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Abstract

Background: Bacterial meningitis and meningoencephalitis are associated with devastating neuroinflammation. We
and others have demonstrated the importance of glial cells in the initiation of immune responses to pathogens
invading the central nervous system (CNS). These cells use a variety of pattern recognition receptors (PRRs) to
identify common pathogen motifs and the cytosolic sensor retinoic acid inducible gene-1 (RIG-I) is known to serve
as a viral PRR and initiator of interferon (IFN) responses. Intriguingly, recent evidence indicates that RIG-I also has an
important role in the detection of bacterial nucleic acids, but such a role has not been investigated in glia.

Methods: In this study, we have assessed whether primary or immortalized human and murine glia express RIG-|
either constitutively or following stimulation with bacteria or their products by immunoblot analysis. We have used
capture ELISAs and immunoblot analysis to assess human microglial interferon regulatory factor 3 (IRF3) activation
and IFN production elicited by bacterial nucleic acids and novel engineered nucleic acid nanoparticles.
Furthermore, we have utilized a pharmacological inhibitor of RIG-I signaling and siRNA-mediated knockdown
approaches to assess the relative importance of RIG-I in such responses.

Results: We demonstrate that RIG-| is constitutively expressed by human and murine microglia and astrocytes, and
is elevated following bacterial infection in a pathogen and cell type-specific manner. Additionally, surface and
cytosolic PRR ligands are also sufficient to enhance RIG-I expression. Importantly, our data demonstrate that
bacterial RNA and DNA both trigger RIG-I-dependent IRF3 phosphorylation and subsequent type I IFN production
in human microglia. This ability has been confirmed using our nucleic acid nanoparticles where we demonstrate
that both RNA- and DNA-based nanoparticles can stimulate RIG-I-dependent IFN responses in these cells.

Conclusions: The constitutive and bacteria-induced expression of RIG-I by human glia and its ability to mediate IFN
responses to bacterial RNA and DNA and nucleic acid nanoparticles raises the intriguing possibility that RIG-I may
be a potential target for therapeutic intervention during bacterial infections of the CNS, and that the use of
engineered nucleic acid nanoparticles that engage this sensor might be a method to achieve this goal.
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Introduction

Bacterial meningitis and meningoencephalitis are serious
conditions that result in permanent neurological deficits
and even death. It is now appreciated that resident glia,
such as microglia and astrocytes, identify conserved
pathogen motifs via pattern recognition receptors (PRR),
thereby triggering both protective and detrimental im-
mune responses to bacterial infection of the central ner-
vous system (CNS) [1-5]. Glial cells express a variety of
PRRs, including members of the Toll-like receptor
(TLRs), nucleotide oligomerization domain (NOD)-like
receptor (NLR), and retinoic acid inducible genes (RIG)-
I-like receptor (RLRs) families [6—11]. TLRs have been
extensively characterized and are known to detect extra-
cellular and endosomal pathogen motifs to trigger in-
flammation [6, 12, 13]. In contrast, the cytosolic PRRs
such as the NLRs and RLRs have been identified rela-
tively recently, and the role of these sensors in glial cell
responses to bacterial infection remains poorly
understood.

The importance of RLRs as viral PRRs in glial cells is
well established [3, 14-17]. RIG-I binding to cytosolic
RNA ligands that contain 5'-triphosphate groups trig-
gers IRF3 phosphorylation, dimerization, and nuclear
translocation, leading to the induction of interferons
(IFN) and cytokine production [18—24]. Type I IFNs that
are produced following RIG-I activation can act in an
autocrine or paracrine manner to stimulate expression
of IFN-stimulated genes (ISGs) that sensitize a cell for
pathogen detection by upregulating PRR expression and
stimulating immune mediator release [25]. In glial cells,
we have demonstrated that RIG-I is necessary for viral
recognition and stimulation of immune responses to the
neurotropic RNA virus, vesicular stomatitis virus (VSV),
in murine microglia and primary human astrocytes [3,
9]. Additionally, we have previously shown that RIG-I
contributes to maximal murine glial cell responses to
the DNA virus, herpes simplex virus-1 (HSV-1), in an
RNA polymerase III-dependent manner [14].

Intriguingly, recent evidence indicates that RIG-I may
also play a novel role in the detection of bacterial patho-
gens. RIG-I has been demonstrated to identify Legionella
pneumophila, Shigella flexneria, Listeria monocytogenes,
and Salmonella enterica serovar Typhimurium in periph-
eral cell types [22, 26-32]. Interestingly, these studies
suggest that RIG-I identification of cytosolic bacterial
RNA or DNA is pathogen dependent. For example, RIG-
I appears to recognize Shigella flexneria DNA indirectly
via the action of RNA polymerase III, but this cytosolic
sensor can detect both RNA and DNA of L. monocyto-
genes and L. pneumophila [22, 27, 29, 30]. Furthermore,
there is evidence to suggest that RIG-I identification of
bacterial RNA versus DNA is also cell type-dependent,
as RIG-I-dependent production of IFN is only observed
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following S. enterica serovar Typhimurium infection of
non-phagocytic cells [28]. Similarly, L. monocytogenes
directly stimulates RIG-I -mediated recognition of RNA
in human monocytes, epithelial cells, and hepatocytes,
but exclusively mediates recognition of DNA in human
monocytes [30-32]. Together, these data indicate the
particular pathogen and host cell type in combination
determine the role of RIG-I in pathogen identification.
To date, the importance of RIG-I in the detection of
bacteria by human glial cells has not been determined.

In the present study, we demonstrate that RIG-I is
constitutively expressed by human glial cells and show
that such expression is further upregulated in response
to bacterial infection or exposure to bacterial products
that serve as ligands for surface and cytosolic PRRs. Im-
portantly, we show that bacterial RNA and DNA both
trigger RIG-I-dependent IRF3 phosphorylation and sub-
sequent type I IFN production in human microglia. This
ability was confirmed in studies using novel engineered
nucleic acid-based nanoparticles (NANPs) [33-35]
where we demonstrate that both RNA- and DNA-based
nanoparticles can stimulate RIG-I-dependent IEN re-
sponses in human microglial cells. As such, RIG-I may
be a potential target for therapeutic intervention during
bacterial infections of the CNS, and the use of engi-
neered NANPs that engage this sensor might be a
method to achieve this goal.

Materials and methods

Source and propagation of human glial primary cells and
cell lines

Primary human astrocytes were purchased from Scien-
Cell Research Laboratories (Carlsbad, CA). These cells
were isolated from human cerebral cortex, characterized
by the vendor by immunofluorescence for glial fibrillary
acidic protein (GFAP), and cryopreserved at passage
one. The immortalized human astrocytic cell line, U87-
MG, was obtained from the American Type Culture
Collection (ATCC; HTB-14). Cells were maintained in
Eagle minimum essential media (EMEM) supplemented
with 10% fetal bovine serum (FBS) and 100 U/ml peni-
cillin-100 pg/ml streptomycin at 37 °C 5% CO,. A hu-
man microglia cell line (hpuglia) was a generous gift from
Dr. Jonathan Karn (Case Western Reserve University).
These cells were derived from primary human cells
transformed with lentiviral vectors expressing SV40 T
antigen and human telomerase reverse transcriptase.
The characterization and classification of this cell line
has been previously described [10, 36, 37]. These cells
are classified as microglia due to microglia-like morph-
ology, expression of the microglia surface markers
CD11B, TGEPR, and P,RY;,, and their migratory and
phagocytic activity. Cell were maintained in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with
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5% FBS and 100 U/ml penicillin-100 pg/ml strepto-
mycin at 37 °C 5% CO,,

Murine glial cell isolation and culture

Primary murine glial cells were isolated as described pre-
viously by our laboratory [1, 6, 8, 38, 39]. Briefly, six to
eight neonatal C57BL/6] mouse brains per preparation
were dissected free of meninges and large blood vessels,
minced using sterile surgical scissors, incubated with
0.25% trypsin 1 mM EDTA in serum-free RPMI 1640
medium for 5 min, and forced through a wire screen.
The cell suspension was pelleted and suspended in
RPMI 1640 containing 10% FBS and penicillin-
streptomycin mix for 2 weeks. Astrocytes were isolated
from mixed glial cultures by trypsinization (0.25% tryp-
sin—-1 mM EDTA for 20 min) in the absence of FBS
[40]. The remaining intact layer of adherent cells was
demonstrated to be >98% microglia via immuno-
histochemical staining for the microglial surface marker
CD11b [40]. Isolated astrocytes were determined to be >
96% pure based on morphological characteristics and
the expression of the astrocyte marker GFAP as deter-
mined by immunofluorescence microscopy [6]. Micro-
glia were maintained in RPMI 1640 with 10% FBS and
20% conditioned medium from LADMAC cells (ATCC
number CRL-2420), a murine monocyte-like cell line
that secretes colony-stimulating factor-1 (CSF-1), for 24
h prior to experiments. It is important to note that prior
to separation of mixed glial cultures, astrocytes produce
the CSF-1 necessary to maintain microglial cells. Post
separation, microglia were cultured in media containing
the 20% conditioned medium from LADMAC cells to
provide the necessary CSF-1. Astrocytes were main-
tained in RPMI 1640 containing 10% FBS for 24 h prior
to experiments. All studies were performed in accord-
ance with relevant federal guidelines and institutional
policies regarding the use of animals for research
purposes.

Bacterial propagation

Neisseria meningitidis strain MC58 (ATCC BAA-335)
was grown on Columbia agar plates supplemented with
5% defibrinated sheep blood (BD, Franklin Lakes, NJ)
and cultured in Columbia broth (BD Biosciences, San
Jose, CA) on an orbital rocker at 37 °C with 5% CO,
overnight prior to in vitro challenge. Streptococcus pneu-
moniae strain CDC CS109 (ATCC 51915) and Salmon-
ella enterica serovar Typhimurium SB300 (provided by
Dr. Michael C. Hudson, formally of the University of
North Carolina at Charlotte) were grown from frozen
stock on commercially available trypticase soy agar with
5% sheep blood (BD Biosciences). Staphylococcus aureus
strain UAMS-1 (ATCC 49230) was grown on lysogeny
broth (LB) agar plates. S. pneumoniae, S. aureus, and S.
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typhimurium were cultured overnight in tryptic soy
broth on an orbital rocker at 37 °C with 5% CO, over-
night prior to in vitro challenge. The number of colony
forming units (CFU) for each bacterial species was deter-
mined by spectrophotometry using a Genespec3 spectro-
photometer (MiraiBio Inc., Alameda CA). Bacterial DNA
and RNA were isolated using the commercially available
kits, GeneElute bacterial genomic DNA, and RNeasy
protect bacteria mini kit (Sigma and QIAGEN).

Bacterial infection

Glial cells were infected with bacteria at multiplicities of
infection (MOI) of 1, 10, or 50 bacteria to glia in
antibiotic-free medium for 2 h at 37 °C with 5% CO,.
These doses are based on bacterial numbers previously
reported in the cerebral spinal fluid of children with
bacterial meningitis [41]. After 2 h of infection, media
containing penicillin-streptomycin (MilliporeSigma, St.
Louis, MO) was added to Kkill extracellular bacteria. At
the indicated time points following challenge, cell super-
natants, whole cell protein lysates, and RNA were iso-
lated for ELISAs, immunoblot analysis, and RT-PCR,
respectively.

Nuclear translocation

At the indicated time points, hpglia cells were suspended
in a pH 7.9 lysis buffer containing 10 mM HEPES, 1.5
mM MgCl,, 10 mM KCl, 0.5 mM DTT, 0.05% NP40,
and protease inhibitor cocktail for 10 min at 4 °C. The
nuclei and other fragments were pelleted by centrifuga-
tion and supernatants were retained as cytoplasmic frac-
tions. Nuclei were lysed by exposure to pH 7.9 high salt
buffer containing 5 mM HEPES, 1.5 mM MgCl,, 0.2
mM EDTA, 0.5 mM DTT, 26% glycerol, and 300 mM
NaCl for 30 min at 4 °C. Samples were cleared of cellular
debris by centrifugation, and supernatants containing
the nuclear fraction were subjected to immunoblot ana-
lysis using a rabbit monoclonal antibody specific for
total IRF-3 (Cell signaling).

Immunoblot analysis

Cell lysates were evaluated for the presence of RIG-I,
RNA polymerase III subunit A, and phosphorylated
IRF3 (pIRF3) by immunoblot analyses [9]. Blots were
incubated with a rabbit polyclonal antibody against
mouse and human RIG-I (Abgent, cat# AP1900a, 0.5
pg/ml), a rabbit monoclonal antibody specific for
RNA polymerase III subunit A (Cell Signaling, cat #
128258, 1:1000), a rabbit monoclonal antibody specific
for IRF-3 phosphorylated at Ser396 (Cell Signaling,
cat# 4947, 1:1000), or a rabbit monoclonal antibody
for total IRF-3 (Cell Signaling, cat# 4302, 1:1000)
overnight at 4 °C. Blots were then washed and incu-
bated in the presence of a horseradish peroxidase
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(HRP)-conjugated secondary anti-rabbit antibody.
Bound antibody was detected with WesternBright
ECL kit (Advansta). Immunoblots were reprobed with
a mouse monoclonal antibody against p-actin (Abcam,
cat# 49900, 0.13 pg/ml) to assess total protein load-
ing. Immunoblots shown are representative of at least
three separate experiments and Imagelab software
(BioRad) was used for densitometric analysis.

Quantification of cytokines in glial cell supernatants

To quantify human IL-6 and IFN-B production, specific
capture ELISAs were performed. A rat anti-human IL-6
capture antibody (BD Pharmingen, cat# 554543; Clone
Mq2-13A5, 2 pg/ml) and a biotinylated rat anti-human
IL-6 detection antibody (BD Pharmingen, cat# 554546;
Clone MQ2-39C3, 2 ug/ml) were used in IL-6 ELISAs.
While, a polyclonal rabbit anti-human IFN-f capture
antibody (Abcam, cat# ab186669, 0.25 pug/ml) and a bio-
tinylated polyclonal rabbit anti-human IFN-B detection
antibody (Abcam, cat# ab84258, 0.25 pg/ml) were used
in IFN-p ELISAs. Bound antibody was detected using
streptavidin-HRP (BD Biosciences) followed by the
addition of tetramethylbenzidine substrate. H,SO, was
used to stop the reaction and absorbance was measured
at 450 nm. A standard curve was generated using dilu-
tion of recombinant cytokines for IL-6 (BD Pharmingen)
and IFN-B (Abcam). The cytokine concentration in cell
supernatants was determined by extrapolation of absorb-
ance to the standard curve.

Ligand stimulation

Glial cells were exposed to bacterial lipopolysaccharide
(LPS) isolated from Escherichia coli (MilliporeSigma),
Pam3Cys-Ser-(Lys)4 (Pam3Cys; InvivoGen, San Diego,
CA), bacterial flagellin isolated from Salmonella typhi-
murium strain 14028 (Enzolife Sciences, Farmingdale,
NY), or polyinosinic polycytidylic acid (polyl:C; Millipor-
eSigma). Additionally, glial cells were transfected with 5’
ppp RNA (Invivogen), BDNA (dA:dT) (Invivogen), or
RNA/DNA isolated from Neisseria meningitidis strain
MC58 (ATCC BAA-335), Streptococcus pneumoniae
strain CDC CS109 (ATCC 51915), and Staphylococcus
aureus strain UAMS-1 (ATCC 49230) using an RNA
isolation kit or genomic DNA isolation kit. Genomic
DNA isolation included RNase treatment to remove
contaminating RNA. Any potential DNA contamination
was removed from isolated bacterial RNA using a DNase
I kit (Sigma-Aldrich) and we confirmed that the hpglia
human microglial cell line produces significant levels of
IFN-B in response to transfection with DNase-treated N.
meningitidis or S. aureus RNA (556 pg/ml and 679 pg/
ml respectively).
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Transfection

Transfection of huglia cells was conducted using lipofec-
tamine 2000 (L2K, Invitrogen) according to the manu-
facturer’s guidelines. Ligands were incubated for 30 min
with lipofectamine 2000 prior to transfection of hpglia
with 0.1 pg/ml BDNA, 1 pg/ml 5 pppRNA, 0.5 pg/ml
bacterial gDNA, 1 pg/ml bacterial RNA, or 5 nM nucleic
acid nanoparticles for 4 h in DMEM supplement with
5% FBS. Cell culture media was subsequently changed to
media additionally supplemented with 100 U/ml penicil-
lin—-100 pg/ml streptomycin at 4 h post transfection. Cell
lysates and supernatants were collected for analysis at
the indicated time points.

BX795 treatment

In some experiments, microglia were untreated or treated
with 1 uM BX795 (Invivogen) in DMEM supplemented
with 5% FBS and 100 U/ml penicillin-100 pg/ml strepto-
mycin at 37 °C 5% CO, for 3 h prior to transfection with
bacterial nucleic acids or nucleic acid nanoparticles as de-
scribed above. BX795 blocks the phosphorylation of
TANK-binding kinase 1 (TBK1)/IkappaB kinase-¢ (IKKe)
which inhibits the catalytic activity of these proteins.
These signaling molecules are downstream of RIG-I ligand
binding and are required for IRF3 phosphorylation and
nuclear translocation. Cell lysates and supernatants were
collected for analysis at the indicated time points.

siRNA knockdown

Microglia were transfected with 5 nM control siRNA (si-
lencer select negative control number 1 siRNA Thermo-
Fisher Scientific), siRNA targeted against RIG-I («aRIG-I)
(ThermoFisher Scientific assay identification number
§223615), or siRNA targeting RNA polymerase III sub-
unit A (Thermo Fisher Scientific assay identification
number s21945), 48 h prior to transfection with bacterial
nucleic acids or nucleic acid nanoparticles as described
above. Silencer select siRNA was transfected according
to the manufacture’s guidelines using RNAimax (Ther-
moFisher Scientific). Cells were placed in fresh media
for 24 h prior to transfection with bacterial nucleic acids
or nucleic acid nanoparticles. Cell lysates and superna-
tants were collected for analysis at the indicated time
points.

Nucleic acid-based nanoparticles assembly

All individual DNA oligonucleotides were purchased
from Integrated DNA technologies and dissolved in
Hyclone HyPure water cell culture grade (GE Healthcare
Life Sciences). RNA strands were synthesized by run-off
transcription of PCR-amplified DNA templates carrying
the T7 RNA polymerase promoter region and amplified
DNA products were subjected to an in vitro transcrip-
tion with T7 RNA polymerase [42]. Transcribed RNAs



Johnson et al. Journal of Neuroinflammation (2020) 17:139

were purified by denaturing gel electrophoresis (8%
acrylamide, 29:1 acrylamide:bis-acrylamide, 8 M urea)
and extracted from excised gel slices using 0.5 ml of a
buffer containing 89 mM tris-borate, pH 8.2, 1 mM
EDTA, 0.3 M of sodium chloride, with overnight shaking
at 4 °C. RNAs were ethanol precipitated (3:1 volume ra-
tio), rinsed twice with cold 90% ethanol, dried, and re-
dissolved in molecular grade water. To assemble RNA
and DNA triangles, individual strands were mixed at
equimolar concentrations (at 1 or 5 pM final) in assem-
bly buffer (89 mM tris-borate pH = 8.2, 2 mM MgCl,,
50 mM KCI), heated to 80 °C for 5 min, and slow cooled
to 4 °C over a 1-h period (Supplemental 1). The assem-
bly of triangles was confirmed by 6% native-PAGE with
subsequent staining with ethidium bromide and
visualization using the BioRad Gel Doc system.

Atomic force microscopy imaging

Thirty microliters of assembled triangles at a concentra-
tion of 5 pM were subjected to an 8% non-denaturing
PAGE. The gel was run for 50 min at a constant voltage
of 90 and triangles were visualized using UV shadowing,
then cut, and eluted from the gel using 500 pl of assem-
bly buffer (89 mM tris-borate pH = 8.0, 2 mM MgCl,,
50 mM KCI) overnight. Triangles were then precipitated
using three volumes of cold ethanol, washed twice with
80% ethanol, dried, and redissolved in 30 ul of the as-
sembly buffer. A freshly cleaved muscovite mica surface
(Tedd Pella, Inc.) was treated with 20 mM NiCl, for 2
min and washed with 100 ul of 4qH2O. Purified triangles
(2 nM final) were applied to the mica and incubated for
10 min, washed with 100 pl of 44qH2O, and dried under a
stream of compressed air. Atomic force microscopy
(AFM) imaging of the triangles was performed using a
5500 AEM (Keysight Technologies) in alternate contact
mode and the images were recorded with a 2 Hz scan-
ning rate using a PPP-NCHR-50 probe from NanoAnd-
More USA Corp.

Statistical analysis

Data is presented as the mean * standard error of the
mean (SEM). Statistical analyses were performed using
Student’s t test or two-way analysis of variance
(ANOVA) with Dunnet’s post hoc test as appropriate
using commercially available software (GraphPad Prism,
GraphPad Software, La Jolla, CA). In all experiments, re-
sults were considered statistically significant when a P
value of less than 0.05 was obtained.

Results

Microglia show upregulated RIG-I protein expression
following bacterial infection

In order to establish the role of RIG-I in the detection of bac-
terial pathogens by glial cells, we first examined glial cell
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cytokine responses to bacterial infection. Consistent with our
previous publications [1, 2, 39, 43, 44], we observed that pri-
mary human astrocyte and the hpglia human microglial cell
line produce the inflammatory cytokine IL-6 (Fig. 1b, €) in
response to infection with N. meningitidis and S. aureus. We
also observed IFN-P production in response to bacterial in-
fection 18 h post infection, but in contrast to IL-6, significant
IFN-B production was only observed in response to infection
with S. aureus indicating that release of interferons is patho-
gen specific. Importantly, we observed low constitutive ex-
pression of RIG-I in hpglia cells that was upregulated
following infection with N. meningitidis or S. aureus (Fig. 1a).
In contrast, RIG-I expression in primary human astrocytes
was only upregulated following infection with S. aureus (Fig.
1d), indicating that such upregulation is both pathogen and
cell type specific. The ability of bacterial pathogens to upreg-
ulate RIG-I expression was not restricted to human glia as
low level constitutive expression of RIG-I in isolated primary
murine astrocytes was significantly upregulated following
bacterial infection with N. meningitidis, S. aureus, and S.
pneumoniae while in primary murine microglia, we observed
a trend for upregulated expression (Fig. 1c, f).

Microglia show upregulated RIG-I protein expression in
response to bacterial components

To determine whether bacterial components are a suffi-
cient stimulus for RIG-I induction, we challenged hu-
man astrocyte and microglia cell lines with PAM3Cys,
LPS, and flagellin that are known specific ligands for
TLR2, TLR4, and TLR5, respectively (Fig. 2a, b). Inter-
estingly, huglia cells showed significant upregulated
RIG-I protein expression in response to these TLR li-
gands (Fig. 2a). In contrast, the human astrocyte cell line
expressed low constitutive RIG-I expression, which was
not elevated following stimulation with TLR ligands,
even when challenged with higher doses (Fig. 2b).

We next examined if bacterial nucleic acids were
sufficient to upregulate RIG-I expression. We found
that transfection of hpglia cells with 5'-pppRNA, a
RIG-I-specific ligand, significantly upregulated expres-
sion of its own receptor (Fig. 2c, d). Interestingly, we
observed a similar upregulation in response to BDNA,
a classic ligand for DNA sensors. It should be noted
that it is known that the RNA sensor, RIG-I, can also
recognize BDNA indirectly via RNA polymerase III-
mediated conversion of BDNA to an RNA intermedi-
ate [19, 22]. Consistent with these findings, we ob-
served that genomic DNA and RNA isolated from N.
meningitidis and S. aureus upregulate expression of
RIG-I by a human microglial cell line. Together, these
data indicate that, in response to bacterial compo-
nents, microglia show elevated expression of the cyto-
solic sensor RIG-I.
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Fig. 1 Bacterial infection stimulates cytokine release and increased RIG-I protein expression in glial cells. The human microglial cell line huglia (a, b),
primary murine microglia (c), primary human astrocytes (d, e), and primary murine astrocytes (f) were infected with N. meningitidis (Nm), S. aureus (Sa),
or S. pneumoniae (Sp) at an MOI of 1, 10, or 50 (glial:bacteria). At 24 h post infection, cell lysates were collected and analyzed for RIG-I protein
expression via immunoblot analysis (N = 3). RIG-I protein expression relative to that produced by unstimulated cells is shown in the corresponding bar
graphs below each representative immunoblot (a, ¢, d, f). Cells were infected for 2 h with bacteria and at 24 h post infection, cell supernatants were
collected and analyzed for cytokine production by specific capture ELISA for IL-6 and IFN-B (b, e). Data are expressed as mean + SEM for a minimum
of three independent experiments. Asterisks denote statistical significance compared to unchallenged cells as determined by Student’s t test (p < 0.05)
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Fig. 2 Bacterial components stimulate increased RIG-I protein expression in human microglia. Human microglial (a) and astrocytic (b) cell lines were
stimulated with the bacterial components flagellin (FLG, 10-100 ng/ml), Pam3Cys (Pam, 10-100 ng/ml), and lipopolysaccharide (LPS, 1-10 ng/ml) for
18 h. In addition, huglia human microglial cells were transfected for 4 h with 0.1 ug/ml BDNA, 1 ug/ml 5'pppRNA, 0.5 ug/ml bacterial genomic DNA
(gDNA) (¢) or 1 pg/ml bacterial RNA (d) and cell lysates were collected 24 h post transfection. Cell lysates were analyzed for protein expression of RIG-I
and the housekeeping gene, 3-actin, via immunoblot analysis. Relative RIG-l protein expression normalized to B-actin is displayed graphically below
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RNA isolated from N. meningitidis, S. typhimurium, S.
aureus, or S. pneumonia induced IRF3 phosphorylation
to varying degrees suggesting a bacterial species-specific
difference in pathogen recognition by glial cells (Fig. 3a,
b). Additionally, we observed that IRF3 phosphorylation
occurred more rapidly in response to genomic DNA,
with significantly more IRF3 phosphorylation compared
to bacterial RNA at 3 h post transfection. Consistent
with this observation, IRF3 nuclear translocation oc-
curred at 3 h following administration of bacterial gen-
omic DNA (Fig. 3c). Together, these data show that
human microglial cells can sense bacterial genomic
DNA and RNA leading to the induction of IRF3 phos-
phorylation and nuclear translocation.

Bacterial nucleic acids stimulate RIG-I-dependent
interferon responses in human microglia

To establish a role for RIG-I in microglial responses to
either bacterial genomic DNA or RNA, we determined
the effect of inhibiting TBK1 or the catalytic activity of
IKKg using the inhibitor, BX795. These signaling mole-
cules are downstream of RIG-I ligand binding and are
required for IRF3 phosphorylation and nuclear trans-
location. As shown in Fig. 4, BX795 treatment of hpglia
human microglial cells diminished IRF3 phosphorylation
in response to the control ligands BDNA and 5'-
pppRNA. Similarly, BX795 treatment significantly re-
duces IRF3 phosphorylation in response to bacterial
RNA (Fig. 4a). Interestingly, this inhibitor also signifi-
cantly reduced levels of IRF3 phosphorylation in re-
sponse to either N. meningitidis or S. aureus genomic
DNA (Fig. 4a).

Consistent with these results, BX795 treatment signifi-
cantly reduced microglial IFN responses to the control
ligands, BDNA and 5'-pppRNA, and IFN-B production
in cells stimulated with bacterial RNA. Furthermore,
BX795 treatment also significantly reduced microglial
IFN-B production in response to bacterial genomic
DNA. In contrast to the effects on microglia type I IFN
responses, inhibition of TBK1/IKK¢ catalytic activity did
not affect release of the inflammatory cytokine IL-6 (Fig.
4b), thus suggesting that an alternative signaling cascade
underlies this inflammatory cytokine response.

Finally, in order to confirm that bacterial components
stimulate RIG-I-mediated responses, expression of this
cytosolic sensor was knocked down using an siRNA
approach in microglia prior to challenge with DNA and
RNA ligands. As shown in Fig. 4c, RIG-I knockdown sig-
nificantly reduced hpglia IFN responses to RNA ligands
including 5'-pppRNA, N. meningitidis RNA, and S. aur-
eus RNA. In addition, we observed a reduction in IFN
responses to DNA ligands including BDNA, N. meningi-
tidis DNA, and S. aureus DNA. Importantly, the physio-
logical relevance of such RIG-I-mediated microglial
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responses is demonstrated by the ability of RIG-I knock-
down to significantly reduce the production of IFNs by
hyglia cells following S. aureus infection (Fig. 4c). To-
gether, these data indicate that RIG-I contributes to
microglial IFN responses to bacterial infection and not
only serves as a receptor for bacterial RNA but also con-
tributes to microglial responses to bacterial genomic
DNA.

RIG-I is known to identify DNA ligands indirectly via
the activity of RNA polymerase III [19, 22]. In order to
confirm that RIG-I-mediated detection of bacterial gen-
omic DNA by human microglial cells is dependent on
RNA polymerase III, expression of the catalytic RNA
polymerase III subunit A was knocked down using an
siRNA approach prior to challenge with DNA ligands.
As shown in Fig. 4d, RNA polymerase III knockdown
significantly reduced hpglia cell IEN responses to the
DNA ligands, BDNA, N. meningitidis DNA, and S. aur-
eus DNA, indicating that RIG-I-mediated detection of
DNA ligands in human microglial cells occurs in an
RNA polymerase III-dependent manner.

Nucleic acid nanoparticles stimulate RIG-I -dependent
responses in human microglia

Within the CNS, damaging proinflammatory responses
are initiated by resident microglia [1, 2] and we have
demonstrated that RIG-I is upregulated in response to
bacterial components, which in part mediates the pro-
duction of type I IFNs. As such, RIG-I may be a target-
able receptor to promote IFN responses within the CNS.
We have previously demonstrated that RNA polygons
stimulate microglia to release IFN-f [33, 45] and in the
present study we have determined whether RIG-I under-
lies such responses.

As shown in Fig. 5a, b, we visualized fully assembled
RNA and DNA triangles by AFM and the native-PAGE
experiments confirmed the migration retardation of fully
assembled nucleic acid-based nanoparticles (NANPs)
compared to their partial assemblies (monomer, dimer,
and trimer). The assembly vyields, estimated based on
native-PAGE analysis, were greater than 90% for both
NANPs. We then evaluated IRF3 phosphorylation in
hpglia microglial cells in response to NANPs transfec-
tion, and found that RNA NANPs stimulate rapid re-
sponses as early as 2 h following transfection (Fig. 5c).
Importantly, BX795 treatment significantly reduced
NANPs’ stimulated IRF3 phosphorylation and interferon
production (Fig. 5d, e).

The RNA strands of RNA triangle NANPs were pro-
duced by in vitro run-off transcription [33, 46] thus
making all four strands in NANPs’ composition possess
5'-triphosphate groups, a reported ligand for RIG-I rec-
ognition [18, 21, 47]. In order to verify if RIG-I is re-
quired for microglial responses to RNA triangle NANPs,
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Fig. 3 Bacterial nucleic acids stimulate IRF3 phosphorylation in huglia human microglial cells. Cells were transfected with 0.1 ug/ml BDNA, 1 pg/
ml 5'pppRNA, 0.5 pg/ml bacterial genomic DNA (GDNA) (a), or 1 pg/ml bacterial RNA (b). Cell lysates were collected at 1, 2, and 3 h and analyzed
for protein expression of phosphorylated IRF3 (pIRF3) and the housekeeping gene, -actin, via immunoblot analysis. Relative phosphorylated IRF3
normalized to B-actin is displayed graphically (a, b). Additionally, at 3 h post transfection, the cytosolic and nuclear cells fractions were separated
and analyzed for protein expression of IRF3 and 3-actin via immunoblot analysis (c). Relative IRF3 protein expression was normalized to (3-actin
and is displayed graphically below the representative immunoblot. Data are expressed as mean £ SEM for a minimum of three independent
experiments. Asterisks indicate statistical significance compared to unchallenged cells as determined by two-way ANOVA (p < 0.05)
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Fig. 4 Bacterial components stimulate RIG-I-dependent signaling in huglia human microglial cells. Cells were untreated or treated with 1 uM
BX795, an inhibitor of TBK1/IKKg, for 3 h prior to transfection with 0.1 ug/ml BDNA, 1 pg/ml 5'pppRNA, 0.5 pg/ml bacterial genomic DNA (gDNA),
or 1 pug/ml bacterial RNA (a, b). Total cell lysates were collected at 3 h and analyzed for protein expression of phosphorylated IRF3 (pIRF3) and {-
actin via immunoblot analysis (a). Relative phosphorylated IRF3 expression was normalized to 3-actin and is displayed graphically below the
representative immunoblot. Cell supernatants were collected 24 h post transfection. IFN-3 and IL-6 levels were quantified with specific capture
ELISAs (b). Microglial cells were treated with scrambled siRNA or siRNA targeting RIG-I (aRIG-I) at a final concentration of 5 nM for 24 h. Cells were
placed in fresh media for 24 h prior to transfection with 0.1 ug/ml BDNA, 1 ug/ml 5'pppRNA, 0.5 pg/ml bacterial gDNA, 1 pg/ml bacterial RNA, or
infection with S. aureus at a MOI of 50 (c). Microglial cells were treated with scrambled siRNA or siRNA targeting RNA polymerase IIl (aRP3) at a
final concentration of 5 nM for 24 h, then placed in fresh media for 24 h, and then transfected with 0.1 pg/ml BDNA, 0.5 pg/ml bacterial gDNA,
or 5 nM DNA/RNA triangles (d). Cell supernatants were collected at 24 h post transfection and IFN-{3 levels were quantified by specific capture
ELISA. Data are expressed as mean + SEM for a minimum of three independent experiments. Asterisks indicate statistical significance compared
to untreated condition as determined by Student's t test or two-way ANOVA (p < 0.05)
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Microglia were treated with scrambled control siRNA or siRNA targeted against RIG- (aRIG-) at a final concentration of 5 nM for 24 h. Cells were placed in
fresh media for 24 h prior to transfection with 5 nM RNA triangles. Cell supernatants were collected 24 h post transfection and IFN-3 levels were quantified
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RIG-I expression was knocked down using siRNA prior
to transfection of hpglia cells with RNA NANPs. As
shown in Fig. 5f, IEN production was significantly re-
duced following RIG-I knockdown indicating that these
RNA nanoparticles can serve as a RIG-I agonist (Fig. 5f).
Furthermore, in agreement with the results obtained
using bacterial genomic DNA, RNA polymerase III
knockdown significantly reduced microglial IEN re-
sponses to DNA NANPs, indicating that RIG-I-mediated
detection of DNA NANPs also occurs via an RNA poly-
merase III-dependent mechanism (Fig. 4d).

Discussion

It is now appreciated that resident CNS cells, microglia
and astrocytes, express PRRs to identify pathogen motifs
and are critical for shaping the immune response to in-
fection [1, 2, 6-9, 14]. We have previously demonstrated
that RIG-I expression in murine microglia and astrocytes
and human astrocytes is inducible following challenge
with vesicular stomatitis virus (VSV) or herpes simplex
virus-1 (HSV-1), neurotropic RNA and DNA viruses, re-
spectively [3, 9, 14]. Consistent with our previous find-
ings, we observed constitutive expression of RIG-I in
murine microglia and human astrocytes, but here, we
also provide the first demonstration of RIG-I protein ex-
pression in human microglial cells. Interestingly, we de-
termined that RIG-I expression can be further elevated
in human glia in response to bacterial infection, and our
data indicates that this effect is pathogen and cell type
specific as human astrocytes only show induced expres-
sion in response to the Gram-positive pathogen, S. aur-
eus. Furthermore, we have identified bacterial motifs
that are recognized by either surface PRRs or cytosolic
PRRs that are sufficient to induce RIG-I protein expres-
sion in microglial cells. Again, we found cell type-
dependent differences as human astrocytes did not show
increased expression of RIG-I following stimulation with
ligands for surface TLRs. However, it is presently unclear
whether the ability of bacteria and their ligands to up-
regulate RIG-I expression in human microglial cells but
not astrocytes occur as a direct effect of these stimuli or,
rather, occurs secondary to the production of other me-
diators. Furthermore, it will be interesting to determine
whether RIG-I-specific ligands can upregulate the ex-
pression of other PRRs, thereby sensitizing human
microglia to bacterial challenge in a similar “crosstalk”
manner to that previously shown for other PAMPs in
glia [6-9, 48].

While RIG-I has classically been defined as a viral pat-
tern recognition receptor, more recent studies have indi-
cated that RIG-I can serve a role in the detection of
bacterial pathogens in peripheral cells types [22, 26-31].
The present study indicates that RIG-I can serve directly
as a sensor for pathogen RNA and indirectly as a sensor
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for pathogen DNA in an RNA polymerase III-dependent
mechanism. Interestingly, the ability of RIG-I to serve as
a sensor for pathogen RNA versus DNA appears to be
both pathogen and glial cell type specific. As anticipated,
we showed RIG-I-dependent responses to the RIG-I-
specific ligand, 5'-pppRNA, but we also demonstrated
that this sensor was responsible, at least in part, for glial
responses to BDNA, that can be converted by RNA
polymerase III to a ligand for RIG-I. Importantly, in
agreement with studies in peripheral cell types, we have
demonstrated that RIG-I can identify bacterial RNA in
glial cells. More interestingly, our data supports a model
in which RIG-I also serves indirectly as a sensor for bac-
terial genomic DNA, and does so in a bacterial species-
dependent manner. A possible explanation for this
observation may come from the previous demonstration
that RIG-I has sequence preferences for polyuridine-rich
motifs or polyuridine motifs that are interspersed with
cysteine nucleotides [20, 49]. Additionally, RNA poly-
merase III preferentially recognizes AT-rich DNA [19,
22]. As such, differences in bacterial genome characteris-
tics and architecture may account for varying RIG-I-
mediated glial responses between bacterial species.

Our previously published studies have demonstrated
that nucleic acids can serve as building blocks for the
construction of NANPs [33, 34, 46, 50]. We have shown
that the RNA and DNA composition of such assemblies
dictate their molecular weight, melting temperature, and
half-life, and quantitative structure-activity relationship
models indicate that these properties strongly predict
NANPs immunostimulatory activity [45]. We have dem-
onstrated that RNA triangle NANPs are potent inducers
of type I IFN in human microglia [33, 45], while DNA
triangle NANPs, albeit to a lesser degree, can also induce
demonstrable production of type I IFN. In the present
study, we determined whether RIG-I mediates glial IFN
responses to RNA or DNA triangles. Since RNA strands
synthesized by run-off transcription of a DNA template
are the building blocks for RNA triangle nanoparticles
and contain 5’-triphosphate groups, a known ligand
motif for RIG-I [18, 21, 47], it was not surprising that
RNA triangles elicited IFN production in a RIG-I-
dependent manner. Interestingly, we determined that
glial cell responses to DNA triangles are also dependent
on RIG-I signaling pathways due to an RNA polymerase
III-dependent mechanism.

Conclusions

In the present study, we have demonstrated a human
microglial cell line and primary human astrocytes consti-
tutively express RIG-I, and we have shown that such ex-
pression is elevated following bacterial infection. Known
ligands for membrane-bound TLRs and bacterial nucleic
acids are also capable of inducing RIG-I expression in a
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human microglial cell line. Importantly, bacterial nucleic
acids stimulate RIG-I-dependent signaling and IFN pro-
duction by human microglial cells, and our data demon-
strates that nucleic acid nanoparticles can serve as
agonists of RIG-I and stimulate RIG-I-dependent signal-
ing and IFN production by these cells. This raises the
exciting prospect of RIG-I as a druggable target, and ra-
tionally designed nucleic acid nanoparticles may serve as
a platform for targeting this immune receptor. In terms
of pathogen infection within the CNS, such RIG-I ago-
nists could enhance IFN responses that may be protect-
ive in contrast to the damaging proinflammatory
responses initiated by glial cells during infection. Fur-
thermore, RIG-I has previously been identified as a can-
didate target for antivirals, vaccine adjuvants, and
antitumor agents [51-54]. Therefore, further exploration
of RIG-I activation and signaling in glia will provide the
necessary knowledge for designing nanoscaffolds tailored
to initiate desired immune responses for a broad range
of therapeutic applications.
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