Table 3.
| Hierarchical Regression Model (n2 = 26,543) |
Logistic Regression Model | |||
|---|---|---|---|---|
| Predictor | Block 1 | Block 2 | Block 3 | |
| Year of Administration | −0.004 (−0.016; 0.007) p < 0.453 | −0.004 (−0.016; 0.007) p < 0.452 | −0.003 (−0.016; 0.008) p < 0.506 | −0.032 (−0.18; 0.124) p < 0.664, Exp(β) = 0.969 |
| Grade | 0.014 (−0.005; 0.034) p < 0.157 | 0.014 (−0.005; 0.034) p < 0.157 | 0.013 (−0.005; 0.033) p < 0.177 | 0.047 (−0.198; 0.323) p < 0.688, Exp(β) = 1.048 |
| Sex | 0.091 (0.070; 0.112) p < 0.001 | 0.091 (0.070; 0.111) p < 0.001 | 0.097 (0.075; 0.120) p < 0.001 | 1.407 (1.109; 1.744) p < 0.001, Exp(β) = 4.083 |
| Father Education | −0.011 (−0.021; −0.001) p < 0.034 | −0.011 (−0.021; −0.000) p < 0.036 | −0.010 (−0.021; −0.000) p < 0.045 | −0.162 (−0.289; −0.031) p < 0.011, Exp(β) = 0.850 |
| Mother Education | −0.003 (−0.013; 0.006) p < 0.473 | −0.003 (−0.013; 0.006) p < 0.47 | −0.003 (−0.013; 0.006) p < 0.483 | −0.085 (−0.197; 0.034) p < 0.154, Exp(β) = 0.919 |
| Daily TV | −0.021 (−0.050; 0.007) p < 0.134 | −0.021 (−0.050; 0.008) p < 0.149 | −0.014 (−0.043; 0.014) p < 0.304 | 0.001 (−0.335; 0.381) p < 0.993, Exp(β) = 1.001 |
| (Daily TV)2 | 0.007 (0.001; 0.014) p < 0.025 | 0.007 (0.000; 0.014) p < 0.028 | 0.006 (−0.000; 0.012) p < 0.067 | 0.036 (−0.042; 0.103) p < 0.298, Exp(β) = 1.036 |
| Daily Video Gaming | 0.001 (−0.005; 0.009) p < 0.725 | −0.053 (−0.075; −0.031) p < 0.002 | −0.768 (−1.165; −0.442) p < 0.001, Exp(β) = 0.464 | |
| (Daily Video Gaming)2 | 0.010 (0.005; 0.014) p < 0.002 | 0.136 (0.082; 0.2) p < 0.001, Exp(β) = 1.146 | ||
| R2†† | 0.6% | 0.6% | 0.7% | 5.3% |
| ΔR2 | 0.6% (p < 0.00) | 0.0% (p < 0.669) | 0.1% (p < 0.000) | NA |
Significant values, at least at p < 0.05, are bolded and italicized.
All cells include unstandardized coefficients, bootstrapping-based 95% bias-corrected confidence intervals for the coefficients, and two-sided p-values.
For the logistic regression model, cells also include eβ and pseudo R (Nagelkerke R Square).