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Abstract

Human language is often multimodal, which comprehends a mixture of natural language, facial 

gestures, and acoustic behaviors. However, two major challenges in modeling such multimodal 

human language time-series data exist: 1) inherent data non-alignment due to variable sampling 

rates for the sequences from each modality; and 2) long-range dependencies between elements 

across modalities. In this paper, we introduce the Multimodal Transformer (MulT) to generically 

address the above issues in an end-to-end manner without explicitly aligning the data. At the heart 

of our model is the directional pairwise cross-modal attention, which attends to interactions 

between multimodal sequences across distinct time steps and latently adapt streams from one 

modality to another. Comprehensive experiments on both aligned and non-aligned multimodal 

time-series show that our model outperforms state-of-the-art methods by a large margin. In 

addition, empirical analysis suggests that correlated crossmodal signals are able to be captured by 

the proposed crossmodal attention mechanism in MulT.

1 Introduction

Human language possesses not only spoken words but also nonverbal behaviors from vision 

(facial attributes) and acoustic (tone of voice) modalities (Gibson et al., 1994). This rich 

information provides us the benefit of understanding human behaviors and intents (Manning 

et al., 2014). Nevertheless, the heterogeneities across modalities often increase the difficulty 

of analyzing human language. For example, the receptors for audio and vision streams may 

vary with variable receiving frequency, and hence we may not obtain optimal mapping 

between them. A frowning face may relate to a pessimistically word spoken in the past. That 

is to say, multimodal language sequences often exhibit “unaligned” nature and require 

inferring long term dependencies across modalities, which raises a question on performing 

efficient multimodal fusion.

To address the above issues, in this paper we propose the Multimodal Transformer (MulT), 

an end-to-end model that extends the standard Transformer network (Vaswani et al., 2017) to 

learn representations directly from unaligned multimodal streams. At the heart of our model 
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is the crossmodal attention module, which attends to the crossmodal interactions at the scale 

of the entire utterances. This module latently adapts streams from one modality to another 

(e.g., vision → language) by repeated reinforcing one modality’s features with those from 

the other modalities, regardless of the need for alignment. In comparison, one common way 

of tackling unaligned multimodal sequence is by forced word-aligning before training (Poria 

et al., 2017; Zadeh et al., 2018a,b; Tsai et al., 2019; Pham et al., 2019; Gu et al., 2018): 

manually preprocess the visual and acoustic features by aligning them to the resolution of 

words. These approaches would then model the multimodal interactions on the (already) 

aligned time steps and thus do not directly consider long-range crossmodal contingencies of 

the original features. We note that such word-alignment not only requires feature 

engineering that involves domain knowledge; but in practice, it may also not always be 

feasible, as it entails extra meta-information about the datasets (e.g., the exact time ranges of 

words or speech utterances). We illustrate the difference between the word-alignment and 

the crossmodal attention inferred by our model in Figure 1.

For evaluation, we perform a comprehensive set of experiments on three human multimodal 

language benchmarks: CMU-MOSI (Zadeh et al., 2016), CMU-MOSEI (Zadeh et al., 

2018b), and IEMOCAP (Busso et al., 2008). Our experiments show that MulT achieves the 

state-of-the-art (SOTA) results in not only the commonly evaluated word-aligned setting but 

also the more challenging unaligned scenario, outperforming prior approaches by a margin 

of 5%−15% on most of the metrics. In addition, empirical qualitative analysis further 

suggests that the crossmodal attention used by MulT is capable of capturing correlated 

signals across asynchronous modalities.

2 Related Works

Human Multimodal Language Analysis.

Prior work for analyzing human multimodal language lies in the domain of inferring 

representations from multimodal sequences spanning language, vision, and acoustic 

modalities. Unlike learning multimodal representations from static domains such as image 

and textual attributes (Ngiam et al., 2011; Srivastava and Salakhutdinov, 2012), human 

language contains time-series and thus requires fusing time-varying signals (Liang et al., 

2018; Tsai et al., 2019). Earlier work used early fusion approach to concatenate input 

features from different modalities (Lazaridou et al., 2015; Ngiam et al., 2011) and showed 

improved performance as compared to learning from a single modality. More recently, more 

advanced models were proposed to learn representations of human multimodal language. 

For example, Gu et al. (2018) used hierarchical attention strategies to learn multimodal 

representations, Wang et al. (2019) adjusted the word representations using accompanying 

non-verbal behaviors, Pham et al. (2019) learned robust multimodal representations using a 

cyclic translation objective, and Dumpala et al. (2019) explored cross-modal autoencoders 

for audio-visual alignment. These previous approaches relied on the assumption that 

multimodal language sequences are already aligned in the resolution of words and 

considered only short-term multimodal interactions. In contrast, our proposed method 

requires no alignment assumption and defines crossmodal interactions at the scale of the 

entire sequences.
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Transformer Network.

Transformer network (Vaswani et al., 2017) was first introduced for neural machine 

translation (NMT) tasks, where the encoder and decoder side each leverages a self-attention 
(Parikh et al., 2016; Lin et al., 2017; Vaswani et al., 2017) transformer. After each layer of 

the self-attention, the encoder and decoder are connected by an additional decoder sublayer 

where the decoder attends to each element of the source text for each element of the target 

text. We refer the reader to (Vaswani et al., 2017) for a more detailed explanation of the 

model. In addition to NMT, transformer networks have also been successfully applied to 

other tasks, including language modeling (Dai et al., 2018; Baevski and Auli, 2019), 

semantic role labeling (Strubell et al., 2018), word sense disambiguation (Tang et al., 2018), 

learning sentence representations (Devlin et al., 2018), and video activity recognition (Wang 

et al., 2018).

This paper absorbs a strong inspiration from the NMT transformer to extend to a multimodal 

setting. Whereas the NMT transformer focuses on unidirectional translation from source to 

target texts, human multimodal language time-series are neither as well-represented nor 

discrete as word embeddings, with sequences of each modality having vastly different 

frequencies. Therefore, we propose not to explicitly translate from one modality to the 

others (which could be extremely challenging), but to latently adapt elements across 

modalities via the attention. Our model (MulT) therefore has no encoder-decoder structure, 

but it is built up from multiple stacks of pairwise and bidirectional crossmodal attention 

blocks that directly attend to low-level features (while removing the self-attention). 

Empirically, we show that our proposed approach improves beyond standard transformer on 

various human multimodal language tasks.

3 Proposed Method

In this section, we describe our proposed Multimodal Transformer (MulT) (Figure 2) for 

modeling unaligned multimodal language sequences. At the high level, MulT merges 

multimodal timeseries via a feed-forward fusion process from multiple directional pairwise 

crossmodal transformers. Specifically, each crossmodal transformer (introduced in Section 

3.2) serves to repeatedly reinforce a target modality with the low-level features from another 

source modality by learning the attention across the two modalities’ features. A MulT 

architecture hence models all pairs of modalities with such crossmodal transformers, 

followed by sequence models (e.g., self-attention transformer) that predicts using the fused 

features.

The core of our proposed model is crossmodal attention module, which we first introduce in 

Section 3.1. Then, in Section 3.2 and 3.3, we present in details the various ingredients of the 

MulT architecture (see Figure 2) and discuss the difference between crossmodal attention 

and classical multimodal alignment.

3.1 Crossmodal Attention

We consider two modalities α and β, with two (potentially non-aligned) sequences from 

each of them denoted Xα ∈ ℝTα × dα and Xβ ∈ ℝTβ × dβ, respectively. For the rest of the paper, 
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T(·) and d(·) are used to represent sequence length and feature dimension, respectively. 

Inspired by the decoder transformer in NMT (Vaswani et al., 2017) that translates one 

language to another, we hypothesize a good way to fuse crossmodal information is providing 

a latent adaptation across modalities; i.e., β to α. Note that the modalities consider in our 

paper may span very different domains such as facial attributes and spoken words.

We define the Querys as 

Qα = XαW Qα, Keys as Kβ = XβW Kβ, and Values as V β = XβW V β, where W Qα ∈ ℝdα × dk, W Kβ
∈ ℝdβ × dk andW V β ∈ ℝdβ × dv

are weights. The latent adaptation from β to α is presented as the crossmodal attention 

Y α: = CMβ α Xα, XB ∈ ℝTα × dv:

Y α = CMβ α Xα, Xβ

= softmax QαKβ
⊤

dk
V β

= softmax
XαW QαW Kβ

⊤ Xβ
⊤

dk
XβW V β .

(1)

Note that Yα has the same length as Qα (i.e., Tα), but is meanwhile represented in the 

feature space of Vβ. Specifically, the scaled (by dk) softmax in Equation (1) computes a 

score matrix softmax ( ⋅ ) ∈ ℝTα × Tβ, whose (i,j)-th entry measures the attention given by the 

i-th time step of modality α to the j-th time step of modality β. Hence, the i-th time step of 

Yα is a weighted summary of Vβ, with the weight determined by i-th row in softmax(·). We 

call Equation (1) a single-head crossmodal attention, which is illustrated in Figure 3(a).

Following prior works on transformers (Vaswani et al., 2017; Chen et al., 2018; Devlin et al., 

2018; Dai et al., 2018), we add a residual connection to the crossmodal attention 

computation. Then, another positionwise feed-forward sublayer is injected to complete a 

crossmodal attention block (see Figure 3(b)). Each crossmodal attention block adapts 

directly from the low-level feature sequence (i.e., Zβ
[0] in Figure 3(b)) and does not rely on 

self-attention, which makes it different from the NMT encoder-decoder architecture 

(Vaswani et al., 2017; Shaw et al., 2018) (i.e., taking intermediate-level features). We argue 

that performing adaptation from low-level feature benefits our model to preserve the low-

level information for each modality. We leave the empirical study for adapting from 

intermediate-level features (i.e., Zβ
[i − 1]) in Ablation Study in Section 4.3.

3.2 Overall Architecture

Three major modalities are typically involved in multimodal language sequences: language 

(L), video (V ), and audio (A) modalities. We denote with X L, V , A ∈ ℝT L, V , A × d L, V , A

the input feature sequences (and the dimensions thereof) from these 3 modalities. With these 
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notations, in this subsection, we describe in greater details the components of Multimodal 

Transformer and how crossmodal attention modules are applied.

Temporal Convolutions.—To ensure that each element of the input sequences has 

sufficient awareness of its neighborhood elements, we pass the input sequences through a 

1D temporal convolutional layer:

X L, V , A = Conv1D X L, V , A , k L, V , A ∈ ℝT L, V , A × d
(2)

where k{L,V,A} are the sizes of the convolutional kernels for modalities {L,V,A}, and d is a 

common dimension. The convolved sequences are expected to contain the local structure of 

the sequence, which is important since the sequences are collected at different sampling 

rates. Moreover, since the temporal convolutions project the features of different modalities 

to the same dimension d, the dot-products are admittable in the crossmodal attention 

module.

Positional Embedding.—To enable the sequences to carry temporal information, 

following (Vaswani et al., 2017), we augment positional embedding (PE) to X L, V , A :

Z L, V , A
[0] = X L, V , A + PE T L, V , A , d (3)

where PE T L, V , A , d ∈ ℝT L, V , A × d computes the (fixed) embeddings for each position 

index, and Z L, V , A
[0]  are the resulting low-level position-aware features for different 

modalities. We leave more details of the positional embedding to Appendix A.

Crossmodal Transformers.—Based on the cross-modal attention blocks, we design the 

crossmodal transformer that enables one modality for receiving information from another 

modality. In the following, we use the example for passing vision (V ) information to 

language (L), which is denoted by "V L" . We fix all the dimensions d α, β, k, v  for each 

crossmodal attention block as d.

Each crossmodal transformer consists of D layers of crossmodal attention blocks (see Figure 

3(b)). Formally, a crossmodal transformer computes feed-forwardly for i = 1,...,D layers:

ZV L
[0] = ZL

[0]

ZV L
[i] = CMV L

[i], mul LN ZV L
[i − 1] , LN ZV

[0] + LN ZV L
[i − 1]

ZV L
[i] = fθV L

[l] LN ZV L
[i] + LN ZV L

[i]
(4)

where fθ is a positionwise feed-forward sublayer parametrized by θ, and CMV L
[i], mul means a 

multi-head (see (Vaswani et al., 2017) for more details) version of CMV →L at layer i (note: 

d should be divisible by the number of heads). LN means layer normalization (Ba et al., 

2016).
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In this process, each modality keeps updating its sequence via low-level external information 

from the multi-head crossmodal attention module. At every level of the crossmodal attention 

block, the low-level signals from source modality are transformed to a different set of Key/

Value pairs to interact with the target modality. Empirically, we find that the crossmodal 

transformer learns to correlate meaningful elements across modalities (see Section 4 for 

details). The eventual MulT is based on modeling every pair of crossmodal interactions. 

Therefore, with 3 modalities (i.e., L,V,A) in consideration, we have 6 crossmodal 

transformers in total (see Figure 2).

Self-Attention Transformers and Prediction.—As a final step, we concatenate the 

outputs from the crossmodal transformers that share the same target modality to yield 

Z L, V , A ∈ ℝT L, V , A × 2d . For example, ZL = ZV L
[D] ; ZA L

[D] . Each of them is then 

passed through a sequence model to collect temporal information to make predictions. We 

choose the self-attention transformer (Vaswani et al., 2017). Eventually, the last elements of 

the sequences models are extracted to pass through fully-connected layers to make 

predictions.

3.3 Discussion about Attention & Alignment

When modeling unaligned multimodal language sequences, MulT relies on crossmodal 

attention blocks to merge signals across modalities. While the multimodal sequences were 

(manually) aligned to the same length in prior works before training (Zadeh et al., 2018b; 

Liang et al., 2018; Tsai et al., 2019; Pham et al., 2019; Wang et al., 2019), we note that 

MulT looks at the nonalignment issue through a completely different lens. Specifically, for 

MulT, the correlations between elements of multiple modalities are purely based on 

attention. In other words, MulT does not handle modality non-alignment by (simply) 

aligning them; instead, the crossmodal attention encourages the model to directly attend to 

elements in other modalities where strong signals or relevant information is present. As a 

result, MulT can capture long-range crossmodal contingencies in a way that conventional 

alignment could not easily reveal. Classical crossmodal alignment, on the other hand, can be 

expressed as a special (step diagonal) crossmodal attention matrix (i.e., monotonic attention 

(Yu et al., 2016)). We illustrate their differences in Figure 4.

4 Experiments

In this section, we empirically evaluate the Multimodal Transformer (MulT) on three 

datasets that are frequently used to benchmark human multimodal affection recognition in 

prior works (Pham et al., 2019; Tsai et al., 2019; Liang et al., 2018). Our goal is to compare 

MulT with prior competitive approaches on both word-aligned (by word, which almost all 

prior works employ) and unaligned (which is more challenging, and which MulT is 

generically designed for) multimodal language sequences.

4.1 Datasets and Evaluation Metrics

Each task consists of a word-aligned (processed in the same way as in prior works) and an 

unaligned version. For both versions, the multimodal features are extracted from the textual 

(GloVe word embeddings (Pennington et al., 2014)), visual (Facet (iMotions, 2017)), and 
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acoustic (COVAREP (Degottex et al., 2014)) data modalities. A more detailed introduction 

to the features is included in Appendix.

For the word-aligned version, following (Zadeh et al., 2018a; Tsai et al., 2019; Pham et al., 

2019), we first use P2FA (Yuan and Liberman, 2008) to obtain the aligned timesteps 

(segmented w.r.t. words) for audio and vision streams, and we then perform averaging on the 

audio and vision features within these time ranges. All sequences in the word-aligned case 

have length 50. The process remains the same across all the datasets. On the other hand, for 

the unaligned version, we keep the original audio and visual features as extracted, without 

any word-segmented alignment or manual subsampling. As a result, the lengths of each 

modality vary significantly, where audio and vision sequences may contain up to > 1,000 

time steps. We elaborate on the three tasks below.

CMU-MOSI & MOSEI.—CMU-MOSI (Zadeh et al., 2016) is a human multimodal 

sentiment analysis dataset consisting of 2,199 short monologue video clips (each lasting the 

duration of a sentence). Acoustic and visual features of CMUMOSI are extracted at a 

sampling rate of 12.5 and 15 Hz, respectively (while textual data are segmented per word 

and expressed as discrete word embeddings). Meanwhile, CMU-MOSEI (Zadeh et al., 

2018b) is a sentiment and emotion analysis dataset made up of 23,454 movie review video 

clips taken from YouTube (about 10× the size of CMU-MOSI). The unaligned CMU-

MOSEI sequences are extracted at a sampling rate of 20 Hz for acoustic and 15 Hz for 

vision signals.

For both CMU-MOSI and CMU-MOSEI, each sample is labeled by human annotators with 

a sentiment score from −3 (strongly negative) to 3 (strongly positive). We evaluate the model 

performances using various metrics, in agreement with those employed in prior works: 7-

class accuracy (i.e., Acc7: sentiment score classification in ℤ ∩ [ − 3, 3]), binary accuracy 

(i.e., Acc2: positive/negative sentiments), F1 score, mean absolute error (MAE) of the score, 

and the correlation of the model’s prediction with human. Both tasks are frequently used to 

benchmark models’ ability to fuse multimodal (sentiment) information (Poria et al., 2017; 

Zadeh et al., 2018a; Liang et al., 2018; Tsai et al., 2019; Pham et al., 2019; Wang et al., 

2019).

IEMOCAP.—IEMOCAP (Busso et al., 2008) consists of 10K videos for human emotion 

analysis. As suggested by Wang et al. (2019), 4 emotions (happy, sad, angry and neutral) 

were selected for emotion recognition. Unlike CMU-MOSI and CMU-MOSEI, this is a 

multilabel task (e.g., a person can be sad and angry simultaneously). Its multimodal streams 

consider fixed sampling rate on audio (12.5 Hz) and vision (15 Hz) signals. We follow 

(Poria et al., 2017; Wang et al., 2019; Tsai et al., 2019) to report the binary classification 

accuracy and the F1 score of the predictions.

4.2 Baselines

We choose Early Fusion LSTM (EF-LSTM) and Late Fusion LSTM (LF-LSTM) as baseline 

models, as well as Recurrent Attended Variation Embedding Network (RAVEN) (Wang et 

al., 2019) and Multimodal Cyclic Translation Network (MCTN) (Pham et al., 2019), that 

achieved SOTA results on various word-aligned human multimodal language tasks. To 
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compare the models comprehensively, we adapt the connectionist temporal classification 
(CTC) (Graves et al., 2006) method to the prior approaches (e.g., EFLSTM, MCTN, 

RAVEN) that cannot be applied directly to the unaligned setting. Specifically, these models 

train to optimize the CTC alignment objective and the human multimodal objective 

simultaneously. We leave more detailed treatment of the CTC module to Appendix. For fair 

comparisons, we control the number of parameters of all models to be approximately the 

same. The hyperparameters are reported in Appendix. 1

4.3 Quantitative Analysis

Word-Aligned Experiments.—We first evaluate MulT on the word-aligned sequences— 

the “home turf” of prior approaches modeling human multimodal language (Sheikh et al., 

2018; Tsai et al., 2019; Pham et al., 2019; Wang et al., 2019). The upper part of the Table 1, 

2, and 3 show the results of MulT and baseline approaches on the word-aligned task. With 

similar model sizes (around 200K parameters), MulT outperforms the other competitive 

approaches on different metrics on all tasks, with the exception of the “sad” class results on 

IEMOCAP.

Unaligned Experiments.—Next, we evaluate MulT on the same set of datasets in the 

unaligned setting. Note that MulT can be directly applied to unaligned multimodal stream, 

while the baseline models (except for LF-LSTM) require the need of additional alignment 

module (e.g., CTC module).

The results are shown in the bottom part of Table 1, 2, and 3. On the three benchmark 

datasets, MulT improves upon the prior methods (some with CTC) by 10%−15% on most 

attributes. Empirically, we find that MulT converges faster to better results at training when 

compared to other competitive approaches (see Figure 5). In addition, while we note that in 

general there is a performance drop on all models when we shift from the word-aligned to 

unaligned multimodal timeseries, the impact MulT takes is much smaller than the other 

approaches. We hypothesize such performance drop occurs because the asynchronous (and 

much longer) data streams introduce more difficulty in recognizing important features and 

computing the appropriate attention.

Ablation Study.—To further study the influence of the individual components in MulT, we 

perform comprehensive ablation analysis using the unaligned version of CMU-MOSEI. The 

results are shown in Table 4.

First, we consider the performance for only using unimodal transformers (i.e., language, 

audio or vision only). We find that the language transformer outperforms the other two by a 

large margin. For example, for the Acc2
ℎ metric, the model improves from 65.6 to 77.4 when 

comparing audio only to language only unimodal transformer. This fact aligns with the 

observations in prior work (Pham et al., 2019), where the authors found that a good language 

network could already achieve good performance at inference time.

1All experiments are conducted on 1 GTX-1080Ti GPU. The code for our model and experiments can be found in https://github.com/
yaohungt/Multimodal-Transformer
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Second, we consider 1) a late-fusion transformer that feature-wise concatenates the last 

elements of three self-attention transformers; and 2) an early-fusion self-attention 

transformer that takes in a temporal concatenation of three asynchronous sequences 

XL, XV , XA ∈ ℝ TL + TV + TA × dq (see Section 3.2). Empirically, we find that both EF- and 

LF-Transformer (which fuse multimodal signals) outperform unimodal transformers.

Finally, we study the importance of individual crossmodal transformers according to the 

target modalities (i.e., using [V,A → L], [L,A → V ], or [L,V → A] network). As shown in 

Table 4, we find crossmodal attention modules consistently improve over the late- and early-

fusion transformer models in most metrics on unaligned CMU-MOSEI. In particular, among 

the three crossmodal transformers, the one where language(L) is the target modality works 

best. We also additionally study the effect of adapting intermediate-level instead of the low-

level features from source modality in crossmodal attention blocks (similar to the NMT 

encoder-decoder architecture but without self-attention; see Section 3.1). While MulT 

leveraging intermediate-level features still outperform models in other ablative settings, we 

empirically find adapting from low-level features works best. The ablations suggest that 

crossmodal attention concretely benefits MulT with better representation learning.

4.4 Qualitative Analysis

To understand how crossmodal attention works while modeling unaligned multimodal data, 

we empirically inspect what kind of signals MulT picks up by visualizing the attention 

activations. Figure 6 shows an example of a section of the crossmodal attention matrix on 

layer 3 of the V → L network of MulT (the original matrix has dimension TL × TV; the 

figure shows the attention corresponding to approximately a 6-sec short window of that 

matrix). We find that crossmodal attention has learned to attend to meaningful signals across 

the two modalities. For example, stronger attention is given to the intersection of words that 

tend to suggest emotions (e.g., “movie”, “disappointing”) and drastic facial expression 

changes in the video (start and end of the above vision sequence). This observation 

advocates one of the aforementioned advantage of MulT over conventional alignment (see 

Section 3.3): crossmodal attention enables MulT to directly capture potentially long-range 

signals, including those off-diagonals on the attention matrix.

5 Discussion

In the paper, we propose Multimodal Transformer (MulT) for analyzing human multimodal 

language. At the heart of MulT is the cross-modal attention mechanism, which provides a 

latent crossmodal adaptation that fuses multimodal information by directly attending to low-

level features in other modalities. Whereas prior approaches focused primarily on the 

aligned multimodal streams, MulT serves as a strong baseline capable of capturing long-

range contingencies, regardless of the alignment assumption. Empirically, we show that 

MulT exhibits the best performance when compared to prior methods.

We believe the results of MulT on unaligned human multimodal language sequences suggest 

many exciting possibilities for its future applications (e.g., Visual Question Answering tasks, 

where the input signals is a mixture of static and time-evolving signals). We hope the 
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emergence of MulT could encourage further explorations on tasks where alignment used to 

be considered necessary, but where crossmodal attention might be an equally (if not more) 

competitive alternative.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This work was supported in part by DARPA HR00111990016, AFRL FA8750–18-C-0014, NSF IIS1763562 
#1750439 #1722822, Apple, Google focused award, and Samsung. We would also like to acknowledge NVIDIA’s 
GPU support.

Appendix

A Positional Embedding

A purely attention-based transformer network is order-invariant. In other words, permuting 

the order of an input sequence does not change transformer’s behavior or alter its output. 

One solution to address this weakness is by embedding the positional information into the 

hidden units (Vaswani et al., 2017).

Following (Vaswani et al., 2017), we encode the positional information of a sequence of 

length T via the sin and cos functions with frequencies dictated by the feature index. In 

particular, we define the positional embedding (PE) of a sequence X ∈ ℝT × d (where T is 

length) as a matrix where:

PE[i, 2j] = sin i

10000
2j
d

PE[i, 2j + 1] = cos i

10000
2j
d

for i = 1, …, Tand j = 0, d
2 . Therefore, each feature dimension (i.e., column) of PE are 

positional values that exhibit a sinusoidal pattern. Once computed, the positional embedding 

is added directly to the sequence so that X + PE encodes the elements’ position information 

at every time step.

B Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) (Graves et al., 2006) was first proposed for 

unsupervised Speech to Text alignment. Particularly, CTC is often combined with the output 

of recurrent neural network, which enables the model to train end-to-end and simultaneously 

infer speech-text alignment without supervision. For the ease of explanation, suppose the 

CTC module now are aiming at aligning an audio signal sequence [a1,a2,a3,a4,a5,a6] with 

length 6 to a textual sequence “I am really really happy” with length 5. In this example, we 
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refer to audio as the source and texts as target signal, noting that the sequence lengths may 

be different between the source to target; we also see that the output sequence may have 

repetitive element (i.e., “really”). The CTC (Graves et al., 2006) module we use comprises 

two components: alignment predictor and the CTC loss.

First, the alignment predictor is often chosen as a recurrent networks such as LSTM, which 

performs on the source sequence then outputs the possibility of being the unique words in 

the target sequence as well as a empty word (i.e., x). In our example, for each individual 

audio signal, the alignment predictor provides a vector of length 5 regarding the probability 

being aligned to [x, ‘I’, ‘am’, ‘really’, ‘happy’].

Next, the CTC loss considers the negative log-likelihood loss from only the proper 

alignment for the alignment predictor outputs. The proper alignment, in our example, can be 

results such as

i. [x, ‘I’, ‘am’, ‘really’, ‘really’, ‘happy’];

ii. [‘I’, ‘am’, x, ‘really’, ‘really’, ‘happy’];

iii. [‘I’, ‘am’, ‘really’, ‘really’, ‘really’, ‘happy’];

iv. [‘I’, ‘I’, ‘am’, ‘really’, ‘really’, ‘happy’]

In the meantime, some examples of the suboptimal/failure cases would be

i. [x, x, ‘am’, ‘really’, ‘really’, ‘happy’];

ii. [‘I’, ‘am’, ‘I’, ‘really’, ‘really’, ‘happy’];

iii. [‘I’, ‘am’, x, ‘really’, x, ‘happy’]

When the CTC loss is minimized, it implies the source signals are properly aligned to target 

signals.

To sum up, in the experiments that adopting the CTC module, we train the alignment 

predictor while minimizing the CTC loss. Then, excluding the probability of blank words, 

we multiply the probability outputs from the alignment predictor to source signals. The 

source signal is hence resulting in a pseudo-aligned target singal. In our example, the audio 

signal is then transforming to a audio signal a1′ , a2′ , a3′ , a4′ , a5′  with sequence length 5, which 

is pseudo-aligned to [‘I’, ‘am’, ‘really’, ‘really’, ‘happy’].

C Hyperparameters

Table 5 shows the settings of the various MulTs that we train on human multimodal 

language tasks. As previously mentioned, the models are contained at roughly the same sizes 

as in prior works for the purpose of fair comparison. For hyperparameters such as the 

dropout rate and number of heads in crossmodal attention module, we perform a basic grid 

search. We decay the learning rate by a factor of 10 when the validation performance 

plateaus.
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Table 5:

Hyperparameters of Multimodal Transformer (MulT) we use for the various tasks. The “# of 

Crossmodal Blocks” and “# of Crossmodal Attention Heads” are for each transformer.

CMU-MOSEI CMU-MOSI IEMOCAP

Batch Size 16 128 32

Initial Learning Rate 1e-3 1e-3 2e-3

Optimizer Adam Adam Adam

Transformers Hidden Unit Size d 40 40 40

# of Crossmodal Blocks D 4 4 4

# of Crossmodal Attention Heads 8 10 10

Temporal Convolution Kernel Size (L/V /A) (1 or 3)/3/3 (1 or 3)/3/3 3/3/5

Textual Embedding Dropout 0.3 0.2 0.3

Crossmodal Attention Block Dropout 0.1 0.2 0.25

Output Dropout 0.1 0.1 0.1

Gradient Clip 1.0 0.8 0.8

# of Epochs 20 100 30

D Features

The features for multimodal datasets are extracted as follows:

• - Language. We convert video transcripts into pre-trained Glove word 

embeddings (glove.840B.300d) (Pennington et al., 2014). The embedding is a 

300 dimensional vector.

• - Vision. We use Facet (iMotions, 2017) to indicate 35 facial action units, which 

records facial muscle movement (Ekman et al., 1980; Ekman, 1992) for 

representing per-frame basic and advanced emotions.

• - Audio. We use COVAREP (Degottex et al., 2014) for extracting low level 

acoustic features. The feature includes 12 Mel-frequency cepstral coefficients 

(MFCCs), pitch tracking and voiced/unvoiced segmenting features, glottal source 

parameters, peak slope parameters and maxima dispersion quotients. Dimension 

of the feature is 74.
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Figure 1: 
Example video clip from movie reviews. [Top]: Illustration of word-level alignment where 

video and audio features are averaged across the time interval of each spoken word. 

[Bottom] Illustration of cross-modal attention weights between text (“spectacle”) and vision/

audio.
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Figure 2: 
Overall architecture for MulT on modalities (L,V,A). The crossmodal transformers, which 

suggests latent crossmodal adaptations, are the core components of MulT for multimodal 

fusion.
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Figure 3: 
Architectural elements of a crossmodal transformer between two time-series from modality 

α and β.
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Figure 4: 
An example of visualizing alignment using attention matrix from modality β to α. 

Multimodal alignment is a special (monotonic) case for crossmodal attention.
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Figure 5: 
Validation set convergence of MulT when compared to other baselines on the unaligned 

CMU-MOSEI task.
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Figure 6: 
Visualization of sample crossmodal attention weights from layer 3 of [V → L] crossmodal 

transformer on CMU-MOSEI. We found that the crossmodal attention has learned to 

correlate certain meaningful words (e.g., “movie”, “disappointing”) with segments of 

stronger visual signals (typically stronger facial motions or expression change), despite the 

lack of alignment between original L/V sequences. Note that due to temporal convolution, 

each textual/visual feature contains the representation of nearby elements.
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Table 1:

Results for multimodal sentiment analysis on CMU-MOSI with aligned and non-aligned multimodal 

sequences. h means higher is better and l means lower is better. EF stands for early fusion, and LF stands for 

late fusion.

Metric Acc7
ℎ Acc2

ℎ F1h MAEl Corrh

(Word Aligned) CMU-MOSI Sentiment

EF-LSTM 33.7 75.3 75.2 1.023 0.608

LF-LSTM 35.3 76.8 76.7 1.015 0.625

RMFN (Liang et al., 2018) 38.3 78.4 78.0 0.922 0.681

MFM (Tsai et al., 2019) 36.2 78.1 78.1 0.951 0.662

RAVEN (Wang et al., 2019) 33.2 78.0 76.6 0.915 0.691

MCTN (Pham et al.,2019) 35.6 79.3 79.1 0.909 0.676

MulT (ours) 40.0 83.0 82.8 0.871 0.698

(Unaligned) CMU-MOSI Sentiment

CTC (Graves et al., 2006) + EF-LSTM 31.0 73.6 74.5 1.078 0.542

LF-LSTM 33.7 77.6 77.8 0.988 0.624

CTC + MCTN (Pham et al., 2019) 32.7 75.9 76.4 0.991 0.613

CTC + RAVEN (Wang et al., 2019) 31.7 72.7 73.1 1.076 0.544

MulT (ours) 39.1 81.1 81.0 0.889 0.686
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Table 2:

Results for multimodal sentiment analysis on (relatively large scale) CMU-MOSEI with aligned and non-

aligned multimodal sequences.

Metric Acc7
ℎ Acc2

ℎ F1h MAEl Corrh

(Word Aligned) CMU-MOSEI Sentiment

EF-LSTM 47.4 78.2 77.9 0.642 0.616

LF-LSTM 48.8 80.6 80.6 0.619 0.659

Graph-MFN (Zadeh et al., 2018b) 45.0 76.9 77.0 0.71 0.54

RAVEN (Wang et al., 2019) 50.0 79.1 79.5 0.614 0.662

MCTN (Pham et al., 2019) 49.6 79.8 80.6 0.609 0.670

MulT (ours) 51.8 82.5 82.3 0.580 0.703

(Unaligned) CMU-MOSEI Sentiment

CTC (Graves et al., 2006) + EF-LSTM 46.3 76.1 75.9 0.680 0.585

LF-LSTM 48.8 77.5 78.2 0.624 0.656

CTC + RAVEN (Wang et al., 2019) 45.5 75.4 75.7 0.664 0.599

CTC + MCTN (Pham et al., 2019) 48.2 79.3 79.7 0.631 0.645

MulT (ours) 50.7 81.6 81.6 0.591 0.694
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Table 4:

An ablation study on the benefit of MulT’s crossmodal transformers using CMU-MOSEI.).

Description
(Unaligned) CMU-MOSEI Sentiment

Acc7
ℎ Acc2

ℎ F1h MAEl Corrh

Unimodal Transformers

Language only 46.5 77.4 78.2 0.653 0.631

Audio only 41.4 65.6 68.8 0.764 0.310

Vision only 43.5 66.4 69.3 0.759 0.343

Late Fusion by using Multiple Unimodal Transformers

LF-Transformer 47.9 78.6 78.5 0.636 0.658

Temporally Concatenated Early Fusion Transformer

EF-Transformer 47.8 78.9 78.8 0.648 0.647

Multimodal Transfomers

Only [V,A → L] (ours) 50.5 80.1 80.4 0.605 0.670

Only [L,A → V ] (ours) 48.2 79.7 80.2 0.611 0.651

Only [L,V → A] (ours)
MulT mixing intermediate-

47.5 79.2 79.7 0.620 0.648

level features (ours) 50.3 80.5 80.6 0.602 0.674

MulT (ours) 50.7 81.6 81.6 0.591 0.691

Proc Conf Assoc Comput Linguist Meet. Author manuscript; available in PMC 2020 May 01.


	Abstract
	Introduction
	Related Works
	Human Multimodal Language Analysis.
	Transformer Network.

	Proposed Method
	Crossmodal Attention
	Overall Architecture
	Temporal Convolutions.
	Positional Embedding.
	Crossmodal Transformers.
	Self-Attention Transformers and Prediction.

	Discussion about Attention & Alignment

	Experiments
	Datasets and Evaluation Metrics
	CMU-MOSI & MOSEI.
	IEMOCAP.

	Baselines
	Quantitative Analysis
	Word-Aligned Experiments.
	Unaligned Experiments.
	Ablation Study.

	Qualitative Analysis

	Discussion
	AppendixA Positional EmbeddingA purely attention-based transformer network is order-invariant. In other words, permuting the order of an input sequence does not change transformer’s behavior or alter its output. One solution to address this weakness is by embedding the positional information into the hidden units (Vaswani et al., 2017).Following (Vaswani et al., 2017), we encode the positional information of a sequence of length T via the sin and cos functions with frequencies dictated by the feature index. In particular, we define the positional embedding (PE) of a sequence  (where T is length) as a matrix where:for  Therefore, each feature dimension (i.e., column) of PE are positional values that exhibit a sinusoidal pattern. Once computed, the positional embedding is added directly to the sequence so that X + PE encodes the elements’ position information at every time step.B Connectionist Temporal ClassificationConnectionist Temporal Classification (CTC) (Graves et al., 2006) was first proposed for unsupervised Speech to Text alignment. Particularly, CTC is often combined with the output of recurrent neural network, which enables the model to train end-to-end and simultaneously infer speech-text alignment without supervision. For the ease of explanation, suppose the CTC module now are aiming at aligning an audio signal sequence [a1,a2,a3,a4,a5,a6] with length 6 to a textual sequence “I am really really happy” with length 5. In this example, we refer to audio as the source and texts as target signal, noting that the sequence lengths may be different between the source to target; we also see that the output sequence may have repetitive element (i.e., “really”). The CTC (Graves et al., 2006) module we use comprises two components: alignment predictor and the CTC loss.First, the alignment predictor is often chosen as a recurrent networks such as LSTM, which performs on the source sequence then outputs the possibility of being the unique words in the target sequence as well as a empty word (i.e., x). In our example, for each individual audio signal, the alignment predictor provides a vector of length 5 regarding the probability being aligned to [x, ‘I’, ‘am’, ‘really’, ‘happy’].Next, the CTC loss considers the negative log-likelihood loss from only the proper alignment for the alignment predictor outputs. The proper alignment, in our example, can be results such asi.[x, ‘I’, ‘am’, ‘really’, ‘really’, ‘happy’];ii.[‘I’, ‘am’, x, ‘really’, ‘really’, ‘happy’];iii.[‘I’, ‘am’, ‘really’, ‘really’, ‘really’, ‘happy’];iv.[‘I’, ‘I’, ‘am’, ‘really’, ‘really’, ‘happy’]In the meantime, some examples of the suboptimal/failure cases would bei.[x, x, ‘am’, ‘really’, ‘really’, ‘happy’];ii.[‘I’, ‘am’, ‘I’, ‘really’, ‘really’, ‘happy’];iii.[‘I’, ‘am’, x, ‘really’, x, ‘happy’]When the CTC loss is minimized, it implies the source signals are properly aligned to target signals.To sum up, in the experiments that adopting the CTC module, we train the alignment predictor while minimizing the CTC loss. Then, excluding the probability of blank words, we multiply the probability outputs from the alignment predictor to source signals. The source signal is hence resulting in a pseudo-aligned target singal. In our example, the audio signal is then transforming to a audio signal  with sequence length 5, which is pseudo-aligned to [‘I’, ‘am’, ‘really’, ‘really’, ‘happy’].C HyperparametersTable 5 shows the settings of the various MulTs that we train on human multimodal language tasks. As previously mentioned, the models are contained at roughly the same sizes as in prior works for the purpose of fair comparison. For hyperparameters such as the dropout rate and number of heads in crossmodal attention module, we perform a basic grid search. We decay the learning rate by a factor of 10 when the validation performance plateaus.Table 5:Hyperparameters of Multimodal Transformer (MulT) we use for the various tasks. The “# of Crossmodal Blocks” and “# of Crossmodal Attention Heads” are for each transformer.CMU-MOSEICMU-MOSIIEMOCAPBatch Size1612832Initial Learning Rate1e-31e-32e-3OptimizerAdamAdamAdamTransformers Hidden Unit Size d404040# of Crossmodal Blocks D444# of Crossmodal Attention Heads81010Temporal Convolution Kernel Size (L/V /A)(1 or 3)/3/3(1 or 3)/3/33/3/5Textual Embedding Dropout0.30.20.3Crossmodal Attention Block Dropout0.10.20.25Output Dropout0.10.10.1Gradient Clip1.00.80.8# of Epochs2010030D FeaturesThe features for multimodal datasets are extracted as follows:•- Language. We convert video transcripts into pre-trained Glove word embeddings (glove.840B.300d) (Pennington et al., 2014). The embedding is a 300 dimensional vector.•- Vision. We use Facet (iMotions, 2017) to indicate 35 facial action units, which records facial muscle movement (Ekman et al., 1980; Ekman, 1992) for representing per-frame basic and advanced emotions.•- Audio. We use COVAREP (Degottex et al., 2014) for extracting low level acoustic features. The feature includes 12 Mel-frequency cepstral coefficients (MFCCs), pitch tracking and voiced/unvoiced segmenting features, glottal source parameters, peak slope parameters and maxima dispersion quotients. Dimension of the feature is 74.
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