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Context specificity of the EMT transcriptional
response
David P. Cook 1,2✉ & Barbara C. Vanderhyden 1,2✉

Epithelial–mesenchymal plasticity contributes to many biological processes, including tumor

progression. Various epithelial–mesenchymal transition (EMT) responses have been reported

and no common, EMT-defining gene expression program has been identified. Here, we have

performed a comparative analysis of the EMT response, leveraging highly multiplexed single-

cell RNA sequencing (scRNA-seq) to measure expression profiles of 103,999 cells from

960 samples, comprising 12 EMT time course experiments and independent kinase inhibitor

screens for each. We demonstrate that the EMT is vastly context specific, with an average of

only 22% of response genes being shared between any two conditions, and over half of all

response genes were restricted to 1–2 time course experiments. Further, kinase inhibitor

screens revealed signaling dependencies and modularity of these responses. These findings

suggest that the EMT is not simply a single, linear process, but is highly variable and modular,

warranting quantitative frameworks for understanding nuances of the transition.
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Epithelial–mesenchymal (E/M) plasticity is ubiquitous within
all epithelial tissues and the reversible transition between
these two states contributes to a variety of biological pro-

cesses, including tumor progression1. During the
epithelial–mesenchymal transition (EMT), epithelial cells lose
defining characteristics, such as stable cell–cell junctions, and gain
the capacity to migrate and invade through extracellular matri-
ces1. While the EMT has been extensively studied, a variety of
EMT responses have been reported and no common, EMT-
defining gene expression program has been identified2. The
transition has historically been depicted as a simple conversion
between discrete epithelial and mesenchymal states, but reports of
individual cells co-expressing epithelial and mesenchymal genes
have since introduced the concept of a partial EMT. This hybrid
state has been shown to provide optimal stem cell traits to cancer
cells3,4, allow for collective tumor cell migration and the forma-
tion of circulating tumor cell clusters5–8, and is associated with
metastatic tumors9.

Complicating the definition of epithelial, mesenchymal, and
hybrid states, most studies have relied on bulk expression mea-
surements of a small subset of marker genes from a static
population of cells. Markers of epithelial and mesenchymal states
are likely context specific, and thus relying on a small subset of
these markers may lead to erroneous conclusions about the
relative E/M status of cells. Single-cell RNA sequencing (scRNA-
seq) analysis of head and neck squamous cell tumors demon-
strated that while E/M plasticity was evident in many tumors, the
specific partial EMT gene signature between tumors was vari-
able9. Experimental induction of the EMT can also be variable:
microarray analysis of three cell lines exposed to a combination of
TGFB1 and TNF alpha (TNF) resulted in EMT responses with
only 10–30% of differentially expressed genes shared between
conditions10. And in a single mammary epithelial cell line,
TGFB1 treatment and a spontaneous EMT induction model
resulted in different EMT response trajectories, with only
approximately a 50% overlap in differentially expressed genes11.
This variability is also not limited to transcriptomic data, and
canonical E/M proteins also co-occur inconsistently12.

The extent of variability among EMT programs and the reg-
ulatory networks that drive them is still unclear given that most
evidence spans multiple independent studies, and few have per-
formed controlled comparisons. Here, we provide a thorough
comparison of experimentally induced EMTs, spanning multiple
cell types, and EMT inducers. We leverage highly multiplexed
scRNA-seq to assess context specificity of the EMT and to
compare regulatory features of the transition, assessing 103,999
cells from 960 samples, comprising 12 EMT time course experi-
ments and kinase inhibitor screens for each.

Results
Multiplexed scRNA-seq enables comparative analysis of the
EMT. To assess transcriptional dynamics of the EMT across a
variety of contexts, we used MULTI-seq13 to generate scRNA-seq
data from 12 distinct EMT time course experiments. We assessed
four different cancer cell lines capable of undergoing an EMT
(A549, lung; DU145, prostate; MCF7, breast; and OVCA420,
ovarian) and exposed each to known EMT-inducing factors:
TGFB1, EGF, and TNF. These cell lines were chosen because they
all have an epithelial morphology in culture, have been shown to
undergo an EMT in previous studies14–20, and represent four
distinct cancer types. The specific inducers were chosen as they all
have been previously shown to promote an EMT in different cell
lines—including those used in this study in most cases14–20—and
their binding to each of their cell surface receptors initiates
independent signaling pathways. In response to these factors,

each cell line exhibited morphological changes, consistent with an
EMT (Supplementary Fig. 1a). We note different inducers can
promote different morphologies in the same cell line (e.g., DU145
with TGFB1 or TNF), and some changes were modest in com-
parison to others (e.g., MCF7 cells treated with EGF). Lacking a
typical spindle-shaped morphology, however, does not preclude
other EMT traits. For example, at higher doses, EGF has been
shown to promote an EMT associated with a circular morphol-
ogy21. Ultimately, it is likely that these differences arise from
subtleties in the expression programs initiated by each inducer,
and particularly the different expression dynamics of various
cytoskeletal and extracellular matrix proteins.

For each of the 12 conditions, samples were collected at five
distinct time points from 8 hs to 1 week after treatment, and three
additional time points from 8 h to 3 days after the EMT-inducing
stimulus had been removed (Fig. 1a). The 3-day withdrawal time
point was chosen based on preliminary data, suggesting
transcriptional reversion in as few as 3 days. In the aggregated
data, expression profiles clustered dominantly by cell line, and
after demultiplexing, the majority of cell line annotations (95.8%
on average) were restricted to a dominant cluster, demonstrating
robust multiplexing (Fig. 1b, Supplementary Fig. 1b). In total, we
annotated 58,088 single cells from across 576 samples, comprising
six replicates of the 12 time course experiments (Fig. 1c,
Supplementary Fig. 1c). Replicates were highly correlated,
supporting the consistency of the experimental procedures and
processing workflow (Supplementary Fig. 2).

Transcriptional dynamics of the EMT are context specific. We
next assessed the temporal progression of each time course. In
each case, time-dependent shifts in cells’ expression profiles were
evident, and withdrawal samples showed reversion back toward
the untreated state (Fig. 1d). In each cell line, receptors for the
three EMT inducers were detectable, explaining these dynamics
(Supplementary Fig. 3). While the top 1000 variable genes for
each time course showed some expression patterns conserved
across cell lines, context-dependent gene sets were dominant
(Fig. 1e). Gene set enrichment analysis (GSEA) of variance-
ranked genes for each time course did, however, demonstrate
enrichment for the MSigDB hallmark EMT gene set in all con-
ditions22 (Fig. 1f). This is consistent with the morphological
changes we observed, and further supports that these changes are
associated with an EMT response. The minimal overlap of top
variable genes among conditions suggests that the specific EMT
genes involved in the response may vary.

To specifically compare temporal dynamics of the EMT, we
first pseudotemporally ordered the cells from each condition
(Fig. 2a, b). In each time course, cells progressively transitioned
throughout the full 7 days of EMT induction, and withdrawal of
the EMT stimulus led to a near-complete reversion after as few as
3 days (Fig. 2b). We note that it is possible that the cells could
have continued to transition following day 7. It will be important
for future studies to assess the temporal limits of the EMT
response. We then assessed gene expression dynamics throughout
the pseudotemporal trajectories. In all cases, transitions were not
simply linear processes of two opposing E/M expression
programs. Rather, all involved combinations of discrete tran-
scriptional events (Supplementary Fig. 4), suggesting that the
EMT may be a multistep process. We found that each condition,
with the exception of A549 cells induced with EGF and
OVCA420 treated with TNF, was associated with an average
increase in the expression of the EMT hallmark gene set22, with
TGFB1 often producing the most potent effects (Fig. 2c). GSEA
revealed, however, that differentially expressed genes from these
two conditions, along with all others, were enriched for the
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Fig. 1 Multiplexed scRNA-seq profiling of 12 EMT time course experiments. a Schematic of the 96-well experimental design for the 12 EMT time course
experiments (left), and t-SNE embeddings of the MULTI-seq barcode counts, demonstrating strong signal for demultiplexing (right). b UMAP embedding
of aggregated expression data of all data, colored by unsupervised clustering (top), and a graph showing the relative proportion of annotations for each cell
line assigned to each cluster after demultiplexing (bottom). c Graph showing the number of cells captured for each time course experiment. d UMAP
embeddings of each of the 12 time course experiments. Grey dots correspond to individual cells, shaded regions represent the related sample density for
each time point, and colored dots correspond to the maxima of the density function. e UpSet plot showing the intersections of the top 1000 variable genes
of each time course experiment. f GSEA plots showing the NES for the EMT hallmark genes in the variance-ranked genes for all conditions.
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Fig. 2 EMT transcriptional responses are largely context specific. a UMAP embeddings of A549 cells treated with TGFB1. Each point represents an
individual cell, and colors correspond to time point (top) or pseudotime value (bottom). b Sina plot showing the distribution of pseudotime values across
time points for all 12 time course experiments, with time points colored the same as in a. Horizontal black bars represent mean expression values for each
group and each point corresponds to a single cell. c Smoothed model of the EMT hallmark gene set score throughout the pseudotime. Shaded bands for
each line correspond to the standard error for each model. d Clustered heatmap of all pairwise Jaccard similarity values for the differentially expressed
genes in each condition. e Counts of how frequently each gene is differentially expressed among time course experiments. f Heatmap showing EMT-
associated expression changes associated with a gene set of all genes that are differentially expressed in at least eight time course experiments. The
colormap corresponds to the pseudotime beta coefficient of the linear model for each gene.
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hallmark gene set (Supplementary Fig. 5a), but in these two
specific conditions, several EMT hallmark genes are repressed,
resulting in a net neutral EMT score (Supplementary Fig. 5b).

Surprisingly, responses of individual cell lines to different
stimuli were more similar than the responses of different cell lines
to the same stimulus, but importantly, all pairwise comparisons
show very little overlap in their differentially expressed genes
(average Jaccard index of 0.22; Fig. 2d). Of all genes differentially
expressed across conditions, the majority changed in as few as
one to two conditions, suggesting that the global expression
programs associated with the EMT are remarkably context
specific (Fig. 2e, Supplementary Data 1). A small subset of
canonical EMT genes, including TGFB1, CD44, and FN1, along
with less-reported genes, such as TGM2 and PMEPA1, were
differentially expressed in most conditions. The majority of the
MSigDB hallmark EMT gene set was differentially expressed in
only a small number of conditions, with only 49/200 hallmark
genes being differentially expressed across the majority of
conditions (Supplementary Fig. 6). Extracellular matrix proteins,
proteases, and integrins from the hallmark gene set are variably
affected across conditions, which could explain the differences in
morphological changes observed (Supplementary Fig. 6). This
may reflect that the hallmark genes were derived from various
founder gene sets that may have been driven by fibroblast
expression rather than an EMT (ref. 23). Interestingly, however,
many canonical EMT genes, including SNAI1, CDH1 (E-
cadherin), and CDH2 (N-cadherin) differentially expressed in
only a small number of conditions (Fig. 2e).

To identify signatures that may not have been represented in
the hallmark gene set, we took all genes that were differentially
expressed in at least eight (defined as two-thirds of our conditions
as to not be too restrictive) of our experimental conditions, and
compiled our own gene set of 86 conserved upregulated genes
and 17 downregulated genes (Fig. 2f, Supplementary Data 2).
While no gene represents a universal marker of the transition,
this list contains those that were most frequently changed.
Common epithelial-associated (downregulated) genes included
various keratins (KRT8, KRT18, and KRT19), consistent with
morphological changes and the loss of epithelial features. While
the conserved mesenchymal-associated (upregulated) genes
contain several canonical EMT genes, many are not typically
associated with the transition. These upregulated genes, however,
do enrich for GO terms associated typical EMT-associated traits,
including extracellular matrix disassembly (p= 5.0e−4) and
organization (p= 3.7e−4), cell migration (p= 2.0e−3), and
negative regulation of apoptosis (p= 4.4e−11; Supplementary
Fig. 7a). Regulatory regions of the 86 mesenchymal-associated
genes are also enriched in binding sites for AP-1, MYC, MEF2,
and KLF transcription factors (Supplementary Fig. 7b). These
factors have all been implicated in the EMT and could represent
conserved regulators of the transition24–28. We also confirmed
that these 86 mesenchymal-associated genes have variable
expression levels among cancer cells from individual human
lung tumors and syngeneic mouse tumor models, as well as in
scRNA-seq data of healthy epithelium from various mouse tissues
(Supplementary Fig. 8a). Further, in each of these data sets, the 86
mesenchymal-associated genes are highly correlated (Supplemen-
tary Fig. 8b). Together, this suggests that this expression program
is not simply an artifact of culture experiments, but are
coexpressed in vivo and may contribute to an E/M heterogeneity
program in these tissues.

The EMT can be coordinated by diverse transcription factor
networks. While many of the most conserved EMT genes are
regulated by shared regulatory factors (Supplementary Fig. 7b),

these conserved genes only represent a small fraction of differ-
entially expressed genes. We next sought to determine if the
remainder of EMT-associated expression dynamics are driven by
a common regulatory program that perhaps gives rise to distinct
expression patterns due to cells’ epigenetic or mutational profiles,
for example. Across the experimental conditions we assessed,
most canonical EMT transcription factors—other than SNAI2—
were rarely differentially expressed (Fig. 3a). While in some cases
(e.g., TWIST1) the transcription factors were not detected, per-
haps owing to insufficient sensitivity to lowly expressed genes,
canonical EMT transcription factors were often readily detectable,
but did not show dynamics throughout the EMT response
(Supplementary Fig. 9). We scored each cell for the coexpression
of transcription factors and their putative target genes (regulons),
and identified those that showed differential activity throughout
the EMT. We found that transcription factor activity is also
remarkably context specific, with most being restricted to one to
two of our time course experiments (Fig. 3b). Several factors were
fairly well conserved, however. Consistent with our list of con-
served genes, AP-1 (JUN, JUNB), the NFkB-associated RELB,
ATF4, SOX4, and KLF6 regulons showed frequent activation,
whereas ELF3 and MYBL2 activity often decreased (Fig. 3c).
These factors have all been previously implicated in the EMT, but
are not typically considered canonical EMT regulators29–34. To
assess the accuracy of these results, we used ATAC-seq to assess
the accessibility of transcription factor motifs throughout the
EMT and compared accessibility dynamics to the inferred regulon
activity. For the purpose of validation, we chose to assess the
OVCA420 TGFB1 time course (Fig. 3d). This was the smallest
data set in our scRNA-seq cohort, so we chose to validate the
approach on the condition with the lowest power for inferring
transcription factor activity. We found that in many cases, motif
accessibility throughout the EMT-mirrored regulon activity
measured from scRNA-seq data alone (Fig. 3e). This supports
that the regulon activity inference provides an accurate repre-
sentation of the transcription factor activity throughout each of
the conditions assessed.

Kinase inhibitor screens reveal signaling dependencies in a
variety of EMT responses. Paracrine signaling is another reg-
ulatory feature likely to coordinate the EMT across a population
of cells35–38. In fact, we found that the expression of secreted
factors spanning a variety of signaling pathways broadly increased
in each of our 12 time courses (Fig. 4a, b). Given this, we next
established an experimental design to mechanistically assess the
dependence of the EMT on multiple signaling pathways and
compare these dependencies across contexts. We curated a
selection of 22 small molecule inhibitors targeting a variety of
kinases and treated cell lines alone for 7 days, or in combination
with one of the three EMT inducers previously used (Fig. 4c).
Leveraging MULTI-seq to multiplex samples, we ultimately
generated scRNA-seq profiles for 45,911 cells across the 384
distinct conditions.

From retrieved cell counts alone, drop-out patterns from cell
line-dependent and -independent cytotoxic/cytostatic effects can
be observed (Fig. 4d, e). To assess the impact of these inhibitors
on EMT progression, however, we calculated pseudotime values
for the inhibited cells using the models built from corresponding
time course experiments of the same cell line and EMT inducer
(Fig. 4f). From this, we could identify inhibitors that reduced
cells’ pseudotime values at 7 days compared to uninhibited
controls, therefore dampening the EMT response. LY364947
(TGFBR1 inhibitor), for example, abrogated TGFB1-induced
EMTs (Fig. 4f–h), and erlotinib and gefitinib (EGFR inhibitors)
consistently blocked the effects of EGF (Fig. 4f).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16066-2

4 NATURE COMMUNICATIONS |         (2020) 11:2142 | https://doi.org/10.1038/s41467-020-16066-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


The effects of these inhibitors, however, weren’t limited to
blocking the direct signaling of the EMT-inducing factor. For
example, TGFBR1 inhibition partially blocked EMT progression in
a variety of conditions, including EGF-treated A549 and OVCA420
cells, and TNF-treated A549 and MCF7 cells (Fig. 4f). This suggests
that the activation of paracrine TGFB1 signaling may be critical for
EMT progression, following a variety of initial stimuli, supporting
previous work showing the dependence of the EMT on
transcription-factor-activated TGFB1 autocrine loops39–41.

Effects of direct EGFR inhibition with erlotinib and gefitinib
were largely restricted to EGF-treated EMT responses, but
inhibition of its downstream kinase MEK (with PD 0325901)
hindered the EMT response in TGFB1-treated A549 and MCF7
cells. Non-canonical TGFBR1 signaling through MEK/ERK has
been previously reported42,43, and two recent studies have
proposed a MEK-dependent regulatory checkpoint in the EMT
(refs. 11,44). While our data for TGFB1-treated A549 and MCF7
cells are in agreement with these findings, it also demonstrates
that this checkpoint is not universal, even among other TGFB1-
induced EMT responses, as DU145 and OVCA420 cells are not
susceptible to MEK inhibition (Fig. 4f).

Inhibition of RIPK1—a kinase involved in activating NFkB and
necroptosis pathways—with necrostatin-5 (Nec-5) blocked EMT
progression in all of the same conditions as TGFBR1 inhibition.
Nec-5-treated cells, however, consistently had higher pseudotime
values than TGFBR1-inhibited cells, suggesting a partial EMT
response (Fig. 4f, g). To determine if the partial response

corresponds to reduced magnitude of gene expression changes, or
a selective inhibition of a subset of genes, we assessed expression
levels of all genes differentially expressed following TGFB1
treatment. In each case, RIPK1 inhibition only abrogated a subset
of TGFB1-induced expression changes, producing a partial EMT
response (Fig. 4h, i). Importantly, we note that this partial
response with RIPK1 inhibition is not due to a temporal block in
EMT progression (i.e., preventing late EMT dynamics), as
inhibition does not exclusively prevent late response genes
(Supplementary Fig. 10). This suggests that the EMT involves
multiple independent regulatory modules that can be perturbed
without impacting others.

To our knowledge, no direct cross-talk between the
TGFB1 signaling and RIPK1 has been documented, but loss of
RIPK1 has been previously associated with an enhanced epithelial
phenotype, reduced ERK1/2 phosphorylation, and reduced
transcriptional activity of the AP-1 complex45,46. To determine
if RIPK1 inhibition prevents the activation of AP-1 targets in our
EMT models, we assessed the enrichment of transcription factor
binding motifs in the promoters of genes that failed to change
throughout the EMT in RIPK1-inhibited cells. We found that the
AP-1 binding site (JUN/FOS, BACH2 motifs) was the most
enriched in promoters of genes that failed to become upregulated
in Nec-5-treated cells in response to TGFB1 (Fig. 4j). Other
enriched motifs include EGR1 and PAX4 binding sites. Both AP-
1 and EGR1 can be activated through ERK1/2 signaling,
providing a possible mechanistic link between RIPK1 and these
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transcriptional changes46,47. As ERK1/2 is a downstream effector
of MEK, this may also explain the previously proposed MEK
checkpoint of the EMT (refs. 11,44). While it is still unclear how
RIPK1 becomes activated, this regulatory axis is conserved in
every condition we assessed that is also dependent on
TGFB1 signaling (based on similarity to TGFBR1 inhibition),
and may represent a common, though not universal, regulatory
network of the EMT.

Discussion
Here, we have demonstrated that the EMT is a complex cellular
process, driven by independent regulatory networks that ulti-
mately give rise to incredible context specificity. Given these

findings, we argue that the common paradigm of cells simply
undergoing a linear transition between well-defined epithelial and
mesenchymal programs is an oversimplification that can lead to
erroneous conclusions. Given the variety of EMT responses that
can be elicited—each with remarkable dissimilarity—a single
mesenchymal gene expression program simply does not exist.
The variety of possible responses also makes the full EMT inde-
finable, as the combination of all is likely to never occur. For the
same reason, the number of possible partial EMT states is likely
inumerable. This partial state has historically been defined as cells
co-expressing both epithelial and mesenchymal markers, but
studies have often relied on a small number of canonical markers
to make this designation, and we have shown that most markers
are inconsistently involved in the transition. This does not
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Fig. 4 Kinase inhibitor screens identify signaling dependencies of the EMT. a Gene set score of the KEGG pathway “cytokine–cytokine receptor
interaction” over pseudotime for each time course experiment. Shaded bands for each line correspond to the standard error for each model. b Heatmap
showing EMT-associated changes of the individual genes of the same gene set as in a, only listing those with a significant change in at least one time
course experiment. c Schematic of the 384-sample experimental design for the kinase inhibitor screen. d Heatmap showing the number of cells annotated
to each condition after demultiplexing the scRNA-seq data. e Summary of the number of genes that are differentially expressed in each cell line exposed to
the inhibitors without EMT induction. f Average pseudotime values calculated for each condition. g Boxplots showing the distribution of pseudotime values
for A549 cells treated with the inhibitors alone (grey) or in combination with TGFB1 (orange). The horizontal black line of the boxplot represents the
median value, the box spans the 25th and 75th percentiles, and whiskers correspond to 1.5 times the interquartile range. h UMAP embeddings of untreated
A549 cells with those had been treated with TGFB1 alone or in combination with the TGFBR1 inhibitor LY364947 (top), or the RIPK1 inhibitor necrostatin-5
(bottom). i Heatmap showing expression (Z-score) of genes differentially expressed in A549 cells by TGFB1 in untreated A549 cells, as well as those
treated with TGFB1 alone or in combination with necrostatin-5. j Difference in normalized enrichment scores for transcription factor targets in genes that
are successfully inhibited by necrostatin-5 compared to those that are not. Positive values correspond to regulons with that are enriched in necrostatin-5-
inhibited genes, whereas negative values represent those are not affected by necrostatin-5.
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discount the likely importance of gradation along some axis of
epithelial and mesenchymal phenotypes, but a more compre-
hensive definition of intermediate and polar states is required.

In this study, we have begun to take steps toward under-
standing the complexity of E/M plasticity. As single-cell tech-
nologies are becoming increasingly scalable, it may soon be
possible to learn the complete manifold of all possible states
related to E/M plasticity for a given cell type. Unique environ-
ment and developmental history will likely mean that this
manifold will vary for each cell type, but it may be possible to
learn models for their prediction or alignment across settings. It
will also be critical to understand how positions along the
manifold are associated with phenotypic traits, and how cell
perturbations promote dynamics within it. With a comprehensive
model of the E/M plasticity, we will gain a quantitative under-
standing of nuanced cellular heterogeneity, improving our
understanding of development, tissue homeostasis, and disease
progression. This information will also help inform new strategies
to therapeutically modulate cellular phenotypes in disease.

Methods
Cell culture. A549, DU145, and MCF7 cells were obtained from ATCC (CCL-185,
HTB-81, and HTB-22, respectively). OVCA420 cells were kindly provided by Dr.
Gordon Mills. All cells were cultured in Dulbecco’s Modified Eagle Medium with
4.5 g/L glucose, L-glutamine, and sodium pyruvate (Corning, 10-013-CV), sup-
plemented with 10% of fetal bovine serum and cultured at 37 °C with 5% CO2.

EMT time course experiments. For each cell line, 10,000 cells were plated into
each well of a 96-well plate according to the schematic in Fig. 1a. The addition of
TGFB1, EGF, and TNF were scheduled such that all time points completed at the
same time for collection. Cells were treated with 10 ng/mL TGFB1 (R&D Systems,
#240-B-010), 30 ng/mL EGF (Invitrogen, #PHG0311), or 10 ng/mL TNF (Invi-
trogen, #PHC3015). Media was changed and fresh TGFB1, EGF, or TNF were
added every 2 days to ensure relatively constant concentrations of these factors. To
avoid over-confluence throughout the experiments, cells were passaged as required,
but not within the last 2 days of the time course to avoid artifacts at the time of
collection. After the scheduled treatments, cells were immediately processed for
scRNA-seq multiplexing.

The time course experiments were performed twice independently. Each time,
the two time course replicates were performed in parallel, and on the second time
through the experiment, two 10x libraries were generated for each plate replicate.
Samples from the first replicate are labeled “Mix1” and “Mix2”, corresponding to
the two plates running in parallel. Samples from the second replicate are labeled
“Mix3a/b” and “Mix4a/b”.

Kinase inhibitor screen. For each cell line, 10,000 cells were plated into four 96-
well plates according to the schematic in Fig. 4c. Cells were simultaneously treated
with small molecule kinase inhibitors (listed in Fig. 4c) and either 10 ng/mL
TGFB1, 30 ng/mL EGF, or 10 ng/mL of TNF. No-inhibitor and No-EMT-inducer
controls were also included for all conditions. All inhibitors were used at a final
concentration of 1 µM (Cayman Chemical Kinase Screening Library, Item No.
10505, Batch No. 0537554). EMT inducers and kinase inhibitors were refreshed
daily after replacing the culture media. After 7 days of treatment, all samples were
immediately processed for scRNA-seq multiplexing.

Multiplexing individual samples for scRNA-seq. Multiplexing was performed
according to the MULTI-seq protocol13, and reagents were kindly provided by Dr.
Zev Gartner. Briefly, culture media was removed and each well was washed with 1×
Dulbecco’s phosphate-buffered saline (PBS; Corning, #21-031-CV). Next, a lipid-
modified DNA oligonucleotide and a unique sample barcode oligonucleotide were
added at 200 nM to 0.05% trypsin with 0.53 mM EDTA. This was added to each
sample to be multiplexed, with each sample receiving a different sample barcode.
Cells were incubated with this trypsin mixture for 5 min at 37 °C, and plates were
gently mixed periodically. After 5 min, a common lipid-modified co-anchor was
added to each well at 200 nM to stabilize the membrane residence of the barcodes.
Cells were incubated for an additional 5 min at 37 °C with periodic mixing. After
this labeling time, all cells were in suspension, lifted from the plate. The trypsin was
then neutralized with cultured media, and the cells were mixed by pipetting to
ensure a single-cell suspension. Samples were then transferred to V-bottom 96-well
plates, and pelleted at 400 × g for 5 min. Barcode-containing media was removed,
and the cells were then washed with PBS+ 1% bovine serum albumin (BSA).
Washes were performed twice, and after the final wash, cells were resuspended in
PBS+ 1% BSA, pooled together, repelleted, and resuspended in PBS+ 1% BSA.
Viability and cell counts were then performed, before preparation of the scRNA-
seq libraries.

scRNA-seq library preparation and sequencing. Single-cell suspensions were
processed using the 10× Genomics Single Cell 3′ RNA-seq kit (v2 for time course
experiments, v3 for kinase inhibition). Gene expression libraries were prepared
according to the manufacturer’s protocol. MULTI-seq barcode libraries were
retrieved from the samples and libraries were prepared independently according to
the MULTI-seq library preparation protocol13. Briefly, barcode libraries are sepa-
rated from the cDNA libraries during the first round of size selection in the 10×
Genomics library preparation protocol and PCR-amplified prior to sequencing13.
Final libraries were sequenced on a NextSeq500 (Illumina). Expression libraries
were sequenced so that time course libraries reached an approximate depth of
40,000–50,000 reads per cell (for the v2 scRNA-seq kit), and 20,000–25,000 reads
per cell for the kinase inhibitor experiment (v3 scRNA-seq kit). For the time course
data, we detected a median of 3649 genes and 17,330 UMIs per cell, and for the
kinase inhibitor screens, we detected a median of 2360 genes and 7634 UMIs.

Processing of raw sequencing reads. Raw sequencing reads from the gene
expression libraries were processed using CellRanger v2.2.0 for the time course
data, and v3.0.2 for the kinase inhibitor data. The GRCh38 build of the human
genome was used for both. Except for explicitly setting --expect-cells= 25,000,
default parameters were used for all samples. MULTI-seq barcode libraries were
simply trimmed to 26 bp (v2 kit) or 28 bp (v3 kit) using Trimmomatic48 (v0.36)
prior to demultiplexing.

Demultiplexing expression data with MULTI-seq barcode libraries. Demulti-
plexing was performed using the deMULTIplex R package (v1.0.2) (https://github.
com/chris-mcginnis-ucsf/MULTI-seq). The key concepts for demultiplexing are
described in McGinnis et al.13. Briefly, the tool takes the barcode sequencing reads
and counts the number of times each of the 96 barcodes appears for each cell.
Then, for each barcode, it assesses the distribution of counts in cells and determines
an optimal quantile threshold to deem a cell positive for a given barcode. Cells
positive for more than one barcode are classified as doublets and are removed. Only
cells positive for a single barcode are retained for downstream analysis. As each
barcode corresponds to a specific sample in the experiment, the sample annotations
can then be added to all cells in the data set.

Data quality control and processing. Quality control was first performed inde-
pendently on each 10× Genomic library, and all main processing steps were per-
formed with Seurat v3.0.2 (ref. 49). Expression matrices for each sample were
loaded into R as seurat objects, only retaining cells with >200 genes detected. Cells
with a high percentage of mitochondrial gene expression were also removed. We
then subsetted the data, making independent seurat objects for each time course or
kinase inhibition experiment (i.e., for all independent cell line and EMT inducer
combinations). Each condition was then processed independently with a standard
workflow. We first removed genes detected in <1% of the cells for the given
experiment. The expression values were then normalized with standard library size
scaling and log transformation. The top 3000 variable genes were detected using
the variance-stabilizing transformation (vst) selection method in Seurat. Expression
values were scaled and the following technical factors were regressed out: per-
centage of mitochondrial reads, number of RNA molecules detected, cycle cycle
scores, and for the time course data, batch was also included. For initial explora-
tion, PCA was run on the variable genes, but all UMAP embeddings included in
figures are based on PCA run on genes used for pseudotemporal ordering of cells.
UMAP embeddings were calculated from the first 30 principal components.

Pseudotemporal ordering of cells. Pseudotime models for each time course
experiment were built using the R package psupertime v0.2.1 (ref. 50) on the top
3000 variable genes from each condition. Psupertime is based on ordinal logistic
regression, taking scRNA-seq data with sequential labels and identifying a linear
combination of genes that places the cells in the specified label order. To build the
pseudotime model for each time course, we first omitted the treatment withdrawal
samples. Because psupertime is based on regression; however, pseudotime values
for new data can be calculated by simply performing matrix multiplication between
the coefficient matrix of the pseudotime model and the expression matrix of the
new data. We used this approach to calculate pseudotime values for both the
treatment withdrawal samples of the time course experiment. We also used the
time course models to calculate pseudotime values for the respective kinase inhi-
bition experiments. As the range of pseudotime values can vary between condi-
tions, we simply rescaled the values from 0 to 1 in cases where multiple models
were compared in the same figure.

Differential expression analysis. For time course experiments, expression
dynamics of each gene, or transcription factor regulon score, as a function of
pseudotime was modeled using the generalized additive model function provided
by the R package mgcv with the model exp ~ s(pseudotime, k= 4)+ batch, with
the smoothing parameter estimation method set to restricted maximum likelihood
(method= “REML”). The number of basis functions (k) was chosen such that the
residuals were randomly distributed. P-values associated with the smoothed
pseudotime function for each gene were adjusted using the p.adjust() function in R
with the Benjamini–Hochberg method. As many genes may significantly vary
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throughout pseudotime but have low effect sizes, we only evaluated significant
genes (adjusted p < 0.05) that are also within the top 2000 variable genes of each
time course experiment. While others may be biologically relevant, their signal in
the data is often too low to assess reliably.

When assessing transcription factor activity (Fig. 3) and cytokine production
(Fig. 4), we were more generally interested in assessing the directionality of change
over pseudotime, so in these cases, we used the same approach, but removed the
smoothing function from the model. This allowed us to report the single coefficient
associated with the pseudotime covariate, representing whether activity generally
increased or decreased throughout the transition.

For the kinase inhibition experiment, we assessed the number of differentially
expressed genes in cell lines treated with a kinase inhibitor, but no EMT inducer.
For this, we still used the gam() function provided by the mgcv package with the
model exp ~ inhibitor, setting the no-inhibitor controls as the intercept. We then
quantified the number of genes with an adjusted p < 0.05.

Calculating smoothed expression trends. To calculate smoothed expression
trends over pseudotime, we used models used for differential expression, but cal-
culated the fit values for 200 evenly spaced pseudotime values ranging between the
minimum and maximum pseudotime values.

Gene set enrichment analysis. GSEA was performed using the R package fgsea51.
Input genes were ranked either by their variance values after the vst, computed by
Seurat’s FindVariableFeatures() function, or by adjusted p-value from the differ-
ential expression analysis. Reference gene sets were collected from the Molecular
Signatures Database (MSigDB) v6.2.

Gene set scoring. Gene set scoring of the EMT hallmark gene set and the KEGG
pathway “cytokine–cytokine receptor interaction” was performed using the
AddModuleScore() function provided by the Seurat package. Default parameters
were used.

Transcription factor regulon scoring of single cells. Regulon scores for indivi-
dual cells were computed using the SCENIC workflow52. Log-transformed
expression values for each time course experiment were used as input into the
command-line interface functions of pySCENIC. First, gene regulatory networks
were computed using the grnboost2 method in the grn function. Next, enriched
motifs were identified using the ctx function, providing the cisTarget v9 databases
of regulatory features 500 bp upstream, 5 kb centered on the TSS, and 10 kb cen-
tered on the TSS. Finally, individual cells were scored for motifs using the aucell
function.

Identifying over-represented transcription factor motifs in gene lists. The R
package RcisTarget52 was used to identify enriched transcription factor motifs
associated with gene lists, using the cisTarget v9 transcription factor motif anno-
tations and the hg19-tss-centered-10kb-10species.mc9nr database of motif rank-
ings. To compare enrichment between two gene lists, we calculated the difference
in normalized enrichment scores (NES) for motifs between the two lists and ranked
motifs to identify uniquely enriched motifs.

ATAC-seq sample preparation and analysis. ATAC-seq samples were prepared
from OVCA420 cells treated with 10 ng/mL of TGFB1 for 0, 1, 3, or 7 days, and the
experiment was performed independently twice. Sample preparation was per-
formed as described by Buenrostro et al.53. Briefly, nuclei were extracted from
50,000 cells per sample and chromatin was tagmented using the TDE1 transposase
provided in the Nextera DNA Library Preparation Kit (Illumina). While the ori-
ginal protocol recommended 2.5 µL of enzyme, we found that optimal tagmenta-
tion of these samples required 5 µL of enzyme at 37 °C for 30 min with gentle
mixing. Finally, ATAC libraries were amplified and sequenced on a NextSeq500
150-cycle high output run, yielding ~50M reads per sample.

Raw reads were aligned to the hg38 build of the human genome using Bowtie2
(ref. 54) and peaks were called using MACS2 (ref. 55) with the following parameters:
-q 0.01 --nomodel --shift -100 --extsize 200 -B --SPMR --broad. Differential motif
accessibility was calculated using the R package chromVAR (ref. 56). Briefly, the
summits of peaks from all samples were merged, and expanded to a 250 bp
window, centered on the summit. Motifs from the human_pwms_v2 list included
with the package were mapped to the peaks using the matchMotifs() function and
then deviations across samples were computed. Significant deviations in motif
accessibility were identified using the differentialDeviations() function.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw sequencing files and processed UMI count matrices have been deposited in the
NCBI Gene Expression Omnibus under the accession GSE147405. Lung tumour scRNA-
seq data previously published by Lambretchs et al.57 is available at the ArrayExpress

accessions E-MTAB-6653 and E-MTAB-6149. scRNA-seq data from syngeneic mouse
tumours by Kumar et al.58 is available at the GEO accession GSE121861. Epithelial cell
scRNA-seq data from the Tabula Muris Consortium59 are available through Figshare
(https://doi.org/10.6084/m9.figshare.5968960.v2).

Code availability
All code used to process data and generate figures is available on a public Github
repository at https://github.com/dpcook/emt_dynamics.
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