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SUMMARY Although not as ubiquitous as antibacterial susceptibility testing, antifungal
susceptibility testing (AFST) is a tool of increasing importance in clinical microbiology
laboratories. The goal of AFST is to reliably produce MIC values that may be used to
guide patient therapy, inform epidemiological studies, and track rates of antifungal drug
resistance. There are three methods that have been standardized by standards develop-
ment organizations: broth dilution, disk diffusion, and azole agar screening for Aspergil-
lus. Other commonly used methods include gradient diffusion and the use of rapid au-
tomated instruments. Novel methodologies for susceptibility testing are in development.
It is important for laboratories to consider not only the method of testing but also the
interpretation (or lack thereof) of in vitro data.

KEYWORDS antifungal susceptibility testing, CLSI, EUCAST, epidemiological cutoff
value, breakpoints, antifungal resistance

INTRODUCTION

The amount of antifungal susceptibility testing (AFST) being performed has in-
creased in recent years for a myriad of reasons. The number of patients with risk

factors for invasive fungal infection (IFI) (profound immunosuppression, exposure to
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long courses of broad-spectrum antibiotics, implanted medical devices) has increased
in recent decades and with that has come the concomitant increase in IFIs. The
echinocandin class of antifungals has been added, and the number of clinically avail-
able triazoles has increased, expanding the antifungal armamentarium. In addition,
acquired resistance has emerged in fungal species such as Candida glabrata, Candida
auris, and Aspergillus fumigatus. With these changes in the patient population and the
availability of choice in antifungal therapy, the need for accurate in vitro susceptibility
data is greater than ever.

AFST is often performed by clinical microbiology laboratories as a tool to aid in the
selection of the optimal antifungal agent. By definition, it provides an in vitro measure
of susceptibility and resistance by determining the concentration of drug required to
inhibit an organism to a specified degree, termed the MIC. Ideally, a reliable prediction
can then be made as to patient outcome relative to therapy. The demand for in vitro
susceptibility testing for antifungal drugs did not exist a few decades ago, when similar
testing was already performed for antibacterial drugs. The first antifungal agent,
amphotericin B (AmpB), was introduced in the 1950s, nearly 30 years after the discovery
of the first antibacterial agents. For a long time, AmpB was the only therapeutic option
for fungal infections, and as such, the necessity for testing its activity against clinical
isolates did not exist. The decades following would see the introduction of less toxic
antifungals such as 5-flucytosine, the imidazole and triazole antifungal classes, and
finally the echinocandins. As more therapeutic choices became available, the value of
detecting antifungal resistance, both intrinsic and acquired, and the need for optimi-
zation of the antifungal choice increased.

With the increasing need to predict which fungal infections would or would not
respond to treatment came the necessity of standardized testing methods for the
laboratory. Reproducible techniques for antifungal susceptibility testing are crucial to
reliably predict outcome, to create uniformity in reporting, and to facilitate interlabo-
ratory comparisons and agreement. Many factors influence the outcome of in vitro
susceptibility testing, including endpoint definition, inoculum size of the organism,
time of incubation, temperature of incubation, and medium used for testing (1).
Minimizing the influence of variability of such factors on the final MIC value was the key
rationale behind standardization. Without standardization, initial interlaboratory com-
parisons of MIC values were less than optimal (2, 3).

The Clinical and Laboratory Standards Institute (CLSI), formerly the National Com-
mittee for Clinical Laboratory Standards (NCCLS), formed in 1968 with the goal of
harmonizing quality control (QC) and standardization of susceptibility testing for all
pathogens. The first report on the state of laboratory testing of antifungal susceptibility
in the United States, M20-CR, was completed in 1985 and concluded that intralabora-
tory agreement for antifungal susceptibility testing was unacceptable. Following this
report, the antifungal subcommittee began the process of standardization of suscep-
tibility testing, culminating with the creation of document M-27 (4).

Like the CLSI, the European Committee on Antimicrobial Susceptibility testing
(EUCAST) was formed to standardize technical aspects of in vitro antimicrobial suscep-
tibility testing and to develop breakpoints. Originally formed jointly by the European
Society of Clinical Microbiology and Infectious Diseases (ESCMID), the European Centers
for Disease Control and Prevention (ECDC), and European national breakpoint commit-
tees, EUCAST harmonized standards for countries both within and outside Europe. In
1997, the EUCAST antifungal susceptibility testing subcommittee formed, and their first
published standard of susceptibility testing for both yeasts and molds was released in
2008 (5).

ROLE OF ANTIFUNGAL SUSCEPTIBILITY TESTING IN THE CLINICAL LABORATORY

In most clinical microbiology laboratories where AFST is available, it is performed
primarily for yeasts, although susceptibility testing for molds, performed with less
frequency in routine clinical laboratory work, is sometimes available. But susceptibility
testing is not advised for every fungal pathogen that is detected in culture. Isolates
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from nonsterile body sites are often not treated and may not require AFST. The
antifungal drug of choice for some pathogens can be empirically assumed by the
proper identification of the pathogen and, barring clinical failure, may not require
susceptibility testing. An example would be Aspergillus fumigatus in the United States,
where voriconazole is used empirically and resistance has not been widely identified.
Additionally, for fungal pathogens with no established interpretive criteria (either a
breakpoint or an epidemiological cutoff value), an MIC value may be obtained but may
have no clear clinical interpretation.

The most value in AFST is gained when the fungal infection is invasive, when
acquired drug resistance is suspected, or when the patient is unexpectedly failing
therapy. For each of these scenarios, knowing the in vitro susceptibility pattern would
inform the clinician when making therapeutic choices or changes. These indications for
routine testing have been defined for some species of Candida only (6, 7); the validity
and potential benefit of routine AFST for other clinically significant fungal pathogens
have not yet been widely characterized, although there are some recommendations for
susceptibility testing of Aspergillus, following the establishment of breakpoints for
voriconazole against A. fumigatus by the CLSI (8, 9) and for amphotericin B, isavucona-
zole, itraconazole, posaconazole, and voriconazole against a number of Aspergillus
species by EUCAST (10–12).

Antifungal susceptibility testing can be beneficial beyond the selection of an
antifungal agent for individual patient therapy. The rates of drug resistance that are
obtained from AFST data are valuable on both a small scale (institutional) and large
scale (regional/international/continental). Institutionally, rates of antifungal resistance
are an important part of epidemiological studies used to determine susceptibility
profiles and empirical therapy for “local” fungal pathogens. This can be used to
establish antibiograms for a health care center or hospital and, in turn, set institutional
antifungal stewardship. On a larger scale, the surveillance and monitoring of rates of
antifungal drug resistance are important components of developing robust data sets
that will ultimately be used to define or refine breakpoints or epidemiological cutoff
values. This is discussed further below.

AFST is also valuable in the development of novel antifungal agents. The establish-
ment of quality control (QC) organisms and QC ranges for those organisms is essential
for the eventual standardization of testing (13). AFST can then be used to determine the
degree of activity of a new potential antifungal against a panel of isolates of various
species across a number of laboratories, with the QC serving to ensure that the testing
is standardized and the results are comparable.

The changing epidemiology of fungal infections has also been paramount in the
changing role of AFST in clinical laboratories. Although many aspects of Candida
epidemiology have remained stable over decades, a trend toward non-albicans species
of Candida has occurred, and with that an increase in antifungal resistance (14–17). The
most common agent of aspergillosis, Aspergillus fumigatus, has shown increasing levels
of azole resistance in many parts of the world, especially Europe (18–20). Moreover, the
emergence of Candida auris, for which antifungal resistance is the norm rather than the
exception, has challenged the traditional paradigms of Candida pathogens for labora-
torians and clinicians (21–23). These and other emerging fungal pathogens will require
frequent susceptibility testing as a part of their management, supporting the need for
reliable, cost-effective, and easy to perform testing strategies.

REFERENCE METHODS FOR SUSCEPTIBILITY TESTING

Broth Dilution for Yeasts

Broth dilution is the process by which the in vitro activity of a drug is measured
against a test organism in liquid culture with a known concentration of drug. As one of
the first methodologies developed (24, 25), it has historically been the most commonly
used technique for antifungal susceptibility testing in the United States. Generally
speaking, a test tube or microtiter plate which contains a standard medium, 2-fold serial
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dilutions of an antifungal drug, and a predetermined amount of test organism inocu-
lum is used. The endpoint of this assay is read as the concentration of drug that
decreases growth of the test organism to a prespecified degree. While macrodilution
was the original method pursued, microdilution has been adopted more readily for
mainstream use in the clinical laboratory.

There are two standards which are accepted for clinical laboratory broth microdi-
lution testing: those established by the CLSI and those established by EUCAST (26, 27).
Both organizations use the same medium, albeit with different glucose concentrations,
and use the same criteria to define the endpoint of the assay. They also currently use
similar criteria to develop clinical breakpoints and therefore interpretations for anti-
fungal resistance and/or susceptibility, which ultimately produce similar results. But
these standards have important differences, the specifics of which are discussed below
and summarized in Table 1.

Broth Microdilution for Yeasts Using the CLSI Standard

In 1992, the CLSI Subcommittee on Antifungal Susceptibility Tests published its first
standard for the reproducible susceptibility testing of yeasts, M27-P (28). This document
outlined the provisional ranges of MIC and breakpoints for several antifungal drugs and
their action against yeasts. Over the course of several revised standards, this document
evolved to the current iteration, the 4th edition of M27 (M27-Ed4), and currently covers
antifungal agent selection and preparation, test procedure, and QC requirements (27).
M27-Ed4 describes methods for testing Candida and Cryptococcus species, but the
methods can be applied broadly to any yeast that will grow in the standard RPMI
medium; this includes most yeast species, with the notable exception of lipophilic
Malassezia species, which require supplemental lipids. A separate CLSI document, M60,
details the most current performance standards for the antifungal susceptibility testing
of yeasts and contains MIC breakpoints, interpretive categories, and MIC ranges for QC
organisms (29).

The CLSI guidelines for broth microdilution as described in the M27 document
require 96-well microdilution plates of untreated polystyrene with U-shaped wells for
all testing. The medium is RPMI 1640 culture medium (with L-glutamine and phenol
red as a pH indicator but without bicarbonate), buffered to a pH of 7 with 3-(N-
morpholino)propanesulfonic acid (MOPS), as this has been shown to produce consis-

TABLE 1 Comparison of key differences between CLSI and EUCAST methods of broth microdilution

Parameter CLSI M27-A4 EUCAST E.DEF 7.3.1

Glucose content of RPMI
medium

0.2% glucose 2% glucose

Preparation of antifungal
agent

Prepare stock concentration of at least 1,280 �g/ml or
10 times the highest concentration to be tested,
whichever is greater

Prepare at concentrations at least 200 times higher than the
highest concentration to be tested in the plate

Preparation of organism Subculture yeast at least twice The number of subcultures is not defined

Microdilution plate Plates with U-shaped wells Tissue-treated plates with flat-bottomed wells

Inoculum size Yeasts, 0.5 � 103 to 2.5 � 103 cells/ml; filamentous
fungi (nondermatophyte), 0.4 � 104 to 5 � 104

cells/ml; filamentous fungi (dermatophyte), 1 � 103

to 3 � 103 cells/ml

Yeasts, 1 � 105 to 5 � 105 cells/ml; filamentous fungi, 2 �
105 to 5 � 105 cells/ml

Reading method Visual Spectrophotometric

Cryptococcus spp. Read at 72 h of incubation Read at 48 h of incubation

Amphotericin B reading 100% decrease in growth, or the first optically clear
well

�90% decrease in growth

Miscellaneous Recommends against the use of low-evaporation lids
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tent results and was used to develop the standard. The RPMI 1640 medium should have
a glucose concentration of 0.2%.

For preparation of the antifungal agent, the CLSI suggests acquisition of drug
powder from manufacturers or other commercial sources as opposed to pharmacy
stock. Pharmacy stock should not be used due to the presence of excipients in the
powder that may interfere with testing. When determining the amount of drug powder
needed for solution, either of the following two formulas is recommended:

weight (mg) �
volume (ml) · concentration (�g ⁄ ml)

assay potency (�g ⁄ mg)

volume (ml) �
weight (mg) · assay potency (�g ⁄ mg)

concentration (�g ⁄ ml)

The powder should be weighed on a calibrated analytical balance. The log2 con-
centration range of the antifungal drug should be selected to encompass the QC range
described in the M60 document and then extend high enough to identify any resistant
isolates. Solvents other than water may be used when appropriate and include
analytical-grade dimethyl sulfoxide (DMSO), ethyl alcohol, polyethylene glycol, and
carboxymethyl cellulose, although DMSO is recommended for the all of the currently
licensed antifungals listed in M60 (27).

For preparation of the inoculum, the CLSI recommends that all organisms be
subcultured at least twice at 35°C using antimicrobial-free medium, such as Sab-
ouraud’s dextrose agar or potato dextrose agar, to ensure purity and organism viability.
Approximately five colonies at least 1 mm in diameter should be picked and suspended
in sterile saline or water, vortexed, and adjusted using a spectrophotometer to a
transmittance that equals a 0.5 McFarland standard at a wavelength of 530 nm. This
stock solution is used to make a working solution by preparing a 1:100 dilution,
followed by a 1:20 dilution, with RPMI 1640 culture medium. The final resulting
inoculum will be between 0.5 � 103 and 2.5 � 103 cells per ml.

After drug plates are inoculated, they are incubated without agitation at 35°C � 2°C
for 24 h before reading. The exception is Cryptococcus species isolates, which should be
held for 72 h prior to reading. The growth control well is inspected for the presence or
absence of growth. Plates for which there is insufficient growth in the control well to
make an accurate reading may be held for a further 24 h. All plates are then read
visually under normal laboratory lighting using a mirror viewer. Wells should be scored
for growth compared to that of the drug-free control well. For azoles, echinocandins,
and flucytosine, the MIC is set as the lowest drug concentration at which there is at
least a 50% decrease in growth compared to that of the drug-free well, and the MIC for
amphotericin B is the concentration that produces a 100% decrease in growth, or the
first optically clear well.

Because the final MIC is determined by visual inspection at 50% growth inhibition,
the MIC value that is determined using CLSI methodology may be somewhat subjec-
tive. In addition, the range of the acceptable inoculation size, the fluctuation in
incubator temperatures, and the exact time of reading may lead to intralaboratory
variation when reading the same isolate with the same antifungal. This is why QC
standards are given as a range and why a difference of 2 log2 dilutions is determined
to be essential agreement (EA) for antifungal MIC values determined at different times
or in different laboratories (13, 30).

Broth Microdilution for Yeasts Using the EUCAST Standard

In contrast to the CLSI, EUCAST document E.DEF 7.3.1 recommends the use of
flat-bottomed microdilution plates for testing and also specifies that low-evaporation
lids should not be used, as this might interfere with oxygen concentrations (26). This
document goes on to recommend the use of tissue-treated microdilution plates
specifically, as preliminary unpublished data suggest that tissue-treated and non-tissue-
treated plates produce different MIC values.
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Like the CLSI, EUCAST recommends that completely synthetic growth medium be
used for antifungal susceptibility testing and mandates the use of RPMI 1640 medium
supplemented with glucose and MOPS buffered to a pH of 7. However, unlike the CLSI,
EUCAST recommends a 2% glucose concentration to facilitate optimal organism
growth and determination of MIC endpoints.

Recommendations for the preparation of antifungal agents as listed in the EUCAST
document (selection and weighing of drug powders, preparation of stock solutions,
preparation of working solutions, selection of drug concentration ranges) are identical
to those defined by CLSI document M27 with a single exception. For preparation of a
stock solution, EUCAST recommends using concentrations at least 200 times higher
than the highest concentration to be tested, which contrasts with the CLSI recommen-
dation of preparing stock concentrations of at least 1,280 �g/ml or 10 times the highest
concentration to be tested, whichever is greater.

The EUCAST recommendation for inoculum preparation is like that of the CLSI. All
organisms should be subcultured onto nonselective medium such as Sabouraud’s
dextrose agar or potato dextrose agar at 34 to 37°C, although the number of subcul-
tures is not defined. Approximately five colonies at least 1 mm in diameter should be
picked and suspended in sterile distilled water and adjusted using a spectrophotometer
to a transmittance that equals a 0.5 McFarland standard at a wavelength of 530 nm. This
stock solution is then used to make a working solution by preparing a 1:10 dilution in
sterile distilled water. The final resulting inoculum size, which is greater than the CLSI
final inoculum size, will be between 1 � 105 and 5 � 105 cells per ml.

After drug plates are inoculated, they are incubated without agitation at 35 � 2°C
for 24 � 2 h before reading (plates containing Cryptococcus species isolates are to be
held for 48 h prior to reading per EUCAST guidelines). Plates for which the growth
control has not reached an absorbance of �0.2 at a wavelength of 530 nm are
incubated for an additional 12 to 24 h. All plates are then read using a microdilution
plate reader at a recommended wavelength of 530 nm (although other wavelengths,
such as 405 nm or 450 nm, can be used) with subtraction of the blank or background
from the reading of each well. For azoles, echinocandins, and flucytosine, the MIC is set
as the lowest drug concentration at which there is a �50% decrease in growth, and for
amphotericin B, the MIC is set as the lowest drug concentration at which there is a
�90% decrease in growth.

It should be noted that although the CLSI has developed breakpoints for caspofun-
gin against several species of yeast, problems have been noted with testing of
caspofungin (31, 32). High interlaboratory variability, with some laboratories having an
inordinate number of susceptible isolates classified as resistant, has led to the recom-
mendation that caspofungin alone should not be used as a surrogate for susceptibility
to echinocandins. For this reason, EUCAST has not defined yeast breakpoints for
caspofungin. These problems are not encountered when testing with anidulafungin or
micafungin, which can be used as surrogates for caspofungin resistance (33, 34).

Broth Microdilution for Molds

Both the CLSI and EUCAST have broth microdilution standards for mold AFST (35,
36). These protocols are like the protocols for yeast testing with some notable changes
in each protocol, which are discussed separately.

The filamentous fungus protocol from the CLSI uses the same plates that are used
for the yeast testing. However, the inoculum used for filamentous fungi is different.
While the yeast protocol uses 0.5 � 103 to 2.5 � 103 cells per ml, the filamentous
fungus protocol uses 0.4 � 104 to 5 � 104 conidia per ml for nondermatophytes and
1 � 103 to 3 � 103 conidia for dermatophytes. When the density of the conidia is
measured using a spectrophotometer, the correct absorbance will depend on the
species, because of the vastly different sizes of the conidia of filamentous fungi (35).
While most yeast species are incubated for 24 h prior to reading the plates, filamentous
fungi are incubated for 46 to 50 h, the exceptions being Mucorales, which are
incubated for 24 h, and dermatophytes, which are incubated for up to 96 h (4 days).
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Although broth microdilution plates for yeast species and filamentous fungi are
both read visually using CLSI standards, the similarities end there. The azoles and
amphotericin B both prevent the germination of the mold conidia used for inoculation
and are measured as a lack of growth. For this reason, the MIC for azoles and
amphotericin B is the first well with 100% growth inhibition. This removes some of the
interpretation that is seen with yeast species, as the endpoint is no growth rather than
a 50% decrease, which can be interpreted differently by two technicians reading the
same plate. However, for the echinocandins, the conidia do germinate, but at suscep-
tible concentrations, growth is halted at the tip of the emerging hyphae. The result is
a change in the pattern of growth, and this is measured as the minimal effective
concentration (MEC), defined as the lowest concentration that leads to the growth of
small, round, compact hyphal forms compared to the hyphal growth seen in the control
well. This visible change in growth is due to the fact that the echinocandins are
fungistatic against molds rather than fungicidal.

EUCAST broth microdilution for filamentous fungi also differs from the EUCAST yeast
protocol. Like the CLSI, EUCAST uses the same plates for susceptibility testing of
filamentous fungi and for yeast species. But unlike the CLSI, EUCAST uses a similar
inoculum size, 2 � 105 to 5 � 105 CFU per ml, for molds and for yeast species.
Incubation time is species dependent, as for the CLSI method, and the endpoint for
azoles and amphotericin B is read as complete growth inhibition while that for the
echinocandins is read as the MEC. An additional recommendation of EUCAST is that
the plates be read visually with a black strip of paper covering half of the well. The
sharpness of the paper as seen through the inoculum helps to determine whether there
is any visible growth.

A comparison of the CLSI and EUCAST methods of broth dilution for yeasts and
molds is shown in Table 1.

Disk Diffusion

The disk diffusion testing method is one of the oldest approaches to susceptibility
testing and remains widely used in many clinical laboratories, especially in resource-
limited settings (37). Disk diffusion testing is inexpensive, reproducible, and easy to
interpret (38–40).

Disk diffusion testing involves the use of commercially prepared paper disks con-
taining a fixed concentration of antifungal drug. The diameter of clearing produced
around the disk, termed the zone of inhibition, relates to the diffusion rate of drug
through the agar medium and to the susceptibility of the isolate to that drug. When
zone diameters are correlated with MICs for a given fungus-antifungal combination,
they may be translated into interpretive categories.

The CLSI has developed a standardized protocol for yeast susceptibility testing (41).
The recommended medium for disk diffusion testing is Mueller-Hinton agar with 2%
glucose and 0.5 �g/ml methylene blue dye (GMB) for maximum reproducibility of
testing. The addition of glucose supports fungal growth, and the addition of methylene
blue dye enhances the zone edge definition. The pH of the agar should be between 7.2
and 7.4 at room temperature. The CLSI recommends the same procedure for the
preparation of inoculum for disk diffusion as for broth microdilution, with a final stock
suspension of 1 � 106 to 5 � 106 cells per ml. This cell count produces confluent
growth on the agar plate with most Candida species. A sterile cotton swab is dipped
into the adjusted cell suspension, pressed firmly against the inside wall of the tube to
remove excess liquid, and then used to streak the entire agar surface a total of 3 times,
with rotation of the plate approximately 60° each time to ensure that the inoculum is
evenly distributed across the plate. After the plate has been dried for at least 3 min but
no more than 15 min, the disk(s) may be applied to the inoculated agar and pressed
gently to ensure complete contact with the surface. If multiple disks are used, they
should be no closer than 24 mm from center to center. Following 20 to 24 h of
incubation at 35°C � 2°C, the zone diameter for each disk is measured to the nearest
millimeter at the point in which there is a prominent reduction of growth. CLSI
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document M60 provides zone diameter interpretive criteria for caspofungin, flucona-
zole, and voriconazole (29, 42).

The limitation of this methodology is that it does not provide an MIC value. Zone
diameter interpretive criteria were developed by comparing the zone diameters to the
MIC values of many isolates. Those values were then converted to interpretive criteria
based on the overall correlation to MIC and patient outcome. What this means is that
disk diffusion criteria can be developed only for fungus/antifungal combinations for
which there are already breakpoints. Although this means that disk diffusion is useful
for the �90% of Candida isolates that fall within the five species for which there are
breakpoints, this method is not useful for emerging species or for newly developed
antifungals because there is no way to interpret the result.

There have been some initial studies to look at the usefulness of disk diffusion for
filamentous fungi (43–45). The correlation to broth microdilution is not very good, and
there are no interpretive criteria by which to evaluate the results, but the CLSI has
developed a standard for testing (46). Disk diffusion interpretive criteria for filamentous
fungi are not forthcoming.

Disk diffusion is an ideal testing method for Candida global surveillance programs,
as it is technically simple, inexpensive, and requires little equipment (47–49). Impor-
tantly, very good categorical agreement between disk diffusion results and MIC results
obtained by broth microdilution have been established (38, 50–54). Categorical agree-
ment between broth microdilution and disk diffusion tends to be �90% and in most
cases �95%. In a very large study of 1,586 Candida species isolates and fluconazole,
there was 93% categorical agreement, with only 0.3% major errors and 0.1% very major
errors. For voriconazole, the categorical agreement reached 99% (49).

Agar Screening for Aspergillus Resistance

EUCAST has recently developed a standard for the determination of azole resistance
in Aspergillus isolates using a four-well agar screening plate (E.DEF 10.1) (55–57). The
assay consists of an RPMI 1640 agar plate with wells containing itraconazole (4 �g/ml),
voriconazole (2 �g/ml), and posaconazole (0.5 �g/ml) and a drug-free well. Aspergillus
conidia are inoculated on the plate, and growth is monitored for 48 h. Susceptible
isolates can be reported as such, but growth in any well besides the growth control is
an indication that resistance may be present and broth microdilution susceptibility
testing should be performed.

COMMERCIAL TESTING METHODS

In addition to the reference methods described above, there are commercially
available products for antifungal susceptibility testing. Their key differences are sum-
marized in Table 2.

Gradient Diffusion Strips

An alternative to broth microdilution and disk diffusion is the use of gradient
diffusion strips. These are thin strips of plastic or nitrocellulose containing a predefined,
dried gradient of antifungal drug on one side and marked with a concentration scale
on the other. After placement on a confluent lawn of fungal cells or conidia, gradient
diffusion strips are incubated for 24 to 48 h, during which time the antifungal diffuses
into the agar. The test is read using the zone of inhibition to mark the point at which
the ellipse-shaped growth of fungi intersects with the strip, indicating an MIC value
(Fig. 1A). Strips are available for all approved antifungal drugs, including the newest
triazole drug, isavuconazole (bioMérieux, Hazelwood, MO; Liofilchem, Waltham, MA).

In addition to its ease of use, an advantage that gradient diffusion strips have over
disk diffusion is the ability to quantify antifungal susceptibility by generating an MIC
value. The MIC values produced via gradient diffusion compare favorably to values
generated by broth microdilution, with good essential agreement (EA) between the
two methods in most cases (38, 45, 58–64). For 93 Candida species isolates and
fluconazole, the EA between the Etest and EUCAST broth microdilution was 90% (65).
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Overall categorical agreement was not given, but there were no very major errors. For
133 Candida spp. tested against the echinocandins, EA ranged from 90% for caspofun-
gin to 93% for anidulafungin (66). It should be noted here that the same problems that
were outlined above for broth microdilution testing of caspofungin and yeasts may
exist as well for gradient strip testing (31). In addition, even though it is known to be
wild type for caspofungin, the QC MIC range for Candida krusei ATCC 6258 bisects the
susceptible and resistant ranges when Etests are used (Etest package insert;
bioMérieux, Marcy-l’Etoile, France; https://techlib.biomerieux.com/wcm/techlib/
techlib/documents/docLink/Package_Insert/35904001-35905000/Package_Insert
_-_9305056_-_D_-_en_-_Etest_-_AFST_WW.pdf).

Unlike disk diffusion, there is good evidence that gradient diffusion strips can be
used for susceptibility testing of molds against the triazoles and amphotericin B, with
the exception being the Mucormycetes and dermatophytes (44, 67–74). Against 24
isolates of A. fumigatus, including those with known resistance mechanisms, EA with
broth microdilution ranged from 83 to 100% with no very major errors for gradient
diffusion strips from two different manufacturers. Categorical agreement using the
EUCAST breakpoints was 96 to 100% for itraconazole, voriconazole, and isavuconazole
but only 33% and 83% for the two different manufacturers for posaconazole, with a
high percentage of major errors due to overcalling resistance (67). For a set of 20
Fusarium species, the results were similar, with 95 to 100% EA with broth microdilution
for amphotericin B, voriconazole, and posaconazole (68). In a very large study of 376

TABLE 2 Widely used methodologies for antifungal susceptibility testing

Methodology or
system Strengths Weaknesses

Broth microdilution Gold standard
Can be used for both yeasts and filamentous fungi
Methodologies are standardized and available for

both yeasts and filamentous fungi
Plates can be produced in the laboratory

Subjective interpretation by CLSI methodology, alleviated
using EUCAST (spectrophotometer)

Labor-intensive to make plates and expensive to buy them
commercially prepared

Technical training requirement is high
Can be used for any new antifungal that is

discovered

Disk diffusion A methodology has been standardized
Inexpensive
Disks can be produced in the laboratory

Very few interpretive criteria are available
Disk diameters are categorical only and do not directly

correlate with MIC values
Good for resource-limited settings Commercially available for only a few antifungals

Gradient diffusion Inexpensive compared to broth microdilution Interpretation is somewhat subjective
Can be used for both yeasts and filamentous fungi Must be purchased commercially
Good for resource-limited settings Not available for antifungals in development
Provides an MIC value
Improved discrimination between amphotericin

B-susceptible and -resistant isolates
Improved discrimination between true resistance

and trailing growth phenomenon

YeastOne Interpretation is less subjective than standard
broth microdilution

Interpretation of trailing growth in azoles can be problematic
Cannot be used for filamentous fungi
Must be purchased commercially
Even though it is broth microdilution, it does not follow CLSI

or EUCAST guidelines for interpretation

Easier to train new technicians than standard
broth microdilution

Long shelf life of dried trays
Does not require freezer storage

VITEK 2 No subjectivity to interpretation Expensive for both initial startup costs and for cartridges
Very easy to set up and perform Cannot be used for filamentous fungi
Dual use for laboratories that already use VITEK 2

for identification
Available for only a limited number of antifungals
Overcalls resistance for some species (like Candida auris)

Agar screening for
Aspergillus

Easy to perform It is only a screening test
Easy to interpret Needs to be backed up with broth microdilution
Inexpensive
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Aspergillus species isolates, EA with broth microdilution was 98% for voriconazole and
96% for itraconazole (69). In contrast, against 46 dermatophytes, the EA between
gradient diffusion and broth microdilution was 20% for itraconazole and 52% for
voriconazole (44).

A noteworthy advantage of antifungal testing with gradient diffusion strips versus
broth microdilution is for the testing of amphotericin B. Broth microdilution testing of
Candida spp. against amphotericin B reveals MIC values which are tightly clustered
within a range of 0.25 to 1 �g/ml. However, when testing is performed using gradient
diffusion strips, a much wider and diverse range of MIC values is obtained and
discrimination between amphotericin B-susceptible and -resistant isolates may be
accomplished for both Candida and Cryptococcus (75–79). This suggests that the testing
of amphotericin B is more reliable when performed using gradient diffusion strips.
However, the paucity of resistant isolates of most species and the lack of a molecular
target for resistance testing leave the question of superiority still up for debate.

An additional value of gradient diffusion strips is the ability to distinguish between
the trailing growth of some susceptible organisms from true microbiological resistance
when broth microdilution is used as defined by the CLSI procedure. As discussed below,
trailing growth is the result of residual organism growth beyond the MIC and in some
circumstances can make the visualization of the MIC difficult and/or impossible. When
a resistant isolate is tested using a gradient diffusion strip, the growth is confluent
throughout the lawn of cells except for the ellipse (Fig. 1B). However, when a gradient
diffusion strip is used for a susceptible isolate that exhibits trailing growth, there is an
ellipse filled with microcolonies and the ellipse can be used to determine the intercept
point with the gradient strip (Fig. 1C). In this way, the gradient diffusion strips can
distinguish between isolates that are susceptible, resistant, or susceptible “trailing” and
serve as another level of confirmation of MIC values for very heavily trailing isolates.

Sensititre YeastOne Assay

Sensititre YeastOne colorimetric antifungal panel (ThermoFisher Scientific, Waltham,
MA [formerly TREK Diagnostic Systems]) is a commercially prepared broth microdilution
plate. Like other forms of broth microdilution, the YeastOne panel consists of a 96-well
plate containing serial dilutions of antifungal drug in defined medium. But, in addition,

FIG 1 Fluconazole gradient diffusion strips distinguish between isolates that are fluconazole susceptible (A), fluconazole resistant (B),
or fluconazole susceptible but displaying heavy “trailing” growth (C).
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the wells contain the colorimetric growth indicator resazurin (alamarBlue), so fungal
growth and MIC determination are based on a color change in the well rather than on
a defined amount of growth. The plates are shipped dry, have a shelf life of approxi-
mately 24 months at room temperature, and are packaged individually, ideal for use in
a clinical laboratory in which testing is performed infrequently.

Multiple studies have demonstrated high interlaboratory reproducibility using these
panels, with reproducibility for essential agreement (EA) ranging from 90 to 99%
(80–84). Additionally, the EA between Sensititre YeastOne and reference broth microdi-
lution methods is high (60, 80, 84). Alexander et al. (60) found �92% EA for MICs for
itraconazole, flucytosine, amphotericin B, and caspofungin, 82% EA for fluconazole, and
85% EA for voriconazole. Interpretive categorical agreement was 88% for this assay and
was the lowest for C. glabrata and Candida tropicalis (60). Some of the comparative
results that are not perfect are a result of the fact that the comparisons took place prior
to changes in the broth microdilution standard. The EA was sometimes determined
using YeastOne results read at 24 h and broth microdilution results read at 48 h. In
addition, the categorical agreement was calculated using the old CLSI non-species-
specific breakpoints. In a study that looked at 404 Candida isolates using the M27-A3
standard and M27-S4 breakpoints, 100% EA between reference methods and Sensititre
YeastOne was observed. The categorical agreement ranged from 93.6% with caspo-
fungin to 99.6% for micafungin. There was �1% very major or major errors combined
(85).

While Sensititre YeastOne is neither designed nor recommended for use with
filamentous fungi, there are several studies which indicate that it could be useful
(86–92). Using 63 Aspergillus species isolates, EA with the CLSI M38-A standard was 93%
for amphotericin B, 90% for itraconazole, and 83% for voriconazole, although agree-
ment for some individual species was higher (86, 87). In similar studies, one group
found 100% EA for Aspergillus species against voriconazole and 90% agreement against
amphotericin B, while another group that tested 279 Aspergillus species isolates found
98% EA for both itraconazole and voriconazole but only 31% EA for amphotericin B (88,
91). In a comparative study of both Aspergillus and non-Aspergillus filamentous fungi of
18 different species against posaconazole, 97% EA with CLSI broth microdilution was
achieved (89). Further investigation into the usefulness of this assay for filamentous
fungi, including the establishment of species recommendations and quality control
isolate ranges, is warranted.

Vitek 2 Yeast Panels

The Vitek 2 yeast susceptibility panel (bioMérieux, Hazelwood, MO, USA) is an
automated approach to AFST that uses spectrophotometric readings to determine an
MIC value for clinically relevant Candida species. The cards contain wells with dried
concentrations of antifungal drugs in medium. After the isolate is adjusted to a
standardized concentration in saline, it is used to rehydrate the drug wells and the card
is placed into a Vitek 2 card reader/incubator. The growth within each well is monitored
up to 36 h (an average of 12 to 14 h) by an optical scanner, and a report containing an
MIC value along with the interpretive category for each antifungal on the card is
generated.

The automation afforded by this assay is ideal for clinical microbiology laboratories
with a high testing volume. It does not require specialized mycology training and is a
rapid method of AFST that produces accurate results comparable to those of broth
microdilution (93–103). EA with both CLSI and EUCAST reference methods is approxi-
mately �95% overall (97). A large multilaboratory study reported EA values for am-
photericin B, flucytosine, and voriconazole of 99.1%, 99.1%, and 96.7%, respectively
(93). EA values for caspofungin, micafungin, and posaconazole have been reported as
99.5%, 98.6%, and 95.6%, respectively (99). However, manual readings are not possible,
and in the United States, only fluconazole, voriconazole, and caspofungin are approved
by the Food and Drug Administration (FDA) for AFST via this system.
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MISCELLANEOUS METHODS
Flow Cytometry

Flow cytometry, or fluorescence-activated cell sorting (FACS), is an existing technol-
ogy that has been evaluated for use in antifungal susceptibility testing. Following
treatment with a serial dilution of antifungal drug and staining with a fluorescent dye,
fungal cells are measured for their fluorescence using a flow cytometer. Alterations in
fluorescence are interpreted as changes in cell viability and thus an indication of
antifungal-induced damage. The MIC may be defined as the lowest concentration of a
specific antifungal drug to which the percentage of positive cells, or cells showing high
fluorescence, is above a threshold value, compared to an isolate with a known in vitro
susceptibility. Various fluorochromes are available for use as dyes, such as propidium
iodide (PI), acridine orange (AO), ethidium bromide, and 2-choro-4-[2,3-dihydro-3-
methyl-[benzo-1,3-thiazol-2-yl]-methyl-idene]-1 phenylquinolinium iodide (FUN-1)
(104–110).

Comparisons of this method to reference AFST methods have been focused on
Candida spp. and have resulted in promising data for multiple species and multiple
antifungals (107, 109, 111). However, in spite of high overall EA and categorical
agreement with the CLSI method, very major errors have been reported with flow
cytometry, especially with C. krusei (112). Also, while results can be generated in a few
hours as opposed to at least a day for broth microdilution, FACS as it stands now is
labor-intensive, requires a high level of technician expertise, and would be impractical
in resource-limited settings.

MALDI-TOF Mass Spectrometry

Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spec-
trometry detects protein profiles directly from clinical isolates and has become a staple
in the clinical microbiology laboratory for identification of both bacteria and fungi
(113). This technology has been investigated for application in AFST as well. In general,
an isolate is exposed to a concentration of antifungal drug and analyzed via MALDI-TOF
mass spectrometry, and any changes to the proteome compared to a drug-free control
are interpreted as an indicator of antifungal-induced damage (114). An early study
investigating this application tested Candida albicans with serial dilutions of flucona-
zole and found that the lowest concentration of drug that induced a significant change
in the mass spectrum profile, termed the minimal profile change concentration (MPCC),
correlated well with the MIC as determined by CLSI methodology (115). Other results
have been mixed. This method has been applied to other species of Candida and
Aspergillus against caspofungin and found to have complete EA with a reference
method as well as up to 94.1% categorical agreement, although agreement was better
for susceptible than resistant isolates (116, 117). However, another study found a wide
range of EA values between MALDI-TOF mass spectrometry and CLSI method results
(54 to 97%, depending on the species), with a reproducibility of results as low as 54%
(118). Modifications have been made to make this method more rapid and simple; this
modified method is reportedly able to detect 90.1% of FKS1 mutants of C. albicans but
does not detect FKS2 mutations in C. glabrata (119, 120). Another study of MALDI-TOF
AFST with echinocandins and Aspergillus species showed good correlation with broth
microdilution, but because of the extended incubation time, it concluded that there
was no advantage to MALDI-TOF mass spectrometry (121).

Potential advantages of developing MALDI-TOF mass spectrometry for use in sus-
ceptibility testing are the elimination of subjectivity present in the visual readout as
described by current CLSI methodology, the elimination of long turnaround times, and
a reduction in the burden posed by trailing isolates of Candida, the latter of which is
also an advantage shared by the Vitek 2 and the EUCAST reference methods for yeasts.
Laboratories which already house the instrument for identification of isolates might
appreciate the value of a dual-use method for AFST as well. But additional study is
necessary before widespread implementation in mainstream clinical laboratories.
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Agar-Based Antifungal Screening

Screening fungal isolates for their ability to grow on standard agar containing
antifungal agents is a useful strategy in a variety of settings. One such technology,
X-Plate, is a combination identification-susceptibility testing assay that utilizes Candida
CHROMagar (Becton, Dickinson and Company, Sparks, MD, USA) poured into four
quadrants of a petri plate. Each of the four distinct quadrants also contains a different
concentration of fluconazole: 0 �g/ml, 8 �g/ml, 16 �g/ml, or 64 �g/ml. This system
allows for the presumptive identification of a Candida species directly from a clinical
specimen via the color of the colony as well as categorization of fluconazole resistance
via the presence of drug. When tested with C. albicans, C. glabrata, C. parapsilosis, and
C. tropicalis of various susceptibility profiles, X-Plate showed 100% concordance with
CLSI broth microdilution (122). It was also evaluated as a high-throughput screen of
Candida spp., with results reported to be comparable to other studies of Candida
susceptibility (122). In addition to this product, there are a few reports of similar,
“in-house-created” plates that use antifungal drugs as a component of Candida CHRO-
Magar (123–125).

Another commercial example of agar-based antifungal screening is the VIPcheck
assay (Mediaproducts BV, The Netherlands). This product consists of four wells of RPMI
agar, each containing a different azole antifungal, i.e., 4 �g/ml itraconazole, 2 �g/ml
voriconazole, and 0.5 �g/ml posaconazole, and one growth control well. This assay has
been used in surveillance studies for the detection of azole resistance in Aspergillus
fumigatus and offers a rapid, simple screen for antifungal resistance with sensitivity
ranging from 92 to 100% and specificity ranging from 67 to 100% (55, 56, 126). This
product was the basis for the establishment of EUCAST E.DEF 10.1 as described above.

PAO-Based Culture

Porous aluminum oxide (PAO) is a honeycomb-like material composed of cylindrical
pores arranged in a hexagonal array. As this material can be created to self-assemble
into ordered configurations, it has a broad range of applications as a scaffold in
nanotechnology (127). PAO has been investigated as a novel method of measuring
drug resistance. In general, an isolate is subcultured onto a strip of PAO that is placed
on an RPMI plate containing a specific concentration of antifungal drug. After a period
of time, the PAO strip is analyzed microscopically, and any change in microcolony area
is associated with drug activity or inactivity (128–131).

For amphotericin B, the echinocandins, and triazoles, this assay demonstrated
essential agreement (EA) of 88.2%, 91.2%, and 79.4 to 82.4%, respectively, with the
EUCAST reference method. Moreover, results were ready after approximately 3.5 to 7 h
as opposed to 24 h for traditional testing. This technology could be automated for ease
of use in routine testing and adapted to other fungi.

IMC

Isothermal microcalorimetry (IMC) is the measure of heat flow in response to a
chemical. In the context of AFST, microcalorimetry is a method by which the precise
amount of heat production, as it relates to microbial metabolism, is measured and then
related to changes in microbial growth. In short, vials containing the organism, growth
medium, and serial dilutions of antimicrobial drug are housed within an IMC instru-
ment, and the lowest concentration of drug which inhibits the total heat produced by
the growth control to a specified degree is calculated and termed the MHIC, or minimal
heat inhibitory concentration. (132–134).

Two studies performed with Aspergillus spp. reported the EA between the MHIC and
the MIC/MEC as defined by CLSI as 90% for amphotericin B, 100% for voriconazole, 90%
for posaconazole, and 70% for caspofungin and correctly distinguished between
voriconazole-susceptible and -resistant isolates (135, 136). This technology has also
been applied to other molds, including Fusarium solani, Lomentospora prolificans,
Scedosporium apiospermum, Rhizopus arrhizus, Rhizomucor pusillus, and Lichtheimia
corymbifera, with a similar high degree of correlation to MIC data by reference method
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(137). EA with broth microdilution was shown for Candida species with anidulafungin,
caspofungin, and micafungin, but there were major discrepancies for C. glabrata and C.
parapsilosis with fluconazole (138). In theory, this method could be automated for
high-throughput use in routine clinical testing and for testing of novel antifungal drugs.

Validity of AFST Nonstandardized Testing Systems

The central purpose of susceptibility testing is detection of antifungal resistance.
Unfortunately, when the validity of various testing systems is analyzed, most isolates
used are drug susceptible, a result of the overall rarity of antifungal resistance among
clinical isolates. As a result, there is an abundance of data to show that susceptible
isolates are identified as susceptible but comparatively little data showing that resistant
isolates are identified as resistant. When studies are performed that use an abundance
of resistant isolates, errors become more apparent (100). In an effort to begin to
alleviate this problem and allow a more robust validation of nonstandardized systems,
the U.S. Centers for Disease Control and Prevention (CDC) and the Food and Drug
Administration (FDA) have developed the CDC/FDA Antibiotic Resistance Isolate Bank,
where isolate panels that contain resistant isolates can be ordered free of charge
(https://www.cdc.gov/drugresistance/resistance-bank/index.html).

INTERPRETATION OF MIC DATA

An MIC is an artificially derived in vitro measure of drug activity. The real value of the
MIC lies in its ability to predict the clinical outcome of treatment based on an
established breakpoint. Breakpoints themselves are developed by considering several
factors. The first factor is the MIC value (or the range of MIC values) encompassed by
the wild-type isolates of a given fungal-antifungal combination, known as the MIC
distribution. MIC values for isolates with known mechanisms of resistance are very
useful for validating the endpoint of the wild-type distribution but are not essential.
The second factor is the pharmacokinetics/pharmacodynamics of the antifungal in vivo.
This reflects the ability to deliver the antifungal and have it reach the site of infection
at the desired concentration. Drug-drug interactions and the host’s ability to process
the antifungal and maintain high enough trough levels play an important role. Overall,
the health and immune status of the host play a very important role in the outcome of
treatment. Clinical trials are used to consider all these factors and to determine the
highest MIC value that also allows a favorable outcome for the patient. It should be
noted that antifungal resistance as measured in vitro will not necessarily translate to
treatment failure in a patient; AFST cannot uniformly predict success or failure. Infec-
tions due to susceptible isolates respond to therapy approximately 90% of the time,
while infections due to resistant isolates respond to therapy approximately 60% of the
time (139). The MIC is only one factor that should be considered as a part of a larger,
often complicated, clinical picture.

Even when a standardized protocol is used, results can be influenced by subtle
variations in inoculum size, growth phase of the cells, incubation temperature, and
incubation time. In most standards, these components of testing are given as a range
of possibilities (for instance, temperature is given as 35 � 2°C). When reading visually,
the endpoint can also be influenced by individual interpretation. This translates as a
range of possible MIC values for any given isolate, all of them being technically and
essentially correct (13, 30, 81, 140, 141). In general, if the MIC value of a single isolate
is determined daily for 30 days, the result will be a range of MIC values, usually
encompassing a modal or central MIC and 1 log2 dilution on either side. This is the
reason that the MIC values for QC isolates are given as a range of values rather than as
a single value (5, 27). The modal MIC of QC isolates should fall on the midvalue range;
that is the QC target. Practically, this means that two technicians can read the same
isolate at 2 log2 dilutions apart and yet their MIC values will be in essential agreement
(within 2 dilutions of each other) while not necessarily in categorical agreement
(agreement by category of susceptible, intermediate, or resistant). However, the MIC
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agreement between two technicians over time should be more similar than dissimilar
whether they are in essential agreement or not.

Challenges to Interpreting Broth Microdilution

There are in vitro phenomena which complicate the endpoint determination, inde-
pendent of the standard being followed, and may cause a determination of false
resistance. One example is the phenomenon of trailing growth (142–144). The drug
class of fungistatic azoles, such as fluconazole, voriconazole, and itraconazole, incom-
pletely inhibit the growth of some species of Candida in vitro likely due to the activation
of the stress response pathways. Although trailing isolates appear to grow at high drug
concentrations, they remain susceptible to the drug (144). When visualized in a broth
microdilution assay, this phenomenon appears as reduced yet persistent microbial
growth beyond the MIC cutoff point. Trailing growth may present difficulties when
reading the results visually, as defined by the CLSI, and may be misinterpreted as drug
resistance. It is most commonly observed with C. albicans and C. tropicalis but for other
species as well (145). Another example of a “trailing” growth phenomenon or incom-
plete growth inhibition is the effect of the echinocandins on mold species. Growth is
not inhibited but rather changed, and so interpretation becomes subjective (146).

A second scenario, the paradoxical effect, can obstruct the appropriate reading of
broth microdilution as well, especially for caspofungin and some Candida species
(147–149). Instead of consistent growth across the wells, as seen in trailing growth,
there is a distinct drop-off in growth and then a distinct regrowth further up the
concentration gradient (Fig. 2) (150, 151). This phenomenon is also called the Eagle
effect, so named after being first described by Harry Eagle (152). The mechanism
underlying this phenomenon has been attributed to alteration in cell wall content and
structure in the fungi as a compensatory response to antifungal drug stress. A decrease
in cell wall proteins �-1,3-glucan and �-1,6-glucan and an increase in cell wall chitin
content are the most frequently indicated sources of the regrowth (153). As shown for
trailing growth, there is no clear connection between in vitro paradoxical growth of an
isolate and in vivo resistance (154).

Established Breakpoints

Breakpoints are the most reliable tool to link an MIC value generated by in vitro
testing to the most likely in vivo response of that isolate to an achievable concentration
of drug. Breakpoints differentiate isolates with a high likelihood of treatment success
from those which are more likely to fail.

Both the CLSI and EUCAST have defined breakpoints for several antifungal drug-
fungal species combinations. As discussed above, both groups consider an assortment
of information: distributions of MIC values, molecular markers of drug resistance,
pharmacokinetic and pharmacodynamics data, and the relationship between patient
outcome and MIC value. EUCAST also considers the most common dosage of a
particular antifungal and the definition of wild-type population at the species level
when setting breakpoints. Although the methods of generating the MIC values and the
approaches to establishing breakpoints are slightly different, the breakpoints defined
by the two consensus groups are strikingly similar.

Table 3 details the current breakpoints for each antifungal drug against both yeasts
and molds. Breakpoints exist for the most frequently encountered fungi in the clinical

FIG 2 Example of paradoxical growth phenomenon. There is complete clearing of the wells after the MIC
point for anidulafungin, but there is a distinct drop-off in growth and then a distinct regrowth further up
the concentration gradient for caspofungin, as indicated with an asterisk.
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TABLE 3 Current antifungal clinical breakpoints and interpretive categories for yeasts and molds via 2019 CLSI and EUCAST standards of
broth microdilutiona

Antifungal agent Species

CLSI breakpoint (�g/ml)
EUCAST breakpoint
(mg/liter)

S I SDD R S I SDD R

Anidulafungin C. albicans �0.25 0.5 — �1 �0.032 — — �0.032
C. glabrata �0.12 0.25 — �0.5 �0.064 — — �0.064
C. guilliermondii �2 4 — �8 — — — —
C. krusei �0.25 0.5 — �1 �0.064 — — �0.064
C. parapsilosis �2 4 — �8 �0.002 — — �4
C. tropicalis �0.25 0.5 — �1 �0.064 — — �0.064

Caspofungin C. albicans �0.25 0.5 — �1 — — — —
C. glabrata �0.12 0.25 — �0.5 — — — —
C. guilliermondii �2 4 — �8 — — — —
C. krusei �0.25 0.5 — �1 — — — —
C. parapsilosis �2 4 — �8 — — — —
C. tropicalis �0.25 0.5 — �1 — — — —

Micafungin C. albicans �0.25 0.5 — �1 �0.016 — — �0.016
C. glabrata �0.06 0.12 — �0.25 �0.032 — — �0.032
C. guilliermondii �2 4 — �8 — — — —
C. krusei �0.25 0.5 — �1 — — — —
C. parapsilosis �2 4 — �8 �0.002 — — �2
C. tropicalis �0.25 0.5 — �1 — — — —

Voriconazole C. albicans �0.12 0.25–0.5 — �1 �0.064 — — �0.25
C. krusei �0.5 1 — �2 — — — —
C. parapsilosis �0.12 0.25–0.5 — �1 �0.125 — — �0.25
C. tropicalis �0.12 0.25–0.5 — �1 �0.125 — — �0.25
C. dubliniensis — — — — �0.064 — — �0.25
A. fumigatus —b —b —b —b �1 — — �2

Fluconazole C. albicans �2 — 4 �8 �2 — — �4
C. glabrata — — �32 �64 �0.002 — — �32
C. parapsilosis �2 — 4 �8 �2 — — �4
C. tropicalis �2 — 4 �8 �2 — — �4
Non-species specific — — — — �2 — — �4

Itraconazole C. albicans — — — — �0.064 — — �0.064
C. dubliniensis — — — — �0.064 — — �0.064
C. parapsilosis — — — — �0.125 — — �0.25
C. tropicalis — — — — �0.125 — — �0.25
A. flavus — — — — �1 — — �2
A. fumigatus — — — — �1 — — �2
A. nidulans — — — — �1 — — �2
A. terreus — — — — �1 — — �2

Isavuconazole A. fumigatus — — — — �1 — — �1
A. nidulans — — — — �0.25 — — �0.25
A. terreus — — — — �1 — — �1

Posaconazole C. albicans — — — — �0.064 — — �0.064
C. dubliniensis — — — — �0.064 — — �0.064
C. parapsilosis — — — — �0.064 — — �0.064
C. tropicalis — — — — �0.064 — — �0.064
A. fumigatus — — — — �0.125 — — �0.25
A. terreus — — — — �0.125 — — �0.25

Amphotericin B C. albicans — — — — �1 — — �1
C. glabrata — — — — �1 — — �1
C. krusei — — — — �1 — — �1
C. parapsilosis — — — — �1 — — �1
C. tropicalis — — — — �1 — — �1
A. fumigatus — — — — �1 — — �2
A. niger — — — — �1 — — �2

aCLSI and EUCAST breakpoints are reported in different units. Em dashes represent instances where breakpoints have not been established. S, susceptible; I,
intermediate; SDD, susceptible dose dependent; R, resistant.

bThe CLSI Subcommittee on Antifungal Susceptibility Tests passed breakpoints for voriconazole against A. fumigatus in early 2019. These will be published in the next
edition of the M61 document in early 2020 (8).

Berkow et al. Clinical Microbiology Reviews

July 2020 Volume 33 Issue 3 e00069-19 cmr.asm.org 16

https://cmr.asm.org


laboratory. The CLSI lists breakpoints for the most common Candida species to anidu-
lafungin, caspofungin, micafungin, fluconazole, and voriconazole (155–157). There are
no breakpoints for fluconazole against C. krusei, as this species is assumed to be
intrinsically resistant. Although there is significant outcome data for Candida guillier-
mondii and the echinocandins, there is not enough outcome data to demonstrate a
correlation between MIC value and clinical outcome for fluconazole and voriconazole
against C. guilliermondii. For C. glabrata and voriconazole, there is not a clear correlation
between outcome and MIC value, so there is no breakpoint for that combination. Due
to the paucity of clinical outcome data, the CLSI has not yet established breakpoints for
any molds, with a single exception: the CLSI Subcommittee on Antifungal Susceptibility
Tests passed breakpoints for voriconazole against A. fumigatus in early 2019 (8). These
will be published in the next edition of the M61 document in early 2020.

The available breakpoints from EUCAST for Candida spp. (158) differ from those
established by the CLSI (Table 3). Version 9 of the EUCAST breakpoint tables for
interpretation of MICs includes itraconazole and posaconazole breakpoints for several
species, including C. albicans, C. dubliniensis, C. parapsilosis, and C. tropicalis (10, 159,
160). There are also voriconazole breakpoints available for C. dubliniensis. No break-
points are published by EUCAST for caspofungin against any Candida spp. due to
significant interlaboratory variation in modal MIC range. Unlike the CLSI, EUCAST lists
breakpoints for amphotericin B against C. albicans, C. glabrata, C. krusei, and C. tropicalis
(161). Also, unlike the CLSI, there are no EUCAST breakpoints for voriconazole or
micafungin against C. krusei or for micafungin against C. tropicalis due to insufficient
evidence of adequate correlation. EUCAST also provides non-species-related break-
points for fluconazole for use with organisms without specific breakpoints.

In addition to the Candida species, EUCAST has established Aspergillus species
breakpoints for amphotericin B and several triazoles. This includes breakpoints for
amphotericin B against A. fumigatus and A. niger, isavuconazole breakpoints against A.
fumigatus, A. nidulans, and A. terreus, itraconazole breakpoints against A. flavus, A.
fumigatus, A. nidulans, and A. terreus, posaconazole breakpoints against A. fumigatus
and A. terreus, and voriconazole breakpoints against A. fumigatus (10–12). The remain-
ing species-antifungal drug combinations have insufficient evidence of adequate cor-
relation data. No breakpoints are listed for an echinocandin against any Aspergillus spp.

EUCAST is currently revising their breakpoints to encompass a change to the
previous category of “I” or intermediate, which is now revised to “susceptible, increased
exposure.” In addition, EUCAST has introduced an additional category of “area of
technical uncertainty,” or ATU, which will help the laboratory consider other factors
besides the MIC value for assigning a category. These changes now appear on
the EUCAST website when they are implemented (http://www.eucast.org/clinical
_breakpoints/).

Establishment of Epidemiological Cutoff Values (ECVs or ECOFFs)

One of the limitations to the establishment of breakpoints is the paucity of MIC-
clinical trial outcome relationship data. Even for the most common fungal pathogens,
controlled treatment and outcome data may be scarce. For rare fungal pathogens,
robust data are even more challenging to collect, with too few clinical cases resulting
in too few data points. Further complicating the issue, attributable mortality may be
difficult to confirm with fungal pathogens in general, as the patients who are most
likely to suffer from fungal infections often have other severe comorbidities. Taken
together, there will likely never be clinical breakpoints for certain less common fungal
pathogens or for certain fungus-antifungal drug combinations. In these instances,
defining the epidemiological cutoff value (ECV [CLSI term] or ECOFF [EUCAST term]) is
a helpful alternative.

An ECV is the MIC or MEC that separates a population of isolates into those with or
without acquired or mutational resistance by defining the upper limit of the wild-type
MIC/MEC distribution. It is not a breakpoint and should not be used as such or
considered an equivalent. Unlike a breakpoint, an ECV does not necessarily predict
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clinical success or failure of a particular antifungal but rather predicts whether a specific
isolate carries resistance to a drug which is known to otherwise have activity against
that species. It has no utility for species which are inherently resistant to an antifungal,
such as C. krusei and fluconazole.

To establish an ECV, an MIC distribution is the most important criterion (162). By the
standards established in CLSI document M57, 100 isolates from at least three different
laboratories are needed (163). Once an ECV is established, it can be used to help guide
treatment decisions. An isolate whose MIC falls below the determined ECV is likely wild
type and should respond to therapy, as would other wild-type isolates of that species.
That drug may be considered by a clinician for treatment if it is normally used for that
species. On the other hand, an isolate whose MIC falls above the ECV is likely non-wild
type and may have acquired resistance to that drug. In this circumstance, the clinician
should exercise caution with that drug and consider other treatment options. The other
piece of information conveyed by the ECV is the general susceptibility of an isolate to
an antifungal. As the ECV is the end of the wild-type MIC distribution, it conveys the
general range of MICs for any given fungus-antifungal combination and when com-
bined with knowledge of the pharmacokinetics/pharmacodynamics may allow a clini-
cian to decide whether an achievable dose below the ECV is possible.

The CLSI specifies the principles behind and the procedures for the development of
ECVs for antifungal testing in document M57 and lists available ECVs themselves in
document M59 (163, 164). At this time, EUCAST ECOFFs for fungi can be found on the
EUCAST website under the appropriate rationale document (http://www.eucast.org/
astoffungi/rationale_documents_for_antifungals/) (Table 4).

Besides publishing ECOFFs, EUCAST also collects data for MIC/MEC distributions for
fungus-antifungal combinations and makes those data available (http://www.eucast
.org/mic_distributions_and_ecoffs/). While these data are not useful for predicting
clinical outcomes for patients, they may have some usefulness for clinical decision-
making. First, these data are the basis for the establishment of ECOFFs. It takes a large
amount of data to make accurate ECOFFs, and except for a few fungal species, the
clinical cases are few and far between. With the continual collection of distribution data,
we come closer to the establishment of an ECOFF. Second, while not useful for
prediction outcome, the distribution range, like the ECV, allows the clinician to at least
make a prediction of whether an achievable concentration in the target organ can be
established. A distribution of MIC values at the lower end of the achievable serum
concentration indicates that an antifungal will be more likely to work than a distribu-
tion that is at the higher end of the achievable dose. For the distribution to be useful,
some knowledge of the pharmacokinetic/pharmacodynamic (PK/PD) range must be
known and a pharmacy consult may be useful.

FUTURE OF ANTIFUNGAL SUSCEPTIBILITY TESTING
Reporting AFST Results to Clinicians

An important consideration in AFST is what to report to the clinician. For many
fungus-antifungal combinations with no breakpoints or ECVs, the only thing that can
be reported is the MIC value. But where there are breakpoints available, there is some
debate over whether to simply report the interpretive category or whether to provide
both the interpretation and the MIC value. There is some value in providing an MIC. A
good example is Candida glabrata and fluconazole. There is no susceptible category for
this combination, only susceptible dose-dependent (SDD) and resistant. The MIC
distribution for SDD isolates ranges up to �32 �g/ml. While both 2 �g/ml and 32 �g/ml
are in the same category, 16 �g/ml and 32 �g/ml are both in essential agreement or
standard error range of the resistant breakpoint of 64 �g/ml. A clinician who would like
to take a patient off an echinocandin is more likely to use azole step-down therapy on
a C. glabrata infection if the initial MIC value for the isolate was 2 �g/ml rather than 16
or 32 �g/ml, and only by providing the MIC value could that decision be made. This
would be especially relevant in an institution that is already experiencing a high
number of cases of echinocandin-resistant C. glabrata infections (165, 166).
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TABLE 4 Current epidemiological cutoff values for yeasts and molds via 2019 CLSI and
EUCAST standards of broth microdilutiona

Antifungal agent Species
CLSI ECV
(�g/ml)

EUCAST ECOFF
(mg/liter)

Anidulafungin C. albicans — 0.032
C. glabrata — 0.064
C. krusei — 0.064
C. parapsilosis — 4
C. tropicalis — 0.064
C. dubliniensis 0.12 —
C. lusitaniae 1 —

Micafungin C. albicans — 0.016
C. glabrata — 0.032
C. krusei — 0.25
C. parapsilosis — 2
C. tropicalis — 0.064
C. dubliniensis 0.12 —
C. lusitaniae 0.5 —

Voriconazole C. albicans — 0.125
C. glabrata — 1
C. guilliermondii — 0.25
C. krusei — 1
C. parapsilosis — 0.125
C. tropicalis — 0.125
C. lusitaniae — 0.064
A. flavus — 2
A. fumigatus — 1
A. niger — 2
A. terreus — 2

Fluconazole C. albicans — 1
C. glabrata — 32
C. guilliermondii — 16
C. krusei — 128
C. parapsilosis — 2
C. tropicalis — 2

Itraconazole C. albicans — 0.064
C. glabrata 4 2
C. guilliermondii — 2
C. lusitaniae 1 0.125
C. krusei 1 1
C. parapsilosis — 0.125
C. tropicalis 0.5 0.125
C. dubliniensis — 0.064
C. guilliermondii — 2
A. flavus — 1
A. fumigatus — 1
A. nidulans — 1
A. niger — 4
A. terreus — 0.5

Isavuconazole A. flavus — 2
A. fumigatus — 2
A. nidulans — 0.25
A. niger — 4
A. terreus — 1

Amphotericin B C. albicans 2 1
C. glabrata 2 1
C. krusei 2 1
C. parapsilosis 2 1
C. tropicalis 2 1

aCLSI and EUCAST breakpoints are reported in different units. Em dashes represent instances where ECVs
have not been established.
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The reporting of ECVs poses a similar problem. Most laboratories have not yet
embraced the reporting of fungal ECVs, and that is partly due to inexperience in
conveying their meaning within a larger context. By providing the ECV, at least some
frame of reference for the MIC value has been provided (164). For those fungi with
antifungal ECVs, the clinician can discern whether the fungus is wild type or whether
it is probable that it has developed resistance (167).

A typical report might say “The MIC for this isolate of Candida kefyr against
micafungin is 0.06 �g/ml. The ECV for Candida kefyr against micafungin is 0.125 �g/ml.
This isolate is likely wild type, and micafungin may be considered a treatment option.”
To make use of the ECV, as stated above, some knowledge of the PK/PD should be
known, and a pharmacy or infectious disease consult should be considered.

Trends in Antifungal Resistance

The emergence of antifungal drug resistance, whether to a single drug class or to
multiple antifungals, is an impediment to the management of IFIs. With only a short list
of systemically available antifungals from which to choose, clinicians are already limited
for choice in antifungal therapy. That choice may be further complicated by drug-drug
interactions and/or side effects like toxicity, which are known to occur with antifungal
drugs (168). Antifungal resistance may be the result of long-term exposure to the drug
but may also be an intrinsic quality of a particular Candida or mold species. So, while
the rate of microbiological resistance to antifungal drugs is lower than that for
antibacterial drugs, it still represents a major clinical challenge (169). Understanding
when it occurs by measuring it in vitro is essential to preserving antifungal drug
effectiveness.

Candida species are among the most frequent causes of IFIs, and although clinically
available antifungal agents still show high activity against them, species-specific resis-
tance has been reported worldwide. In the United States and parts of Europe, including
Norway and Switzerland, the incidence of fluconazole resistance for Candida albicans,
Candida tropicalis, and Candida parapsilosis is low, at approximately 2%, 5%, and 4%,
respectively. Resistance to the echinocandin drug class is nearly nonexistent in these
regions for the same species, at �1% (170–172). Similar rates of fluconazole resistance
are observed in Asia-Pacific and India, with slightly higher resistance rates seen for C.
tropicalis and C. parapsilosis (173, 174). Fluconazole resistance in C. tropicalis has been
observed with higher frequency in Taiwan, Australia, and Belgium, at 11%, 17%, and
20%, respectively (175–177). Candida krusei is considered intrinsically resistant to
fluconazole but shows high susceptibility to the echinocandins, with 100% of isolates
being susceptible in a recent global SENTRY report (178).

The landscape for Candida glabrata is quite different from that for other Candida
species. Recent population-based surveillance in the United States identified flucona-
zole resistance in 10% of C. glabrata isolates (170). Worldwide rates of fluconazole
resistance for C. glabrata, as collected by SENTRY and ARTEMIS antifungal surveillance
programs, are reported as 10.2% and 11.9%, respectively (47, 178). Resistance to the
echinocandins is also higher for C. glabrata than for other species of Candida in the
United States and, depending on institutional differences, can range from 0 to 4% or as
high as 10% (165, 179, 180). Echinocandin susceptibility patterns in other parts of the
world vary for C. glabrata. For example, Germany and Austria report low echinocandin
resistance among C. glabrata isolates (�1%) (181). This is echoed in SENTRY data, which
published rates of between 0.4 and 1.9% for Europe, 0 and 1.7% for Asia-Pacific, and 0%
for Latin America (178). Echinocandin resistance in C. glabrata is often observed in
conjunction with azole resistance, resulting in multidrug-resistant isolates. This occurs
in 9% of echinocandin-resistant isolates in the United States (170).

The emerging pathogen Candida auris is unique in many ways compared to other
species of Candida, and one defining characteristic is unprecedented resistance to
antifungal drugs. Breakpoints have not yet been established for C. auris, but tentative
breakpoints have been proposed based on wild-type distribution, molecular mutation
detection, and PK/PD modeling in mice (https://www.cdc.gov/fungal/candida-auris/c
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-auris-antifungal.html) (182). Although the patterns of susceptibility vary by C. auris
clade, this species shows 70% resistance to fluconazole and 5% resistance to echino-
candins worldwide. Most striking perhaps though is the 23% resistance observed to
amphotericin B, an antifungal to which very few Candida isolates show any remarkable
resistance. Twenty percent of C. auris isolates exhibit resistance to two antifungal drug
classes, and there are even isolates which are pan-resistant, showing MIC values which
are high for all available antifungal drug classes (22, 23).

Aspergillus species are also common agents of IFIs worldwide, and recently, azole
resistance in A. fumigatus has garnered global concern (183). This resistance may occur
after prolonged azole therapy, as seen with Candida species, but there is overwhelming
evidence that environmental use of agricultural azoles cultivates resistance in Asper-
gillus spp. as well. These environmentally derived resistant isolates are then seen in the
clinic as agents of aspergillosis. While azole-resistant aspergillosis was once thought to
be infrequent, the epidemiology has changed, with resistance rates increasing dramat-
ically (184–186). It is difficult to calculate the prevalence of azole resistance in A.
fumigatus since clinical laboratories do not perform routine susceptibility testing on
molds, but azole-resistant isolates have been detected in both the clinic and the
environment in Europe, the Middle East, Asia, Africa, Australia, and North and South
America (187–194).

Molecular Detection of Resistance

One of the conundrums facing the clinical microbiology laboratory is the increasing
frequency of the use of culture-independent diagnostics. Assays such as the SeptiFast
(Roche) or the T2Candida (T2 Biosystems) for the detection of Candida species or
AsperGenius (PathoNostics, Maastricht, Netherlands) and MycoGENIE (Ademtech, Pes-
sac, France) for the detection of Aspergillus allow fungi to be rapidly and directly
detected from blood, but they do not provide an isolate for susceptibility testing
(195–198). With the increasing frequency of antifungal resistance, this leaves laborato-
ries in a quandary. For a subset of antifungal-species combinations, the molecular
mechanism of antifungal resistance is known. A good example is Candida species and
the echinocandins, where resistance has been linked almost exclusively to amino acid
mutations in two hot spot regions in the FKS genes (199–201). Molecular assays for the
detection of FKS mutations have been developed. These include a molecular beacon
assay to detect the S645 mutation in C. albicans (202), a Luminex Mag-Pix assay to
detect multiple FKS mutations in C. glabrata (203), and a multiplex melt-curve assay
again for the detection of multiple FKS mutations in C. glabrata (204). However, all these
assays were developed for isolates and have not been validated for detection of
mutations directly from clinical specimens.

Determining the molecular mechanisms of resistance of Candida species to the
azoles is even more complicated. For azoles such as fluconazole, the resistance mech-
anism depends on the species and may be due to one or a combination of several
factors: amino acid substitutions in the target gene ERG11, amino acid changes in a
transcription factor that causes overexpression of either ERG11 or one of multiple drug
transporters, or a mutation in one of the other enzymes in the ergosterol pathway (205,
206).

While there are limitations to the use of molecular detection of resistance, there are
settings where it may be efficacious. Azole resistance in A. fumigatus is one situation
where rapid detection of resistance would be useful. There are a number of quantitative
PCR (qPCR) assays that have been developed to detect various mutations in the CYP51A
gene of A. fumigatus, the target of the azoles, directly from clinical specimens (207–
209). The two commercially available assays for the detection of azole resistance in A.
fumigatus, AsperGenius and MycoGENIE, detect Aspergillus DNA and at the same time
are able to detect a limited number of mutations in the CYP51A gene that have been
shown to be responsible for azole resistance (197, 198, 210). Although these tests
represent a breakthrough in resistance detection, because of gene copy number the
sensitivity of detection of A. fumigatus is higher than that for detection of resistance,

Antifungal Susceptibility Testing: Current Approaches Clinical Microbiology Reviews

July 2020 Volume 33 Issue 3 e00069-19 cmr.asm.org 21

https://www.cdc.gov/fungal/candida-auris/c-auris-antifungal.html
https://cmr.asm.org


especially since many resistance mutations are not detected by this assay. This means
that although it can sometimes detect resistance, it is not always an accurate predictor
of susceptibility. The AsperGenious assay is a multiplex PCR assay for the detection of
A. fumigatus, A. terreus, and Aspergillus species but has a second multiplex reaction that
detects four mutations (TR34, L98H, Y121F, and T289A) that are responsible for the
majority of cases of azole resistance in A. fumigatus (18, 197). The MycoGENIE detects
A. fumigatus DNA, but in the same multiplex reaction, it detects TR34 and L98H (198).
In a setting such as the Netherlands where the TR34 and L98H and the TR46, Y121F, and
T289A mutations are now found in over 10% of all clinical isolates of A. fumigatus, these
assays would allow rapid treatment decisions (211). The limitation of these assays is that
not all of the mutations that cause azole resistance are detected, and up to 30% of A.
fumigatus isolates that are resistant to azoles have no known mechanism of resistance
(212).

CONCLUSIONS

There are several reasons why antifungal susceptibility testing is not often per-
formed in the clinical laboratory. Therapeutic choices for antifungals are limited, and so
therapy is often empirical. The turnaround time, especially for mold testing, may
preclude testing, especially in critical cases. The lack of interpretive criteria for many
fungus-antifungal combinations may cause some clinicians to question why to test
when they cannot interpret the results. The testing remains an esoteric skill that
requires experienced technicians and can be subjective in interpretation. However,
there are current recommendations in support of susceptibility testing. In 2012, the
European Society of Clinical Microbiology and Infectious Diseases (ESCMID) recom-
mended AFST of all Candida isolates from blood and other deep sites (7). In addition,
they stated the usefulness of AFST for isolates from patients who were failing therapy,
isolates from rare species, and isolates from species that are known to develop
resistance. In 2016 in their revised candidiasis guidelines, the Infectious Diseases
Society of America (IDSA) also recommended antifungal susceptibility testing, at least
for azoles, for all bloodstream and clinically relevant Candida isolates. They also
suggested that echinocandin testing be considered for patients with either C. glabrata
or C. parapsilosis infection (6).

The 2016 IDSA guidelines for the management of aspergillosis recommend against
routine AFST of Aspergillus isolates (213). Instead, they recommend reserving testing for
patients who are unresponsive to antifungal agents or who are suspected to have a
resistant isolate. The IDSA guidelines also suggest that AFST can be performed for
epidemiological purposes but make no suggestion as to how those data should be
used. ESCMID provided the first strong recommendation for susceptibility testing of
Aspergillus in 2017 (9). They recommended that AFST be performed on isolates causing
invasive disease in patients from regions where resistance is found in surveillance
programs. The problem with this recommendation is the paucity of surveillance
programs that perform mold susceptibility testing. A stronger recommendation would
include language that also recommended the initiation of surveillance programs. The
availability of a simple agar growth assay for screening for azole-resistant Aspergillus
may allow susceptibility testing to become more commonplace.

We are in an unprecedented era for susceptibility testing. There are two antifungal-
resistant species of fungi that are spreading across the globe, multidrug-resistant
Candida auris and azole-resistant Aspergillus fumigatus (18, 22, 23, 212). There are also
an unprecedented number of new antifungal agents already in phase II or phase III
clinical trials (214). In order to adequately treat patients with infections for which there
are few agents with clinical efficacy, AFST will have to be more widely available than it
currently is. It may soon come to pass that clinicians will have a number of different
antifungal classes to choose from for both molds and yeasts. AFST will play a much
larger role in the decision-making process for choosing antifungal therapy. In the
United States right now, the College of American Pathologists send out a single yeast
isolate three times per year for AFST proficiency. There are no programs for mold

Berkow et al. Clinical Microbiology Reviews

July 2020 Volume 33 Issue 3 e00069-19 cmr.asm.org 22

https://cmr.asm.org


proficiency. In order to meet the growing needs of patients, clinicians, and clinical
laboratories, the overall program of AFST must be expanded.
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