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• We tested human mobility as one po-
tential mechanism underlying this ef-
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Responding to the ongoing novel coronavirus (agent of COVID-19) outbreak, China implemented “the larg-
est quarantine in human history” inWuhan on 23 January 2020. Similar quarantine measures were imposed
on other Chinese cities within days. Human mobility and relevant production and consumption activities
have since decreased significantly. As a likely side effect of this decrease, many regions have recorded sig-
nificant reductions in air pollution. We employed daily air pollution data and Intracity Migration Index
(IMI) data form Baidu between 1 January and 21 March 2020 for 44 cities in northern China to examine
whether, how, and to what extent travel restrictions affected air quality. On the basis of this quantitative
analysis, we reached the following conclusions: (1) The reduction of air pollution was strongly associated
with travel restrictions during this pandemic—on average, the air quality index (AQI) decreased by 7.80%,
and five air pollutants (i.e., SO2, PM2.5, PM10, NO2, and CO) decreased by 6.76%, 5.93%, 13.66%, 24.67%, and
4.58%, respectively. (2) Mechanism analysis illustrated that the lockdowns of 44 cities reduced human
movements by 69.85%, and a reduction in the AQI, PM2.5, and COwas partially mediated by humanmobility,
and SO2, PM10, and NO2 were completely mediated. (3) Our findings highlight the importance of under-
standing the role of green production and consumption.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Beginning in December 2019 in Wuhan, Hubei Province, China,
the ongoing outbreak of COVID-2019 spread rapidly across a wide
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Fig. 1. Study area.
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range of countries, with the most affected countries being the United
States, Spain, Italy, Germany, the United Kingdom, France, and China.
As of 18 April 2020, a total of N2.3 million cases of COVID-2019 had
been detected and confirmed in N200 countries and territories. To
curb the dispersal of the disease from its source, a range of interven-
tions, including travel restrictions, have since been implemented in
various countries, which have been proven to be one of effective re-
sponse measures in many countries(Paolo et al., 2011; Qi et al.,
2016). In response to the pandemic, the Chinese central government
imposed a lockdown in Wuhan, which has been referred to as the
largest attempted cordon sanitaire in human history. The Wuhan
lockdown set a precedent, and similar travel bans, including limits
of nonessential movements in and out of cities, suspension of all
transports, and closures of factories, were announced in other Chi-
nese cities within days. These travel restrictions have since substan-
tially mitigated the spread of COVID-2019 (Chinazzi et al., 2020;
Kraemer et al., 2020; Tian et al., 2020).

As a possible side effect of this unprecedented lockdown, many
regions experienced a dramatic reduction in air pollution. In China,
Finland's Centre for Research on Energy and Clean Air reported that
measures to contain the spread of COVID-19, such as travel restrictions
and factory closures, produced a 25% drop in CO2 (Carbon Brief 2020,
https://www.carbonbrief.org). Similarly, the European Space Agency
(ESA) satellite imagery showed a significant decline in NO2 emissions
in northern Italy between 1 January and 11 March 2020, coinciding
with lockdowns to combat coronavirus. Additionally, the Institute of En-
vironmental Science and Meteorology (IESM) estimated that since the
implementation of the Luzon enhanced community quarantine on 16
March 2020, Metro Manila's PM2.5 and PM10 emissions were reduced
significantly as a result of decreased utilization of machines that crush
and grind as well as low dust exposure from roads. Wang et al. (2020)
empirically found that anthropogenic emission decreases due to sus-
pension of transportation and industry, contributed to the decreases
of PM2.5 concentrations.

Human health is strongly influenced by air quality. According to
the 2019 State of Global Air Report, air pollution killed an estimated
5million people globally in 2017, and China topped the 10 countries
with the highest mortality (1.2 million) (Health Effects Institute,
see https://www.healtheffects.org/). Massive research conducted
over the past several decades has revealed that air pollution causes
people to die younger as a result of cardiovascular (Peng et al., 2009;
Wong et al., 1999) and respiratory diseases (Katanoda et al., 2011;
Nakao et al., 2018; Spix et al., 1998). A recent study conducted by
Zhu et al. (2020) suggested that there is a relationship between
higher concentrations of air pollutants and higher risk of COVID-
19 infection.

As one of the most populous countries and one in which air
pollution exposure historically has been among the highest glob-
ally, in recent years, China has begun to move aggressively to re-
duce air pollution. China's air pollution is still worse than that
experienced, on average, around the globe, especially in northern
China (Chen et al., 2017; Yao et al., 2016). According to the most
recent data of the Ministry of Ecology and Environment (MEE) of
China, February 2020, the top 10 cities with the poorest air quality
were Yuncheng, Taiyuan, Baotou, Shijiazhuang, Linfen, Tangshan,
Urumqi, Xianyang, Weinan, and Baoding, all of which are located
in northern China.

Many air pollution studies have illuminated that human-related ac-
tivities, such as industrial production (Cole et al., 2005), traffic, and
transportation (Chen et al., 2017; Fu and Gu, 2017; Lin Lawell et al.,
2011), are the major contributors to air pollution, and extreme mea-
sures of full or partial lockdown may bring these production and
consumption activities almost to a standstill. This context provides us
with a unique opportunity to examine the effects of human-related ac-
tivities on air quality. Although satellite data have offered suggestive
evidence of significant drops in air pollution concentration during
lockdowns, it is insufficient to understand the pollution reduction ef-
fects of the unprecedentedquarantine resulting from the COVID-19 out-
break. Questions remain as to whether, how, and to what extent these
interventions affected air quality. Instead, this work employs daily air
pollution data (including air quality index [AQI], SO2, PM2.5, PM10,
NO2, and CO), daily weather data, real-time human mobility data, and
lockdown time lines of 44 cities in north China from a span of 1 January
and 21 March 2020 (covered 81 days) to estimate the effects of travel
restrictions on air pollutants concentration. Particularly, we first employ
Least Square Dummy Variable (LSDV) estimation strategies to examine
the effect of lockdownmeasures on air pollution.We find that, on aver-
age, the AQI reduced by 7.80%, and the concentration of five air pollut-
ants (SO2, PM2.5, PM10, NO2, and CO) reduced by 6.76%, 5.93%, 13.66%,
24.67%, and 4.58%, respectively, after the implementation of lockdowns.
We also estimate the mediating effect of human mobility, measured by
IMI index from Baidu, on the relationship between the lockdowns and
air pollution. We discover that travel restrictions lead a reduction of
human mobility by 69.85%, and SO2, PM10, and NO2 are fully mediated
by human mobility and 44.9%, 9.3%, and 16.2% of the variations in AQI,
PM2.5, and CO could be attributed to variations in human mobility,
respectively.

This study has six sections. Section 2 introduces materials and
data. Section 3 presents the specification of econometric model.
Section 4 provides the basic empirical results. Section 5 offers a fur-
ther research of mechanism and provides an analysis. Section 6
concludes.

2. Materials and data

2.1. Study area

Considering the fact that northern China has suffered from
long-term air pollution and that the average concentration of air
pollutants is much higher in the north than in other regions, we
confined the study area to 44 cities in the Jing-jin-ji metropolitan
circle and its surrounding areas. These 44 cities were included in
the Program for Air Pollution Control and Supervision during the
autumn and winter in the Jing-jin-ji Region and Surrounding
Areas issued by the MEE in 2018, which officially set specific envi-
ronmental performance goals for these 44 cities (Songke et al.,
2014) (Fig. 1).

According to the latest data from the China City Statistical Yearbook
(2018). The population living in these 44 cities accounted for 19.25%

https://www.carbonbrief.org
https://www.healtheffects.org/
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of the total, whereas the percentage of land area was only 9.5% of
mainland China. As one of the most economically developed regions,
20.86% of gross domestic product (current prices) and 16.33% of in-
dustrial enterprises are concentrated here. We also computed the
number of buses and trolley buses (1,233,289) and taxis (232,742)
under operation, which accounted for 21.91% and 25.76% of the
total, respectively. Note, however, that the emission of industrial
“three wastes” in these 44 cities, including SO2, NO2, and PM2.5, as
well as soot and dust, accounted for 22.43%, 24.59%, 21.18%, and
22.59% of the total, respectively. Therefore, we considered these 44
cities as our study area.

2.2. Data and variables

The two main data sets used in our baseline regression were (1) the
daily air pollution data and (2) the daily weather conditions data for 44
cities.

2.2.1. Dependent variable: Air pollution
AQI and six pollutants (SO2, NO2, PM10, PM2.5, CO, and O3) are com-

monly used to evaluate air quality (Xiao et al., 2018). In this study, we
collected 24-h daily data of AQI, PM10, SO2, NO2, PM2.5, and CO data
for 44 cities between 1 January and 21 March 2020 from the real-time
monitoring data system of the MEE (http://datacenter.mee.gov.cn/).
Furthermore, we calculated the daily average (i.e., arithmetic mean of
a 24-h monitoring value on a natural day) of these data as the proxy
for the explained variable (air pollution).

2.2.2. Independent variable: Lockdown
As part of the emergency response to the growing pandemic of

COVID-2019, the Chinese government launched a radical lockdown
campaign to prevent the spread of the virus. Inwhat has been described
as “the people's war,” the “Wuhan lockdown”wasfirst implemented on
23 January 2020. Within days of the Wuhan lockdown, travel restric-
tions were imposed on other Chinese cities. For example, on 28 January
2020, a quarantine marked by the suspension of bus service was an-
nounced in Beijing, the capital city of China. As of 12 February 2020, at
least 207 cities in China (including 26 provincial capitals and sub-
provincial cities) announced travel bans. Travel restrictions inevitably
altered the proportion of human-related production and consumption
activities. This context provided a unique opportunity to systematically
study whether and to what extent travel restriction measures shaped
Fig. 2. Dates of discovery of COVID-2019, and lockdown timeline of cities in Hu
air quality. In particular, we coded a binary variable, which captured
travel restrictions in 44 cities, as 1 if a city government adopted a quar-
antine policy and as 0 otherwise. Fig. 2 illustrates the detailed shutdown
timeline for these 44 cities.

2.2.3. Control variable: Weather conditions
Weather conditions influence the formation and diffusion of air

pollutants (Kallos et al., 1993; Yen et al., 2013). We downloaded
city-level weather conditions data (see https://freemeteo.cn/
weather), which contained daily maximum and minimum tempera-
tures, daily maximum wind and gust speeds, and records of rain and
snowfall. These meteorological factors are closely related to air pol-
lution. Considering that low temperature may be beneficial to im-
prove air quality, we computed the daily mean temperature and its
first differenced values (i.e., D. meantem) as the control variable in
our regression equation.

Table 1 reports the variable definitions and descriptive statistics
for these variables. As shown in the table, pollutant concentrations
under lockdown were apparently higher than on those in regular
days. For example, average PM2.5 concentration was 76.110 μg/m3

with an average level of 65.811 μg/m3 during the lockdown periods
and 81.363 μg/m3 on regular days, respectively, both of which
exceeded World Health Organization (WHO) guideline and even
WHO's least-stringent target (35 μg/m3). Other pollutants showed
similar characteristics. Additionally, across the 44 cities, travel was
restricted for 1204 days.

3. Method of analysis

3.1. Baseline regression

Given that the baseline model included lagged values of the depen-
dent variable,we estimated a city dynamic panel datamodel. Themodel
can be presented as follows:

LnðAiri;tÞ ¼
X

s¼1

p
ρsLn Airi;t�s

� �þ β � Lockdowni;t þ λ � CVi;t þ f tð Þ þ υi þ εi;t ;

ð1Þ

where the dependent variable Ln(Airi,t) is the air quality index (AQI)
and one of five air pollutants in city i on day t (i.e., logarithm of AQI,
SO2, PM2.5, PM10, NO2, or CO), i = 1, …, 44 indexes 44 cities in north
bei Province and 44 cities in northern China beginning 31 December 2019.

http://datacenter.mee.gov.cn/
https://freemeteo.cn/weather
https://freemeteo.cn/weather


Table 1
Descriptive statistics.

Variable category Variable definition Full sample Lockdowns Regular days Std. Dev. Min Max

Obs. Mean Obs. Mean Obs. Mean

Explained variable: Air pollutants
AQI Daily air quality index 3564 107.376 1204 92.645 2360 114.891 59.792 21.083 416.208
SO2 Daily SO2 concentrations (μg/m3) 3564 15.148 1204 13.835 2360 15.818 10.600 1.833 142.667
PM2.5 Daily PM2.5 concentrations (μg/m3) 3564 76.110 1204 65.811 2360 81.363 52.772 3.875 384.208
PM10 Daily PM10 concentrations (μg/m3) 3564 107.601 1204 85.811 2360 118.717 59.220 8.542 455.667
NO2 Daily NO2 concentrations (μg/m3) 3564 35.077 1204 23.640 2360 40.911 17.695 2.875 110.458
CO Daily CO concentrations (mg/m3) 3564 1.144 1204 1.020 2360 1.207 0.607 0.185 7.417

Explanatory variable: Lockdown dummy
Lockdown Lockdown dummy 3564 0.338 1204 1.000 2360 0.000 0.473 0.000 1.000

Control variable: Weather conditions
Hightem Daily maximum temperature (°C) 3564 −2.159 1204 −3.535 2360 −1.456 4.728 −18.000 13.000
Lowtem Daily minimum temperature (°C) 3564 10.373 1204 9.806 2360 10.661 6.528 −4.000 29.000
Meantem Daily average temperature (°C) 3564 4.107 1204 3.136 2360 4.603 5.192 −10.000 19.500
Maxwind Daily maximum steady wind (Km/h) 3564 18.363 1204 18.273 2360 18.409 8.396 7.000 68.000
Maxgust Daily maximum gust (Km/h) 3564 25.032 1204 24.811 2360 25.466 13.911 7.000 101.000
Rain Rain dummy 3564 0.106 1204 0.100 2360 0.120 0.308 0.000 1.000
Snow Snow dummy 3564 0.034 1204 0.028 2360 0.047 0.182 0.000 1.000
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China, t = 1 January 2020, …, 21 March 2020 index dates (81 days);
and lnairi,t, as one of the regressors, is a lagged dependent variable.
We used a general-to-specific sequential t rule and AIC/BIC methods
to determine the optimal lag length p; lockdowni,t is a dummy vari-
able set to 1 if a day is among one of the lockdown days; CVi,t is a
set of control variables; f(t) is a time trend term controlling for iner-
tial trends that may affect daily air quality; νi is city fixed effects; εi,t
is a stochastic error term; and ρ, β, and λ are the parameters to be
estimated.

Differences in the generalizedmethod ofmoments (GMMs) and sys-
temGMMare two popular approaches used to estimate a dynamic fixed
effects model, which includes lagged dependent variables. These two
methods, however, are applicable only in a short panel model in
which n is large and T is small. In this study, we used a longer, narrower
panel with n=44 and T=81. For a long panel datamodel that does not
include exogenous explanatory variables, the bias approaches 0 as T ap-
proaches infinity. Thus, we considered the Least Square Dummy Vari-
able (LSDV) model estimator to be an appropriate empirical strategy
for our study.

3.2. Testing the mechanism

Even though we established a link between the initial variable
(travel restrictions) and an outcome variable (air pollution emission)
in Eq. (1), the mechanisms underlying this relationship remained
in question. We turned our attention toward understanding one po-
tential mechanism—that is, humanmobility. To mitigate the further
dispersal of COVID-19, unprecedented interventions were under-
taken. Human mobility within cities was substantially reduced in
combination with travel restrictions in and out of cities, all of the
public transport was suspended, and factories and schools were
closed. Therefore, we considered human mobility as the mediator.
More specifically, we tested the human mobility impact according
to the following three steps.

First, we established the correlation between the initial variable
(lockdowns) and the mediator (human mobility) using the mediator
as a criterion variable in a regression equation and the initial variable
as a predictor. We estimate the following model:

Ln Human mobilityi;t
� � ¼ α þ β � Lockdowni;t þ λ � CVi;t þ νi þ εi;t ð2Þ
where human_mobilityi,t denotes the degree of human move-
ments measured by the Intracity Migration Index (IMI) in city i
at day t. Other variables have the same implications as given in
the Eq. (1).

Second, we correlated the mediator with the outcome variable (air
pollution). To be specific, we used air pollutants emission as the crite-
rion variable in a regression equation and humanmobility as the predic-
tors. The equation is specified as follows:

LnðAiri;tÞ ¼
X

s¼1

p
ρsLn Airi;t�s

� �þ β � Human mobilityi;t þ λ � CVi;t þ f tð Þ þ υi þ εi;t

ð3Þ

where variables and parameterwithout specific interpretation are equal
to those introduced in Eqs. (1) and (2).

Third, it was not sufficient just to correlate the mediator with the
outcome. The mediator (human mobility) and outcome variable (air
pollution) may be correlated because they both were caused by the
travel restriction. The effect of travel restrictions on air pollution con-
trolling for mediator should be estimated as shown in the following re-
gression equation:

Ln Airi;t
� � ¼ ∑p

s¼1ρsLn Airi;t�s
� �þ β1 � Lockdowni;t

þβ2 �Human mobilityi;t þ λ � CVi;t þ f tð Þ þ υi þ εi;t

ð4Þ

where variables and parameters have the same meaning as given for
Eqs. (1) and (2).

4. Empirical results

4.1. Graphic analysis

As a visual demonstration of the air pollution variation, we first
employed a map tool in ArcGIS 10.2 to graphically depict the distri-
bution of pollutants concentrations (see Fig. 3). This was done by
comparing each city's air pollutants emissions before and after the
lockdowns. As illustrated in Fig. 3, the spatial-temporal distribution



Fig. 3. Variations of AQI index, SO2, PM2.5, PM10, NO2, and CO concentrations before and after lockdowns.
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of different air pollutants was significantly heterogeneous among
cities. Specifically, the concentrations of five air pollutants during
the lockdowns appeared to be much lower than concentrations on
regular days, which offered supportive evidence of the pollution re-
duction effects of travel restrictions. In the following subsections,
we further modeled the effects given by the Eq. (1).



Table 2
Baseline regression for full samples.

Variables (1)
Ln(AQI)

(2)
Ln(SO2)

(3)
Ln(PM2.5)

(4)
Ln(PM10)

(5)
Ln(NO2)

(6)
Ln(CO)

Lockdown −0.0780⁎⁎⁎

(−6.0266)
−0.0676⁎⁎⁎

(−6.0003)
−0.0593⁎⁎⁎

(−4.1475)
−0.1366⁎⁎⁎

(−10.2586)
−0.2467⁎⁎⁎

(−13.8099)
−0.0458⁎⁎⁎

(−3.3007)
Lowtem 0.0134⁎⁎⁎

(4.9654)
−0.0113⁎⁎⁎

(−4.2123)
0.0161⁎⁎⁎

(5.1485)
0.0113⁎⁎⁎

(3.8673)
−0.0054⁎

(−1.9692)
0.0102⁎⁎⁎

(4.3940)
Hightem 0.0096⁎⁎⁎

(5.4290)
0.0268⁎⁎⁎

(8.5394)
0.0067⁎⁎⁎

(3.0368)
0.0175⁎⁎⁎

(7.9743)
0.0173⁎⁎⁎

(9.8751)
0.0074⁎⁎⁎

(4.4136)
D. meantem 0.0207⁎⁎⁎

(5.2470)
0.0155⁎⁎⁎

(3.7546)
0.0320⁎⁎⁎

(5.7489)
0.0229⁎⁎⁎

(5.7645)
0.0239⁎⁎⁎

(5.6181)
0.0160⁎⁎⁎

(3.7053)
Maxwind −0.0022

(−1.5579)
−0.0006
(−0.3758)

−0.0012
(−0.6222)

−0.0024
(−1.4255)

−0.0008
(−0.3962)

0.0012
(0.6670)

Maxgust −0.0063⁎⁎⁎

(−6.3484)
−0.0062⁎⁎⁎

(−4.9933)
−0.0124⁎⁎⁎

(−10.6413)
−0.0062⁎⁎⁎

(−5.0850)
−0.0087⁎⁎⁎

(−7.8728)
−0.0086⁎⁎⁎

(−7.6721)
Rain 0.0054

(0.2743)
−0.0912⁎⁎⁎

(−3.2911)
0.0508⁎

(1.8673)
−0.0214
(−0.9028)

0.0131
(0.6053)

0.0606⁎⁎⁎

(4.3119)
Snow −0.0914⁎⁎⁎

(−3.7358)
−0.0482
(−1.2432)

−0.1193⁎⁎⁎

(−3.4968)
−0.1686⁎⁎⁎

(−6.4629)
0.0261
(0.8012)

0.0101
(0.3582)

Timetrend −0.0075⁎⁎⁎

(−10.7262)
−0.0065⁎⁎⁎

(−7.5435)
−0.0101⁎⁎⁎

(−12.8593)
−0.0072⁎⁎⁎

(−8.4292)
−0.0036⁎⁎⁎

(−6.8208)
−0.0094⁎⁎⁎

(−11.9917)
Lag length (p) 2 3 4 4 3 4
City fixed effects Yes Yes Yes Yes Yes Yes
Constants 2.8751⁎⁎⁎

(32.8429)
1.3936⁎⁎⁎

(16.4894)
3.1002⁎⁎⁎

(37.2285)
2.8735⁎⁎⁎

(31.1057)
1.7736⁎⁎⁎

(14.4715)
0.4806⁎⁎⁎

(19.0019)
Sample size 3476 3432 3388 3388 3432 3388
R2 0.6218 0.6721 0.6514 0.5832 0.6895 0.6655

Note: t statistics in parentheses, standard errors are clustered at city level (44 clusters). ⁎p b .10 indicates significance at 10% levels. ⁎⁎⁎p b .01 indicates significance at 1% levels.
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4.2. Benchmark regression results

Table 2 reports the overall LSDV regression by estimating the extent
towhich lockdownpredicted reductions of air pollution. The dependent
variables are the logarithm of AQI, SO2, PM2.5, PM10, NO2, and CO. All
control variables are included in the six models. Additionally, we in-
cluded time trend terms and city fixed effects to account for temporal
and regional variations.

The results showed that lockdown negatively and significantly
predicted a decrease in air pollution. In particular, AQI decreased
by 7.80% during the lockdown compared with a regular day. The con-
centrations of the other five air pollutants (SO2, PM2.5, PM10, NO2,
Table 3
Robustness check I: LSDV estimators including city-specific time trends.

Variables (1)
Ln(AQI)

(2)
Ln(SO2)

(3)
Ln(

Lockdown −0.0810⁎⁎⁎

(−6.0455)
−0.0608⁎⁎⁎

(−4.8459)
−0
(−4

Lowtem 0.0145⁎⁎⁎

(5.2624)
−0.0081⁎⁎⁎

(−3.1190)
0.01
(4.6

Hightem 0.0123⁎⁎⁎

(6.3449)
0.0309⁎⁎⁎

(9.4668)
0.00
(3.7

D. meantem 0.0176⁎⁎⁎

(4.4090)
0.0108⁎⁎

(2.6466)
0.02
(5.3

Maxwind −0.0026⁎

(−1.7713)
−0.0001
(−0.0637)

−0
(−0

Maxgust −0.0062⁎⁎⁎

(−6.2726)
−0.0064⁎⁎⁎

(−5.2969)
−0
(−1

Rain 0.0112
(0.5656)

−0.0843⁎⁎⁎

(−3.0864)
0.05
(2.1

Rnow −0.0889⁎⁎⁎

(−3.7403)
−0.0586
(−1.5370)

−0
(−3

Lag length (p) 2 3 4
Individual fixed effects Yes Yes Yes
Individual time trend Yes Yes Yes
Constants 3.0611⁎⁎⁎

(35.2594)
1.4829⁎⁎⁎

(19.0725)
3.30
(41

Sample size 3476 3432 338
R2 0.6306 0.6836 0.65

Note: t statistics in parentheses, standard errors are clustered at city level (44 clusters) ⁎p b .10
indicate significance at 1% levels.
and CO) decreased by 6.76%, 5.93%, 13.66%, 24.67%, and 4.58%, re-
spectively. The results given in Table 2 suggest that the implementa-
tion of travel restrictions dramatically reduced air pollution in 44
cities in northern China. Additionally, however, we found that the re-
duction ratio largely varied among the different air pollutants.
Among them, PM10 and NO2 showed a higher reduction ratio. This
largely was due to the pollution source of different pollutants. PM10

and NO2 resulted primarily from vehicle exhaust and road dust gen-
erated by transportation.

In the overall model, weather condition variables are signed as
expected except maxwind. We noticed that lowtem had heteroge-
neous impacts on air pollution, which had a significantly negative
PM2.5)
(4)
Ln(PM10)

(5)
Ln(NO2)

(6)
Ln(CO)

.0662⁎⁎⁎

.2961)
−0.1417⁎⁎⁎

(−9.5836)
−0.2593⁎⁎⁎

(−13.8473)
−0.0512⁎⁎⁎

(−3.4102)
55⁎⁎⁎

768)
0.0143⁎⁎⁎

(5.2147)
−0.0046
(−1.6216)

0.0101⁎⁎⁎

(4.6674)
93⁎⁎⁎

508)
0.0210⁎⁎⁎

(9.2286)
0.0181⁎⁎⁎

(9.5330)
0.0093⁎⁎⁎

(4.8992)
95⁎⁎⁎

926)
0.0187⁎⁎⁎

(4.4870)
0.0228⁎⁎⁎

(5.2752)
0.0137⁎⁎⁎

(3.1866)
.0018
.9018)

−0.0025
(−1.4845)

−0.0005
(−0.2719)

0.0011
(0.6189)

.0122⁎⁎⁎

0.5979)
−0.0060⁎⁎⁎

(−4.8244)
−0.0088⁎⁎⁎

(−7.7190)
−0.0087⁎⁎⁎

(−7.4148)
84⁎⁎

616)
−0.0153
(−0.6502)

0.0162
(0.7381)

0.0679⁎⁎⁎

(4.8762)
.1199⁎⁎⁎

.7414)
−0.1718⁎⁎⁎

(−7.0825)
0.0258
(0.7746)

0.0165
(0.5609)

4 3 4
Yes Yes Yes
Yes Yes Yes

92⁎⁎⁎

.1054)
3.0234⁎⁎⁎

(32.5320)
1.7711⁎⁎⁎

(14.7343)
0.5196⁎⁎⁎

(23.0206)
8 3388 3432 3388
76 0.5923 0.6926 0.6756

, indicate significance at 10% levels. ⁎⁎p b .05, indicate significance at 5% levels. ⁎⁎⁎p b .01,



Table 5
Symmetric window (before and after travel bans) RDD results of AQI.

Variables Ln(AQI) Ln(AQI) Ln(AQI) Ln(AQI)

Symmetric window 10 days 9 days 8 days 7 days
Lockdown −0.2426⁎⁎⁎

(−5.0466)
−0.2727⁎⁎⁎

(−5.7258)
−0.2755⁎⁎⁎

(−4.9456)
−0.1952⁎⁎⁎

(−3.8147)
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correlation with SO2 and NO2, but had a positive relationship with
AQI, PM2.5, PM10, and CO. The coefficients Hightem and D. meantem
were positively significant (P b .01), indicating that air pollution
may have increased as the temperature rose, which was to be ex-
pected. We additionally observed that maxgust helped reduce the
concentration of air pollutants.
Lag length (p) 2 2 2 2
Time trend 2nd order 2nd order 2nd order 2nd order
Individual fixed effects Yes Yes Yes Yes
Individual time trends Yes Yes Yes Yes
Sample size 924 836 748 660
R2 0.6000 0.6042 0.6305 0.6630

Note: The control variable and other results are not reported, but available upon request. t
statistics in parentheses, standard errors are clustered at city level (44 clusters). ⁎⁎⁎p b .01,
indicate significance at 1% levels.
4.3. Robustness check

4.3.1. City-specific time trends
Considering that each city's ability to prevent pollution may be dif-

ferent, we estimated an individual fixed effects regression by modeling
city-specific trends as a robustness check. Themodel considered the fol-
lowing:

LnAiri;t ¼
X

s¼1

p
ρsLn Airi;t�s

� �þ β � Lockdowni;t þ λ � CVi;t þ f i tð Þ þ υi þ εi;t

ð5Þ

where fi(t) indicates an individual time trends for city i, and other vari-
ables have the same meanings as in Eq. (1). The estimated results are
shown in Table 4 and are consistent with Table 3 results.
4.3.2. A shorter panel size
To ensure that empirical results were robust, we turned our at-

tention to address potential bias of the LSDV estimators for various
panel sizes (i.e., whether the previous results were sensitive to the
windowwidth before and after the lockdowns) by changing thewin-
dow width. Specifically, we dropped the observations of cities at the
head (1–10 January) and the tail (12–21 March) separately. On the
basis of the limited samples between 11 January and 11 March
2020, we re-estimated our model. The results are given in Table 4.
These results were similar to our earlier benchmark finding based
on the full samples.
Table 4
Robustness check II: LSDV estimators for a shorter panel sizes (T = 61).

Variables (1)
Ln(AQI)

(2)
Ln(SO2)

(3)
Ln(P

Lockdown −0.0975⁎⁎⁎

(−6.5822)
−0.0622⁎⁎⁎

(−4.7698)
−0.
(−7

Lowtem 0.0253⁎⁎⁎

(6.7461)
−0.0073⁎

(−1.9485)
0.02
(6.6

Hightem 0.0079⁎⁎⁎

(3.8081)
0.0247⁎⁎⁎

(7.5213)
0.00
(3.6

D.meantem 0.0235⁎⁎⁎

(4.9696)
0.0162⁎⁎⁎

(3.3876)
0.02
(4.8

Maxwind −0.0003
(−0.1458)

−0.0022
(−1.0573)

−0.
(−0

Maxgust −0.0096⁎⁎⁎

(−8.1443)
−0.0064⁎⁎⁎

(−4.2585)
−0.
(−9

Rain 0.0201
(0.8590)

−0.0909⁎⁎⁎

(−2.8284)
0.05
(1.6

Rnow −0.1024⁎⁎⁎

(−4.6398)
−0.0255
(−0.7407)

−0.
(−3

Lag length (p) 2 3 4
Individual fixed effects Yes Yes Yes
Constants 3.2971⁎⁎⁎

(33.5944)
1.7886⁎⁎⁎

(17.9658)
3.82
(37

Sample size 2596 2552 250
R2 0.6303 0.6945 0.64

Note: t statistics in parentheses, standard errors are clustered at city level (44 clusters) ⁎p b .10
indicate significance at 1% levels.
4.4. Sensitivity analysis

4.4.1. Symmetric window regression-discontinuity design results
Subsequently, we explored whether our results were sensitive to

the specified estimation strategy. We employed the regression-
discontinuity design (RDD) to evaluate the difference in AQI before
and after the establishment of travel restrictions. We considered
the following equation:

Ln AQIi;t
� � ¼ Ln AQIi;t−2

� �þ β � Lockdownit þ γ1 � t−cið Þ
þγ2 � Lockdowni;t t−cið Þ þ γ3 � Lockdowni;t t−cið Þ2

þλ � CV þ f i tð Þ þ νi þ εi;t

ð6Þ

where the dependent variable is Ln(AQI), ci denotes the start date of
the travel restriction in city i, and t stands for time. When t ≥ ci,
lockdowni,t = 1; when t b ci, lockdowni,t = 0 (here we drop the sam-
ple if city i lifts its lockdown, resumes all transportation).

Specifically, we regressed Ln(AQI) on the lockdown dummy,
weather variables, city fixed effects, and linear or quadratic time trends,
M2.5)
(4)
Ln(PM10)

(5)
Ln(NO2)

(6)
Ln(CO)

1226⁎⁎⁎

.4392)
−0.1684⁎⁎⁎

(−11.8536)
−0.2227⁎⁎⁎

(−11.2746)
−0.0732⁎⁎⁎

(−5.3935)
99⁎⁎⁎

746)
0.0234⁎⁎⁎

(5.4291)
−0.0050
(−1.4441)

0.0171⁎⁎⁎

(5.3057)
99⁎⁎⁎

018)
0.0153⁎⁎⁎

(6.0013)
0.0141⁎⁎⁎

(5.3897)
0.0090⁎⁎⁎

(4.3871)
91⁎⁎⁎

843)
0.0242⁎⁎⁎

(5.4479)
0.0274⁎⁎⁎

(5.4372)
0.0132⁎⁎

(2.5963)
0015
.7010)

−0.0000
(−0.0144)

−0.0034
(−1.6005)

0.0005
(0.2576)

0136⁎⁎⁎

.7605)
−0.0091⁎⁎⁎

(−5.9308)
−0.0090⁎⁎⁎

(−6.7779)
−0.0093⁎⁎⁎

(−6.6697)
49
144)

0.0002
(0.0063)

−0.0017
(−0.0684)

0.0426⁎⁎

(2.2963)
1200⁎⁎⁎

.3201)
−0.1684⁎⁎⁎

(−7.2481)
−0.0631
(−1.5299)

0.0011
(0.0301)

4 3 4
Yes Yes Yes

37⁎⁎⁎

.2185)
3.5374⁎⁎⁎

(27.3138)
1.8943⁎⁎⁎

(12.9184)
0.6322⁎⁎⁎

(20.8032)
8 2508 2552 2508
81 0.6204 0.6796 0.6256

, indicate significance at 10% levels. ⁎⁎p b .05, indicate significance at 5% levels. ⁎⁎⁎p b .01



Fig. 4. Time trends 10 days before and after travel restrictions in Beijing. (The plotted dots are the sum of residuals from estimating Eq. (1). The fitted line represents the time trend.)
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using a small window of 10, 9, 8, and 7 days before and after the estab-
lishment of the travel bans. The regression results are illustrated in
Table 5.

From the results reported in Table 5, we noticed significant negative
effects of travel bans on the AQI, which strongly supported the pollution
reduction effects given in Table 1.
4.4.2. Visual demonstration
To provide a more intuitive demonstration, we further applied the

RDD method to estimate the effects of travel bans on air pollution for
Beijing, the capital city of China. Fig. 4 plots the symmetric time trend
of 10 days before and after the travel restriction. As depicted, the
trend of AQI, PM2.5, PM10, and CO shifted downward slightly after the



Fig. 5.Average variations of IMI index for 44 cities in 2020 (dark blue line) and same periods of 2019 (ochre yellow line), the red dashed line stands for fluxes of humanmobilitywhen the
travel restrictions are implemented.
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implementation of travel bans in Fig. 4. We additionally observed that
the trend of SO2 sharply declined in Fig. 4, but we did not observe an ob-
vious variation trend of NO2. These visual demonstrations should be
interpreted with caution because the sample sizes are just 20 days,
and for only one city. Nevertheless, they offered evidence of the effects
of the transmission control measures.

5. Understanding the mechanism: Human mobility

We established the link between lockdown and air pollution reduc-
tions. We turned our attention toward understanding one potential
Table 6
Results of mediating effects analysis.

Panel A

Variables (1)
Human mobility

(2)
Ln(AQI)

(3)
Ln(AQI)

Lockdown −0.6985⁎⁎⁎

(−28.6341)
−0.0429⁎

(−2.4713
Ln(Hunman mobility) 0.0885⁎⁎⁎

(4.5315)
0.0498⁎

(1.7178)
Control variables Yes Yes Yes
Lag length (p) – 2 2
Individual fixed effects Yes Yes Yes
Sample size 3520 3476 3476
R2 0.7152 0.6218 0.6222

Pane B

Variables (8)
Ln(PM10)

(9)
0Ln(PM10)

(10)
Ln(NO2)

Lockdown −0.0294
(−1.5702)

Ln(Hunman mobility) 0.1795⁎⁎⁎

(8.8603)
0.1537⁎⁎⁎

(5.1741)
0.4555⁎⁎⁎

(17.0570
Control variables Yes Yes Yes
Lag length (p) 4 4 3
Individual fixed effects Yes Yes Yes
Sample size 3388 3388 3432
R2 0.5868 0.5870 0.7199

Note: The control variable and other results are not reported, but available upon request. t statist
significance at 5% levels. ⁎⁎⁎p b .01, indicate significance at 1% levels.
mechanism underlying this relationship—human mobility measured
by the real-time IMI index (calculated from the ratio of the number of
people traveling in a city to the number of people living in that city).
We extracted IMI index data from Baidu Maps (see https://qianxi.
baidu.com),which is provided byBaidu, Inc., a Chinese online search en-
gine with a desktop andmobile mapping application.We further calcu-
lated the average of Intracity Migration Index (IMI) of 44 cities and
employed Stata 16.0 software to graphically portray the variations of
IMI index as a visual demonstration (see Fig. 5), To save the space, we
additionally present city-specific IMI index variation figures in Appen-
dix A (Figure A1).
(4)
Ln(SO2)

(5)
Ln(SO2)

(6)
Ln(PM2.5)

(7)
Ln(PM2.5)

⁎

)
0.0086
(0.3810)

−0.0648⁎⁎⁎

(−3.0408)
0.1017⁎⁎⁎

(8.3263)
0.1095⁎⁎⁎

(4.4614)
0.0511⁎⁎

(2.5896)
−0.0077
(−0.2535)

Yes Yes Yes Yes
3 3 4 4
Yes Yes Yes Yes
3432 3432 3388 3388
0.6739 0.6739 0.6508 0.6514

(11)
Ln(NO2)

(12)
Ln(CO)

(13)
Ln(CO)

–

−0.0259
(−1.2377)

−0.0384⁎⁎

(−2.1334)
–

)
0.4355⁎⁎⁎

(14.7063)
0.0453⁎⁎⁎

(2.7176)
0.0106
(0.4808)

–

Yes Yes Yes –
3 4 4 –
Yes Yes Yes –
3432 3388 3388 –
0.7200 0.6651 0.6655 –

ics in parentheses, standard errors are clustered at city level (44 clusters). ⁎⁎p b .05, indicate

https://qianxi.baidu.com
https://qianxi.baidu.com


10 R. Bao, A. Zhang / Science of the Total Environment 731 (2020) 139052
Fig. 5 plots the overall variations of IMI index for 44 cities both in
2019 and 2020. An interesting pattern revealed in Fig. 5 is that the
humanmobilitywithin cities had a clear tendency toward the establish-
ment of the cordon sanitaire. More specifically, before implementing
quarantine measures for citizens or visitors, we observed a similar
trend between 2019 and 2020, and the degree of traveling in 2020
was a little higher than that in 2019. In contrast, once cities imposed
travel restrictions in response to the COVID-19 pandemic, the down-
ward trend in the IMI index for 2020 becameparticularly apparent com-
pared with 2019. As illustrated in Fig. 5, human mobility rapidly
decreased to almost no movement after the implementation of the
shutdown. The travel bans appeared to have prevented human move-
ment in and out of the city. Additionally, note that human mobility
has shown an upward trend as China's workforce gradually has been
returning to work.

We confirmed that the reduction in human mobility was associated
with travel bans that likely reduced the air pollutant emissions. Thus,
another issue gained our attention, that is, the weather and the extent
to which a reduction in air pollution could be attributed to a decrease
in the volume of travel within a city, which mainly was caused by the
lockdown measures during this epidemic. We next carried out a medi-
ating effect analysis to investigate the effects of human movement on
the relationship between travel bans and air pollution reduction.
Table 6 reports the estimation results based on the three-step regres-
sions (Eqs. (2)–(4)).

Results for model (1) of Table 6 illustrate the effect of transmis-
sion control interventions on human mobility measured by the IMI.
The coefficient of Lockdown was −0.6985, which passed the signifi-
cance test at the 1% level; in addition, the symbol was negative.
This result indicated that after the government implemented travel
bans, human mobility dropped by 69.85%. From model (2), we
found that the coefficient of Ln(Hunman_mobility) was 0.0885,
which was significantly positive at the 1% level, which suggested
that the higher the human mobility was associated with heavier air
pollution. The results in models (4), (6), (8), (10), and (12) also pro-
vided similar evidence. We next observed the results when the me-
diator (human mobility) was controlled. As illustrated in Table 6,
we found substantial evidence for the mediating role of human mo-
bility in the relationship between travel restrictions and air pollution
concentration. In particular, we noticed that the coefficient of Ln
(AQI) dropped from 0.0780 in Tables 1 to 0.0429 in Table 6, com-
bined with a decrease in the significance level (from 99% in
Tables 1 to 95% in Table 6). Ln(PM2.5) and Ln(CO) showed analogous
evidence with lnaqi, which indicated that the effects of the travel
ban on the reduction in AQI and the concentrations of PM2.5 and
CO were partially mediated by the sharp decline of the volume of
individual movements. Surprisingly, we also found that the coeffi-
cients of Ln(SO2), Ln(PM10), and Ln(NO2) became insignificant statis-
tically compared with the results in Table 1, demonstrating that the
impact of transmission control measures on the decrease in concen-
trations of SO2, PM10, and NO2 was completely mediated by human
movement. In other words, the 100% variation of SO2, PM10, and
NO2 concentration could be explained by variations in human
mobility.

To shed more light on the mediating effect of human mobility on
AQI, PM2.5, and CO, we conducted an additional computing Sobel test
of mediation according to the Baron and Kenny(Baron and Kenny,
1986) approach to determine the extent to which variations in AQI,
PM2.5, and CO were mediated by the travel restrictions. The formula is
as follows:

Portion of X→Yð Þ due toM ¼ c−c0
c

ð7Þ

where X represents independent variable, Y is dependent variable, and
M stands for mediating variable; c indicates the effects of independent
variable (X) on dependent variable (Y); and c′ denotes the effects of in-
dependent variable (X) on dependent variable (Y) controlling for medi-
ating variable (M). Calculations suggest 44.9%, 9.3%, and 16.2% of the
variations in AQI, PM2.5, and CO could be attributed to variations in
human mobility, respectively.

6. Conclusions and discussion

Human-related production and consumption activities generate
pollution externalities. An unprecedented lockdown in response to
the shocks of COVID-19 brought almost all of such activities to a
standstill in China. Measures including closures of industrial fac-
tory and the suspension of intracity transportation may alter the
distribution of air pollutants in cities. The exogenous shock of the
epidemic enabled us to test the effects of travel restrictions on air
pollution. Our analysis focused on the air quality and quantity ac-
cording to how much these pollutants decreased as a results of
lockdowns. By combining a set of weather indicators to control
the impact of natural factor, which was closely associated to varia-
tions in daily air pollutants, we employed LSDV and RDD methods
to provide a systematical evaluation of the effects of these unprec-
edented restrictions in human movement on reductions in air
pollution.

The empirical analysis revealed that travel restriction measures
taken in 44 cities in northern China significantly reduced air pollution
emissions. On average, the AQI decreased by 7.80%, and the concentra-
tion of five air pollutants (SO2, PM2.5, PM10, NO2, and CO) decreased
by 6.76%, 5.93%, 13.66%, 24.67%, and 4.58%, respectively. To guarantee
the robustness of our results, we re-estimated ourmodel by incorporat-
ing city-specific time trends into our model and by changing the panel
size. We additionally conducted RDD estimation, and obtained similar
results with our baseline regression. For further research, we investi-
gated the mediating role of human mobility on the relationship be-
tween travel restrictions and air pollution. A meaningful finding was
that sharp reductions in human mobility were strongly associated
with air pollution reduction. In particular, the reduction of AQI, PM2.5,
and CO were partially mediated by individual movement, and SO2,
PM10, and NO2 were fully mediated.

Our findings imply that human-related activities are strongly
associated with air quality. Although travel restrictions cannot
apply to air pollution prevention and control, it is possible to im-
prove air quality by reducing nonessential individual movements
by highlighting the importance of green commuting. We also pro-
vided possible reasons for upgrading industry structure and elimi-
nating heavily polluting industry production. This is not sufficient,
however, to avoid severe air pollution because, other than PM10

and NO2, the reduction ratios of AQI and the other three air pollut-
ants were small. In contrast, although we recorded a temporary de-
cline in air pollution resulting from the economic downturn, it is
hard to maintain this reduction after China's workforce gradually
returns to work. Our study highlighted the importance of under-
standing the role of green production and consumption.

Our analysis has several limitations. We could not investigate the
impact of all elements of a city's emergency response and its long-
term dynamic effects because of a lack of data. It is not yet clear which
parts of the national emergency response were most effective in reduc-
ing air pollution. In summary, we applied statistical and quantitative
analyses of the relationships among air pollution, human mobility, and
travel restrictions to make inferences about these effects on air
pollution.
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Fig. A1. Variations of IMI index for 44 cities in 2020 (dark blue line) and same periods of 2019 (ochre yellow line), the red line stands for fluxes of humanmobility when the travel restric-
tions are implemented.
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