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Abstract

Apolipoprotein E (APOE) is a multifunctional protein synthesized and secreted by multiple 

mammalian tissues. Although hepatocytes contribute about 75% of the peripheral pool, APOE can 

also be expressed in adipose tissue, the kidney, and the adrenal glands, among other tissues. High 

levels of APOE production also occur in the brain, where it is primarily synthesized by glia, and 

peripheral and brain APOE pools are thought to be distinct. In humans, APOE is polymorphic, 

with three major alleles (ε2, ε3, and ε4). These allelic forms dramatically alter APOE structure 

and function. Historically, the vast majority of research on APOE has centered on the important 

role it plays in modulating risk for cardiovascular disease and Alzheimer’s disease. However, the 

established effects of this pleiotropic protein extend well beyond these two critical health 

challenges, with a demonstrated roles for APOE across a wide spectrum of biological conditions, 

including adipose tissue function and obesity, metabolic syndrome and diabetes, fertility and 

longevity, and immune function.

While the spectrum of biological systems in which APOE plays a role seems implausibly wide at 

first glance, there are some potential unifying mechanisms that could tie these seemingly disparate 

disorders together. In the current review, we aim to concisely summarize a wide breadth of APOE-

associated pathologies and to analyze the influence of APOE in the development of several distinct 
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disorders in order to provide insight into potential shared mechanisms implied in these various 

pathophysiological processes.

INTRODUCTION

Apolipoprotein E (APOE) was first identified in humans as a constituent of very low-density 

lipoproteins (VLDL) in 1973 by Shore and Shore (Shore and Shore, 1973). Initially termed 

“arginine-rich apoprotein”, Utermann named the protein apolipoprotein E in 1975 

(Utermann, 1975), distinguishing it from others in the growing class of apolipoproteins. It 

was later found in triglyceride-rich lipoproteins, both in animal and human models, after 

being induced by cholesterol supplementation (Mahley et al., 1975; Shore et al., 1974).

In humans, the APOE gene is located on the long arm of chromosome 19 (locus 19q13.2). It 

consists of four exons and three introns, with a length of 3597 nucleotides (Das et al., 1985). 

The polymorphic nature of APOE was first discovered by Utermann (Utermann et al., 1977) 

and later clarified by Zanis and Breslow (Zannis et al., 1981). Thus, the human gene presents 

three common alleles: ε2, ε3 and ε4. The combination of these three alleles produces six 

genotypes (Table 1). The resulting proteins differ only by one or two amino acids at 

positions 112 and 158. APOE2 has a cysteine at both positions, APOE3 has a cysteine at 112 

and an arginine at 158, and APOE4 has an arginine at both positions (Weisgraber, 1994). It 

is hypothesized that these residues influence the properties of the isoforms by altering the 

domain interaction between the N and C terminal domains (Mahley and Huang, 2012) which 

are presumably translated into a change in protein function. The most common isoform is 

APOE3, being found in the 70–80% of modern populations, whereas APOE4 is found in 

10–15% and APOE2 in 5–10% of the population (CORBO and SCACCHI, 1999). Although 

other mammals express APOE, this allelic variation is only found in humans. The ε4 is 

considered as the ancestral human allele, with the ε2 (E2) and ε3 (E3) alleles arising only 

after the divergence of the human and primate lineages (Hanlon and Rubinsztein, 1995). 

Sequence analysis reveals that the primary structure of the primate APOE is identical to 

human APOE4 (Hanlon and Rubinsztein, 1995), although with a tertiary structure more 

similar to APOE3, which results in binding preferences that are functionally similar to 

human APOE3 (McIntosh et al., 2012).

Historically, the vast majority of research on APOE has centered on the important role it 

plays in modulating risk for cardiovascular disease (CVD) and late onset Alzheimer’s 

disease (AD). However, the established effects of this pleiotropic protein extend well beyond 

these two critical health challenges, with demonstrated roles for APOE across a wide 

spectrum of biological conditions, including adipose tissue function and obesity, metabolic 

syndrome and diabetes, fertility and longevity, immune function, and infectious diseases.

In the current review, we aim to concisely summarize a wide breadth of APOE-associated 

pathologies and to analyze the influence of APOE in the development of several distinct 

disorders in order to provide insight into potential shared mechanisms implied in these 

various pathophysiological processes.
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FUNCTIONS OF APOE IN THE BRAIN AND PERIPHERY

APOE is a multifunctional protein synthesized and secreted by multiple mammalian tissues. 

Hepatocytes contribute about 75% of the peripheral pool of APOE. In addition, APOE can 

also be expressed in adipose tissue, the kidney, and the adrenal glands, among other tissues 

(Huang and Mahley, 2014). High levels of APOE production also occur in the brain (Huang 

and Mahley, 2014). While brain and peripheral pools of APOE are distinct, secreted APOE 

shares similar systemic functions in each of these locations of synthesis, primarily regulating 

lipoprotein metabolism and supporting cellular differentiated function (Huang and Mahley, 

2014).

Lipid transport and metabolism

APOE is involved in lipid transport through its association with chylomicron remnants, 

VLDL, and high-density lipoproteins (HDL) (Robert W. Mahley et al., 1979; Shore and 

Shore, 1973; Utermann, 1975). APOE interacts with large heparan sulfate proteoglycans 

(HSPGs) on the hepatocyte surface and promotes internalization of the lipoprotein particles 

via lipoprotein receptors of the LDL receptor family (Figure 1) (Robert W Mahley et al., 

1979). APOE genotype influences plasma and brain cholesterol levels (Chernick et al., 

2019; Sing and Davignon, 1985). Plasma LDL cholesterol levels are both associated with the 

three APOE isoforms in the order of APOE4 > APOE3 > APOE2. This association is 

counterintuitive as APOE4 binds to LDL receptor with a slightly higher affinity than 

APOE3, while APOE2 binds to the receptor with much reduced affinity (Knouff et al., 

1999).

Upon receptor-mediated endocytosis, APOE-containing lipoproteins are processed in 

peripheral endosomes. In human hepatoma cells and fibroblasts, lipids are targeted to the 

lysosomal compartment, while APOE is found in peripheral recycling endosomes to be 

reutilized by the cell (Heeren et al., 1999). Early studies in macrophages and hepatocytes 

showed that APOE degradation only occurred within lysosomes, whereas others have shown 

degradation in both lysosomal and proteasomal compartments [reviewed in (Maaike et al., 

2008; Wenner et al., 2001)]. Secreted APOE can be re-uptaken into hepatocytes before being 

released into the circulation and then re-secreted, but less so in the case of APOE4 with 

consequent accumulation of cholesterol in the cell (Heeren et al., 2004). Of note, astrocytes 

preferentially degrade APOE4, leading to reduced APOE4 secretion and ultimately to 

reduced brain APOE levels (Riddell et al., 2008).

Liver

The liver is the major site of lipoprotein uptake and APOE is a critical ligand for the 

clearance of these molecules. Within the liver, hepatocytes and Kupffer cells both secrete 

APOE, with hepatocytes being the major source of APOE in plasma (Getz and Reardon, 

2009). It has been proposed that VLDL particles in APOE4 individuals are enriched with 

APOE4 on the surface, leading to accelerated liver uptake. As a result, receptors are 

negatively regulated and LDL plasma levels increase (Gregg et al., 1986; Li et al., 2013; 

Weintraub et al., 1987). As a potential alternative mechanism, our group found that the high 

affinity of APOE4 to the LDLR enhanced VLDL sequestration on the hepatocyte surface but 
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delayed their internalization (Altenburg et al., 2008). Conversely, the marked reduction of 

APOE2 in its LDL receptor binding activity translates into a low hepatic uptake of VLDL 

(Weisgraber, 1994): and as a consequence, E2 individuals display low LDL levels. In 

addition, this isoform not only has a lower capacity to promote lipolysis mediated by hepatic 

lipase (HL), but high E2 protein levels also inhibit lipase-mediated lipolysis (LPL) by 

displacing its cofactor apoC-II; concurrently, a lower processing of VLDL towards LDL has 

been reported (Mahley et al., 1999).

Brain

APOE is the major apolipoprotein in the central nervous system (CNS). In the brain, most 

cholesterol synthesis occurs in astrocytes which are also the main producers of APOE under 

normal physiological conditions (Fernandez et al., 2019). Upon activation microglia can 

dramatically upregulate APOE expression and other cell types, such as oligodendrocytes and 

neurons, have been also shown to produce APOE under certain conditions (Fernandez et al., 

2019). It is worth noting that lipoprotein-borne APOE in the cerebrospinal fluid (CSF) is 

similar in size and density to peripheral HDL (LaDu et al., 1998).

The APOE isoforms also differ in promoting cholesterol efflux. APOE4 in the CSF 

associates with smaller APOE lipoproteins, promoting less efficient cholesterol efflux than 

APOE3, whereas APOE2 has the greatest cholesterol efflux efficiency. In addition to lipid 

homeostasis, APOE isoforms can differentially regulate multiple pathways involved in 

neural development, as well as plasticity and neuronal repair (Fernandez et al., 2019).

Adipose tissue

After the liver and brain, adipose tissue is a third major producer of APOE (Zechner et al., 

1991), which regulates the size of adipocytes, triglyceride efflux, and the expression of 

genes related to fatty acid oxidation (Huang et al., 2006). This endogenous expression of 

APOE in adipocytes is modulated by regulators of insulin sensitivity, including the liver X 

receptor (LXR), peroxisome proliferator-activated receptor gamma (PPARγ), angiotensin II, 

inflammatory cytokines, as well as nutritional status (Espiritu and Mazzone, 2008; Huang et 

al., 2007; Rao et al., 2007; Yue and Mazzone, 2009). Endogenous adipocyte APOE levels 

decrease in response to obesity, tumor necrosis factor-α (TNF-α) and angiotensin II, 

whereas PPARγ agonists, fasting and weight loss increase its levels (Huang et al., 2007; Yue 

et al., 2004). Together, these studies may suggest that APOE protects against nutritional 

changes, preserving energy balance and adipose tissue functionality through its roles in lipid 

acquisition (Huang et al., 2007).

Triglyceride (TG) storage is one of the key functions of the adipose tissue and adipocytes 

lacking APOE expression display impaired acquisition of lipids from circulating VLDL 

through at least two separate pathways. First, APOE knockout adipocytes internalize less 

VLDL through the endocytic pathway due to reduced expression of LDL receptor family 

proteins (Huang et al., 2009). Second, lipoprotein lipase-dependent accumulation of TG is 

also impaired in APOE knockout adipocytes due to reduced transport of fatty acids across 

the adipocyte membrane, likely due to reduced expression of caveolin-1 and plasma 

membrane rafts (Huang et al., 2009). The APOE2 isoform also modifies adipose tissue 
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(Huang et al., 2015). “Targeted replacement” mice ubiquitously expressing human APOE2 

in place of the endogenous mouse APOE gene are hyperlipidemic, presenting with larger 

adipocytes and gonadal fat pads compared to APOE3 mice (Arbones-Mainar et al., 2008). 

Similar to APOE knockout mice, adipocytes from mice expressing APOE2 show decreased 

fatty acid uptake and decreased TG synthesis, likely owing to the observation that newly 

synthesized APOE2 is more rapidly degraded and less frequently secreted in these cells 

(Huang et al., 2015, 2011).

Endothelium

The vascular endothelium is an interface between circulating blood and the vessel wall. The 

activation of endothelial cells may result in the recruitment of circulating monocytes and 

accumulation of monocyte-derived macrophages (Mestas and Ley, 2008). Although 

endothelial cells themselves do not appear to synthesize APOE, endothelium-resident 

macrophages contribute to plasma APOE levels, releasing APOE at atherosclerotic lesion 

sites (Linton and Fazio, 1999). This locally secreted APOE inhibits the expression of the 

vascular cell adhesion molecule 1 (VCAM-1), which is involved in the recruitment of 

monocytes (Stannard et al., 2001). As a consequence, endothelial activation is suppressed 

and monocyte-endothelial adhesion is attenuated. This suppression likely occurs via 

stimulation of nitric oxide synthase (NOS), as the nitric oxide inhibitor ethyl-isothiourea 

blocked this effect. Alternatively, macrophage-derived APOE may also increase NO 

production by disrupting the inhibitory interaction of endothelial NOS with caveolin-1 (Yue 

et al., 2012). Therefore, APOE influences the inflammatory response by suppressing 

endothelial activation and the expression of adhesion molecules.

Interestingly, the effect of APOE on the endothelium is isoform-dependent. APOE3 binds to 

the ApoER2 receptor to stimulate endothelial NOS and endothelial cell migration, 

attenuating monocyte-endothelial adhesion. On the other hand, APOE4 does not stimulate 

endothelial NOS and rather antagonizes APOE3/ApoER2 actions, leading to a loss of the 

reparative and anti-inflammatory capacity of the endothelium (Ulrich et al., 2014).

Female reproductive system

APOE is expressed in different tissues of the ovary, such as the endometrium or granulosa 

cells. Several studies conducted with endometrial biopsies have reported increased APOE 

levels during the luteal phase of the menstrual cycle (Germeyer et al., 2013; Sundqvist et al., 

2012). However, in vitro studies have failed to reproduce the progesterone effects on APOE 

levels (Germeyer et al., 2013). In the case of granulosa cells, APOE expression has been 

seen to be regulated by human chorionic gonadotropin (Beckmann et al., 1991). In addition, 

the expression of APOE by granulosa cells may account for the differences in APOE 

concentration between the follicular fluid and the plasma (Beckmann et al., 1991). It has 

also been reported that APOE levels in follicular fluid fall dramatically when the follicle 

approaches ovulation (Brown et al., 1989) while they increase with age, a fact that has been 

associated with a smaller number of mature oocytes in elderly women (Von Wald et al., 

2010).
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Rat studies have also found high levels of APOE expression in theca and interstitial cells of 

follicles in animals at all stages of the estrous cycle (Nicosia et al., 1992). Lower 

concentrations of APOE can stimulate theca cell androgen production (Zerbinatti and Dyer, 

1999). In contrast, at higher concentrations APOE selectively inhibits androgen production 

without suppressing the production of progesterone (Zerbinatti and Dyer, 1999). A possible 

explanation for this phenomenon is that intraovarian APOE induces theca and interstitial cell 

apoptosis thereby controlling the production of androgen by those cells (Zerbinatti and Dyer, 

1999).

PRIMARY APOE-ASSOCIATED DISEASES AND CONDITIONS

Atherosclerosis and cardiovascular disease

Atherosclerosis is a progressive disease characterized by the accumulation of lipids and 

fibrous elements in large arteries causing impaired endothelial function. It ranges from 

primary arterial atheroma (inflammation and accumulation of macrophages loaded with 

cholesterol in the artery wall) to the formation of plaques and inflammation of the arterial 

wall, with the consequent risk of suffering thrombosis (Fuster et al., 1992).

Atherosclerosis is the major cause of cardiovascular disease (CVD) and APOE is abundant 

in atherosclerotic lesions, where it is secreted by resident macrophages. This APOE 

production is atheroprotective, since it contributes to reverse cholesterol transport, inhibits 

the proliferation of smooth muscle cells, prevents lipid oxidation, and restricts platelet 

aggregation (Linton and Fazio, 1999; Reddick et al., 1994). It has been reported that APOE 

absence or dysfunction results in hyperlipidemia and atherosclerotic lesions, while APOE 

injection or hepatic overexpression protects (Plump et al., 1992; Stannard et al., 2001; Zhang 

et al., 1992). Similarly, APOE4 carriers have higher levels of non-HDL lipoproteins due 

mainly to reduced VLDL plasma clearance, which in turn contributes to an increased risk if 

atherosclerosis and CVD (Dallongeville et al., 1992; Knouff et al., 1999). This reduced 

clearance of VLDL-borne APOE4 can be explained as a downregulation of the LDLR or an 

enhanced VLDL sequestration on the hepatocyte, as described above in the liver section.

Interestingly, mouse models have shown dysfunctional APOE4 macrophages that have 

problems phagocytosing apoptotic cells and are more sensitive to cell death induced by 

oxidized LDL and lipopolysaccharide (LPS) (Altenburg et al., 2007). These phenomena 

produce hyperinsulinemia due to the inflammation of adipose tissue in mice fed a 

westernized diet (Cash et al., 2012), even in the absence of obesity. In addition, APOE4 

increases endoplasmic reticulum stress in macrophages, leading to mitochondrial 

malfunction that also contributes to inflammation (Vats et al., 2006). As a consequence, and 

combined with an ε4-associated increase in fasting LDL levels, risk of CVD and 

atherosclerosis may be increased.

Dyslipidemia

Although extremely rare, humans with APOE deficiency present elevated VLDL and 

intermediate density lipoproteins (IDL) in plasma (Schaefer et al., 1986). On the other hand, 

type III hyperlipoproteinemia (HLP), characterized by the accumulation of chylomicron and 
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VLDL remnants is consistenly associated with ε2 carriers. More than 90% of patients with 

HLP type III are homozygous ε2/ε2, revealing the APOE2 isoform to be the major driver of 

the disease (Utermann et al., 1977). The APOE2 isoform binds the APOE-receptor with 

lower affinity, disturbing hepatic remnant uptake, altering lipolysis of lipoproteins, and 

overproducing VLDL. These effects are compounded due to the increase in APOE levels in 

ε2 individuals (Mahley et al., 1999). However, less than 10% of homozygous APOE2 
individuals develop hyperlipidemia. In fact, most ε2/ε2 subjects are normolipidemic or even 

hypolipidemic (Rall et al., 1982; Sing and Davignon, 1985). Therefore, it appears there are 

external factors that cause the change to HLP type III. Among others, the overproduction of 

apoB or the decrease of LDL receptors have been reported as secondary factors that lead to 

the development of type III HLP (Chung and Segrest, 1983). Furthermore, it has been 

reported that estrogen levels modify the hyperlipidemic profile of the disease. Estrogens 

increase both LDL receptor expression and lipolytic activity and as a result, men are more 

susceptible to HLP type III than women (Mahley et al., 1999). Together, these studies point 

to type III HLP as a multifactorial disease, requiring not only APOE2, but also genetic, 

hormonal or environmental factors, such as obesity, hypothyroidism, estrogen status or 

diabetes (Utermann, 1989).

Diabetes

Type II diabetes mellitus (T2DM) is one of the most common diseases in humans, with a 

high incidence and prevalence around the world (Bommer et al., 2018). CVD is the main 

cause of morbidity and mortality among diabetic patients (Rawshani et al., 2018). Insulin 

resistance and altered function of pancreatic β-cells are the two major conditions causing 

T2DM. Insulin resistance implies that insulin does not exert its function in insulin-sensitive 

tissues, such as skeletal muscle, adipose tissue, liver or endothelium. Pancreatic β-cells 

secrete, in turn, higher insulin levels to compensate for the reduced action on peripheral 

tissues and to maintain glucose levels within a normal range (Taylor, 1999).

Lipid metabolism plays an important role in this disease. Diabetic patients present an excess 

of circulating free fatty acids (FFAs) and TGs, as well as ectopic lipid storage in muscle and 

liver (McGarry, 2001). The association between APOE genotype and insulin resistance has 

been widely studied in subjects with or without AD although it still remains controversial 

(Elosua et al., 2003; Meigs et al., 2000; Profenno and Faraone, 2008; Ravona-Springer et al., 

2014; Scuteri et al., 2005; Shinkuro et al., 1996; Valdez et al., 1995). Some studies found 

impaired glucose tolerance in APOE4 individuals (Elosua et al., 2003; Ravona-Springer et 

al., 2014; Scuteri et al., 2005; Valdez et al., 1995), while others did not observe this 

relationship (Meigs et al., 2000; Profenno and Faraone, 2008; Shinkuro et al., 1996). In 

addition, we reported that the expression of GLUT 4 in adipocytes correlated positively with 

APOE3, but not with APOE4 expression (Arbones-Mainar et al., 2008). A possible 

explanation is that APOE4 can reduce insulin‐ receptor substrate 1 expression and Akt 

phosphorylation (Ong et al., 2014), the latter required for insulin regulation of GLUT4 up-

regulation and translocation (Thong et al., 2005). In contrast, the expression of a glucose 

transporter independent of insulin signaling (GLUT1) increased along with APOE4 

expression (Arbones-Mainar et al., 2008). Decreased expression of GLUT4 with 

simultaneous increased expression of GLUT1 is conducive to insulin resistance in 
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dystrophic adipose tissues (LaRosa et al., 2006). This suggests that cells expressing APOE4 

have to increase the expression of GLUT1 in order to maintain glucose transport in the cell 

due to the lower response of GLUT4. This insensitivity to insulin action may have 

implications for other APOE-associated disorders where impaired glucose metabolism has 

been noted, such as AD (Keeney et al., 2015).

In this backgrounf of a T2DM epidemic, several antidiabetic drugs have been developed 

over time. A preliminary study in individuals on metformin and metformin-sulfonilurea 

combination therapy observed significantly improved cardiometabolic outcomes (2-hour 

glucose and systolic blood pressure) in APOE4 non-carriers when compared to APOE4 

carriers (Sapkota et al., 2015). Likewise, evidence suggests that APOE polymorphisms 

impact the efficacy of rosiglitazone (a PPARγ agonist) on cognitive outcomes for AD 

patients (Iketani et al., 2018; Risner et al., 2006). However, pharmacogenetics studies have 

not found any APOE genetic variant deferentially associated with an antidiabetic response 

response to the most common i-diabetic drugs [reviewed in (Mannino et al., 2019)].

Obesity

According to the World Health Organization (WHO), obesity is defined as an excessive 

accumulation of fat that can be harmful to health. In recent years, obesity has become a 

serious public health problem in developed countries, increasing the risk of diabetes, 

dyslipidemia and hypertension. The crucial role of APOE in this disease has been 

demonstrated in APOE deficient (EKO) mice, which are thinner and more resistant to 

obesity than control mice (Chiba et al., 2003; Gao et al., 2007; Hofmann et al., 2008; 

Karagiannides et al., 2008). APOE’s effect on body mass may be due to its many roles in 

adipose tissue (described above in the “adipose tissue” section). Moreover, a leptin-

sensitizing along with potential direct effects of APOE on neurons have also been proposed 

(Gao et al., 2007). In addition to reducing BMI, APOE deficiency also reduces some of the 

metabolic complications associated with obesity, including glucose intolerance and insulin 

resistance (Gao et al., 2007; Hofmann et al., 2008). As APOE promotes lipid accumulation, 

its absence might reduce ectopic fat deposition insulin sensitive tissues (Hofmann et al., 

2008), which is a primary driver of impaired carbohydrate metabolism (McGarry, 2001).

However, there is some controversy regarding the relationship between APOE 
polymorphisms and obesity. While there are studies that show a strong association between 

the ε2 allele and the development of obesity (Duman et al., 2004; Tejedor et al., 2014; 

Volcik et al., 2006; Zeljko et al., 2011), others studies do not find any relationship (Zarkesh 

et al., 2012; Zhang et al., 2012). This disparity can be explained in part by the heterogeneity 

of the populations studied, the low number of individuals carrying the ε2 allele, and the 

relationship between APOE and plasma lipids, which makes it difficult to study the isoforms 

in relation to adiposity (Tejedor et al., 2014). In this regard, rodent models expressing human 

APOE2 isoform have shown a postprandial accumulation of lipids, increasing adiposity and 

susceptibility to obesity induced by diet (Kuhel et al., 2013; Pendse et al., 2009). In addition, 

an inflammatory status is promoted, accelerating tissue dysfunction and increasing 

infiltration of macrophages (Kuhel et al., 2013). However, unlike humans, these APOE2 

mice develop hyperlipidemia even under low-fat diet conditions. Therefore, the mechanisms 
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implied in triglyceride-rich lipoprotein metabolism seem to be different in humans versus 

mice (Kuhel et al., 2013). Interestingly, elderly women with APOE4 and AD lost weight 

while APOE4 non-carriers did not during 3.5 years of follow-up, after controlling for 

diabetes and exercise (Vanhanen et al., 2001).

Metabolic syndrome

Metabolic syndrome (MetS) is a combination of a number of conditions that includes central 

obesity, elevated blood pressure, hyperglycemia and dyslipidemia (Grundy et al., 2004). The 

strong heritability of these factors suggests that MetS may be regulated by genotype 

differences. In fact, previous studies have discovered clusters of genes related to this 

syndrome (including APOE) with a heritability of 30% (Bosy-Westphal et al., 2006).

The relationship between APOE4 and MetS has been evaluated in several populations and 

its presence has been considered either neutral (Lee et al., 2011; Miller et al., 2007; Onat et 

al., 2010; Teixeira et al., 2014) or a risk factor for metabolic syndrome (Das et al., 2009; 

Olivieri et al., 2007; Tao et al., 2011; Vučinić et al., 2014). However, a protective function 

for APOE4 has also been described in a study on grade III obese individuals, where APOE4 

was more frequently found in carriers without MetS as compared to subjects suffering from 

MetS (Ferreira et al., 2011). These discrepancies might be the result of a limited number of 

subjects in the studies due to the low frequency of the ε2 and ε4 alleles within the 

population. Additionally, environmental and social factors can influence these results.

A study conducted by our group showed that the APOE4 isoform was associated with an 

increased risk of MetS only in overweight individuals (Torres-Perez et al., 2016). This 

relationship was not found in normal weight or obese subjects. This BMI-dependent effect 

might be explained because individuals with lower body mass index (BMI) may still 

overcome this adipose dysfunction while in obese subjects the mild increase of the MetS risk 

caused by carrying the ε4 allele would appear masked by the dramatic effect that an 

excessive expansion of the adipose tissue per se has on increasing the risk of developing 

MetS.

Alzheimer’s Disease

While this review has so far focused on the peripheral functions of APOE, there exist many 

parallels between the functions of APOE in the periphery and its functions in the CNS. This 

can be particularly appreciated in AD, where 60–80% of patients have at least one ε4 allele 

(Mayeux et al., 1998). AD is the most prevalent neurodegenerative disease, characterized by 

synapse loss and neuronal death (Hashimoto et al., 2003). Major hallmarks of the disease 

include deposition of amyloid β peptide into extracellular plaques, aggregation of 

hyperphosphorylated tau protein in neurofibrillary tangles, widespread neuroinflammation, 

and disruption of the blood-brain-barrier (BBB) (Wisniewski et al., 1997). APOE4 is the 

strongest genetic risk factor for late-onset sporadic AD (Mayeux et al., 1998) and has been 

implicated in each of these major hallmarks of the disease. In the context of the present 

review, we will briefly highlight that the role of APOE in AD is not limited solely to the 

CNS, but also manifests in the periphery.
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The majority of APOE research in AD has focused on how the various isoforms interact 

with the amyloid pathway that regulates the synthesis and clearance of the amyloid β peptide 

(Aβ). Mechanisms implied in this neuronal dysfunction appear to be mainly two-fold: i) ε4 

accelerates Aβ deposition in cholesterol-rich lipid rafts and ii) ε4 alters APOE receptor 

signaling to diminish protection against amyloid accumulation (Lane-Donovan and Herz, 

2017). However, APOE also effects handling of Aβ in the periphery. Human ε4 targeted 

replacement mice injected with synthetic human Aβ42 cleared it more slowly from the 

plasma than ε2 or ε3 mice (Sharman et al., 2010).

A similar parallel between the periphery and CNS is seen with APOE’s effects on tau. In the 

CNS, APOE4 stimulates tau phosphorylation, leading to cytoskeletal disruption (Holtzman 

et al., 2000). However, APOE may also act upon tau in the periphery. It has been shown that 

young healthy APOE4 individuals had more phosphorylated tau in circulating peripheral 

lymphocytes than their APOE3 counterparts, which was associated with subjective cognitive 

impairment (Badia et al., 2013).

Inflammation is another major hallmark of AD. APOE4 is associated with increased 

proinflammatory cytokine production in the CNS [reviewed in (Fernandez et al., 2019)] and 

is intricately linked to the dysfunctional microglial phenotype prevalent in AD (Krasemann 

et al., 2017). Likewise, APOE4 is also associated with an increased inflammatory response 

in the periphery. For example, APOE4 carriers undergoing cardiopulmonary bypass surgery 

had increased proinflammatory IL8 and TNFa (Grocott et al., 2001), while the ε4 allele was 

associated with a lower antiinflammatory IL-10 serum levels in patients with coronary artery 

disease (Tziakas et al., 2006).

Lastly, it has been shown that APOE regulates the blood-brain barrier (BBB) integrity and 

that this regulation is isoform-dependent (Chernick et al., 2019). Peripheral APOE4 

compromised the BBB integrity in some studies, but not all, in mice expressing human 

APOE isoforms [reviewed in (Yamazaki et al., 2019)]. Thus, the role of APOE in AD is 

clearly multifactorial, impinging upon not only the amyloid cascade hypothesis but also 

many of the other major hallmarks of the disease. Importantly, it is becoming clear that both 

peripheral and central APOE share the task of maintaining neurological health.

Fertility

Yet another site of APOE action is in the endometrium, which produces APOE and 

dramatically upregulates its mRNA during the implantation window (Kao et al., 2002). In 

addition, APOE is the major supplier of the cholesterol precursor required for estrogen and 

progesterone synthesis in steroids tissues (Gwynne and Strauss III, 1982). It has therefore 

been suggested that APOE might influence human fertility. In this regard, female E4 carriers 

have higher progesterone levels, implying higher fertility (Jasienska et al., 2015). Some 

studies have tried to measure the reproductive efficiency inferred by quantifying the 

offspring. This method may encounter some confounding factors, such as the use of 

contraceptive methods, the difficulty of covering the complete reproductive history of the 

subjects, and that the number of biological children in the case of men may be inaccurate. 

For this reason, these studies are usually carried out in subjects with advanced age or in pre-

industrial populations in which the offspring is considered to correspond to reproductive 
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efficiency. In this sense, the studies seem to point out that in the populations of Caucasian 

origin, the carriers of APOE3 have the greatest fertile potential (R. Corbo et al., 2004; Corbo 

et al., 2007; Gerdes et al., 1996), while APOE4 carriers present greater reproductive 

efficiency in populations with Afro-Ecuadorian origins and in the Cayapa Indians (R. M. 

Corbo et al., 2004). Interestingly, in all populations, the allele with the worst reproductive 

efficiency seems to be ε2 (R. Corbo et al., 2004; R. M. Corbo et al., 2004). However, we 

must be careful when drawing conclusions due to the previously mentioned confounding 

factors. It is worth noting that parity was found to be associated with a significantly lower 

AD onset age than nulliparity in E3/E3 and E2/E3 individuals, but not in women with 

APOE4 (Corbo et al., 2007).

Setarehbadi et al also reported a differential distribution of APOE genotype related to male 

fertility (Setarehbadi et al., 2012). However, in contrast to the studies mentioned above, they 

associated male APOE4 carriers with a higher risk for infertility. They suggest that 

differences between the spermatozoa lipid composition according to APOE allele affect 

sperm viability. The population studied and the environmental factors, among others, may 

explain the discrepancies observed (R. M. Corbo et al., 2004). In this regard we have 

observed that, when women’s race was considered, no effect of APOE isoforms on 

miscarriage risk was observed for black women. Interestingly we did detect increased odds 

for miscarrying in white pregnant women bearing APOE2 (Gamundi-Segura et al., 2016). 

This race-dependent effect may reconcile, at least partially, the conflicting reports of the 

association of APOE polymorphisms and fertility.

Longevity and aging

APOE is among the most studied genes associated with longevity. A pioneering study 

reported a cohort of centenarians enriched of ε2 alleles (Schächter et al., 1994). Thus, 

APOE2 has been associated with the lowest fertility but also the highest longevity (Figure 

2). This phenomenon indicates a potential antagonistic pleiotropy and may explain the 

persistence of the ancestral ε4 allele, despite its indication in greater disease risk, as a sort of 

longevity-fertility trade-off (R. Corbo et al., 2004; Jasienska et al., 2015).

Some genome-wide association studies (GWAS), but not all, have tied the ε4 allele of APOE 

to shortened longevity due to its role in multiple age-related diseases, whereas the ε2 allele 

is linked to increased longevity, mainly by its protective role against CVD and AD. Thus, 

APOE is an important player in aging and a major determinant of longevity (Ryu et al., 

2016).

Infectious diseases

Cholesterol is essential for human immunodeficiency virus (HIV) entry and assembly (Liao 

et al., 2003; Mañes et al., 2000). Due to the influence of APOE in cholesterol transport, a 

correlation between HIV infection and APOE has been suggested. HIV infection may 

resemble an inflammation status akin to accelerated aging. Additionally, HIV replication in 

the brain is associated with several neurological disorders, including dementia. Therefore, 

APOE4 has been studied as a risk marker of HIV-associated neurocognitive disorders 

(Geffin and McCarthy, 2018). Nevertheless, this correlation has not been found in all 
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APOE4 carriers. Becker et al suggested an age differential effect of ε4 allele in HIV 

patients, with elderly patients being more susceptible to neurocognitive decline (Becker et 

al., 2015). In concordance with this hypothesis, several studies point to an aging accelerated 

effect in brain HIV-infected APOE4 carriers through the interaction between HIV proteins 

and APOE4, increasing Aβ production and neurotoxicity to infected cells (Chang et al., 

2014; Tuminello and Han, 2011; Wendelken et al., 2016).

Hepatitis C virus (HCV) associates with lipoproteins being secreted from the liver as highly 

infective lipoviro particles (LVP). Interestingly, APOE plays a relevant role in the assembly 

and production of these LVPs (Weller et al., 2017). The importance of this apolipoprotein is 

evidenced by the fact that APOE depletion has a significant effect in HCV particle 

production compared to APOB or APOA1 depletion (Benga et al., 2010). In this sense, some 

epidemiological studies have reported that APOE4 was associated with a reduced likelihood 

of HCV chronic infection (Mueller et al., 2016; Price et al., 2006). However, mixed results 

such as the fact that APOE4 was also associated with better histologic outcomes in recurrent 

HCV infection (Toniutto et al., 2004), no effect on the anti-viral response (Kim et al., 2013), 

or poor treatment response in HCV G1b patients (112), have likely precluded the use of 

APOE genotypes as biomarker in the morbidity of chronic HCV infection. Those discrepant 

results may reflect the limited sample size included in some studies and the failure to 

examine the interaction of APOE genotypes-HCV genotypes and its modulation by HCV 

treatments

APOE4 increases oxidative damage in the CNS and intensifies herpes simplex virus (HSV) 

latency (Kuhlmann et al., 2010). HSV-1 and APOE also compete to bind the same LDL 

receptor. HSV-1 has been detected in brain regions affected by AD, demonstrating its 

influence in β-amyloid production and accumulation. Burgos et al reported that the E4 allele 

is more permissive to the migration of HSV-1 from the adrenal gland to the brain (Burgos et 

al., 2006). They also showed higher latent HSV-1 DNA levels in E4 carriers. Thus, it is 

suggested that susceptibility for HSV-1 is increased by the presence of E4 allele. 

Furthermore, the combination of HSV-1 and APOE4 may increase the propensity to develop 

AD (Kuhlmann et al., 2010). It is hypothesized that higher LDL levels produced by E4 

carriers promote accumulation of cholesterol in lipid rafts, facilitating the entry and latency 

of the herpes virus (Burt et al., 2008).

DISCUSSION

While the spectrum of biological systems in which APOE plays a role seems implausibly 

wide at first glance, there are some potential unifying mechanisms that could tie these 

seemingly disparate disorders together. Although liver transplantation studies have 

demonstrated that peripheral and brain APOE represent two distinct pools that are not 

exchangeable (Linton et al., 1991), APOE need not cross the blood brain barrier for its 

influence on the periphery to also be felt in the brain. Alterations to lipid trafficking, cellular 

metabolism, and immune function overlap and may act synergistically on both sides of this 

barrier to promote APOE’s widespread effects in the tissues, systems and disorders 

described in this review.
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Cholesterol is the main constituent of many structural tissues in the periphery and is also 

critical in supporting the function of the brain, an organ which represents approximately 2% 

of total body weight yet contains as much as 25% of total cholesterol (Dietschy and Turley, 

2001). As APOE is an important regulator of cholesterol transport and metabolism, 

alterations resulting from APOE isoform-specific differences have the capacity to produce 

greater impact, playing a role in multiple prevalent diseases. For example, the role of APOE 

in modulating LDL cholesterol levels in the background of CVD is well documented, and 

APOE isoform specific changes in glial cholesterol metabolism implicate these pathways in 

AD risk (Fernandez et al., 2019). Understanding the mechanisms by which APOE influences 

cholesterol homeostasis to confer disease risk will help to develop effective therapies for a 

wide range of maladies.

Although several of the molecular mechanisms through which APOE exerts its effects have 

been elucidated through studies in rodent models, often times contradictory results have 

been obtained according to the animal model studied. Human studies have reported yet even 

greater differences. APOE effects typically vary by age, often being more detrimental in 

elderly than in younger populations. For example, the magnitude of the associations between 

APOE genotype and plasma lipid levels differ according to sex and the population studied 

(Rasmussen, 2016). Results are further obfuscated by the complicated effect of different 

dosage levels of APOE alleles (Cacciaglia et al., 2018).

APOE-specific alterations in energy homeostasis and/or mitochondrial function are another 

potential area in which a single APOE isoform directed change could drive pathological 

changes in multiple disorders both centrally and in the periphery. The notion that APOE 

isoforms differentially mediate cell bioenergetics is gaining momentum as new findings 

challenge old assumptions (Kuehn, 2020). Along these lines, our group has shown that mice 

expressing human APOE4 have a global metabolic shift toward lipid oxidation and are 

inherently inefficient at utilizing glucose (Arbones-Mainar et al., 2016). This impaired 

glucose metabolism has implications for a number of disease states in which APOE plays a 

role. Mainly in the MetS and diabetes, as both conditions have defective glucose metabolism 

as their underlying cause, but also in CVD and in AD (Figure 3). The latter is characterized 

by a pattern of cerebral glucose hypometabolism, likely related to early mitochondrial 

dysfunction. This pattern is closely reflected in the brains of even young, cognitively normal 

individuals with APOE4 (Fukai et al., 2018). Mitochondria are essential for the regulation of 

the metabolic switch between lipids and glucose to fuel cellular functions. Some evidence 

points toward mitochondrial dysfunction as a primary event in AD onset (Weidling and 

Swerdlow, 2019). In this regard, APOE4 uniquely can be cleaved by a neuron-specific 

protease, resulting in toxic fragments of APOE4(1–272), that can bind mitochondrial 

complexes and disrupt mitochondrial energy balance (Nakamura et al., 2009). Alternatively, 

some studies propose a “systemic” mitochondrial dysfunction status as the trigger of a 

number of neurodegenerative and metabolic diseases such as T2DM, CVD, and AD (Bhatti 

et al., 2017).

Inflammatory responses are critical for an organism’s ability to respond to and eliminate 

pathogens, but widespread inflammation is also seen in the brain undergoing 

neurodegeneration. APOE drives inflammatory microglial phenotypes in AD, where isoform 
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differences profoundly influence the production of inflammatory cytokines and the capacity 

of microglia to respond to and clear amyloid plaques and neuronal debris. Peripheral 

inflammatory responses are also modulated by APOE genotype, as is the case for disparate 

infections ranging from HIV to HCV to HSV. Furthermore, inflammation in the two 

compartments may interact. Peripheral inflammation damaged the integrity of the blood 

brain barrier in an AD mouse model with targeted replacement human APOE4, promoting 

cerebrovascular leakiness and reduced cerebral vessel coverage (Marottoli et al., 2017). 

Thus, APOE’s generalized effects on immune system function present a strong candidate for 

tying together the deleterious isoform-dependent differences seen in otherwise distinct 

pathologies and in distinct body compartments.

In summary, the effects of APOE across human biology are numerous and diverse. This 

critical protein has been shown to play a role in biological systems ranging from adipose 

tissue function and fertility to infection to neurological disease. Despite this diversity, there 

appear to be shared pathways that may provide insight into a unifying mechanism of action. 

While much remains to be discovered about this pleiotropic protein, research over the past 

45 years has provided important insight into potential therapeutic targets that could have 

benefits across a wide range of disorders.
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Figure 1. 
Clearance of lipoproteins is a multi-step process in which lipoproteins firstly bind to HSPGs 

followed by their uptaked by members of the LDL receptors family. a) APOE lipoprotein 

receptors. Low density lipoprotein receptor (LDLR), widely expressed in hepatocytes; Very 

low density lipoproteins receptor (VLDLR), widely expressed in adipose tissue, 

endothelium, skeletal muscle and heart; Apolipoprotein E receptor 2 or Low-density 

lipoprotein receptor-related protein 8 (ApoER2/LRP8), mainly expressed in brain, testis and 

placenta; Low density lipoprotein receptor-related protein 1 (LRP1), ubiquitously expressed 

and key receptor for maintaining cholesterol homeostasis. These receptors are characterized 

by a single transmembrane domain, a cytoplasmic tail with at least one NPxY motif, 

epidermal grow factor (EGF) and b-propeller domains, and one or more igand binding 

domains. b) Lipoproteins (CR, HDL, VLDL) are composed by a core containing 

triglycerides and cholesterol (esterified and free) surrounded by phospholipids and APOE. c) 

Heparan sulfate proteoglycans (HSPGs) are glycoproteins containing one or more covalently 

linked heparan sulfate chains. Some syndecans also contain a chondroitin sulfate chain.
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Figure 2. 
Antagonistic pleiotropy in APOE genotypes. APOE4 individuals enjoy enhanced fertility at 

the expense of longevity, whereas APOE2 individuals have increased longevity but reduced 

fertility.

Martinez-Martínez et al. Page 25

Neurobiol Dis. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Mitochondrial dysfunction as a unifying APOE-directed mechanism.
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Table 1.

APOE genotypes.

rs429358 (codon 112) rs7412 (codon 158) Allele

T/T T/T ε2/ε2

T/T C/C ε3/ε3

C/C C/C ε4/ε4

T/T T/C ε2/ε3

T/C T/C ε2/ε4

T/C C/C ε3/ε4
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