directions of mechanistic studies. Original clinical questions123  
such as “why is there a near-universal involvement of the  
rectum?”, “why is mucosal inflammation different to CD?”, and 
“how does smoking protect?” and scientific ones such as “is  
there a specific antigenic trigger?”, “what is the relative impor-
tance of adaptive vs. innate immunity?”, and “what are the main  
mucosal factors that maintain the state of non-resolving  
inflammation in UC?” will emerge again and hopefully lead 
to better informed deductive (top-down logic) alongside the  
inductive (bottom-up logic) processes derived from these big  
datasets to fully understand the pathogenesis of UC.
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