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Abstract

Recombinant DNA technologies have enabled the development of transgenic animal models for 

use in studying a myriad of diseases and biological states. By placing fluorescent reporters under 

the direct regulation of the promoter region of specific marker proteins, these models can localize 

and characterize very specific cell types. One important application of transgenic species is the 

study of the cytoarchitecture of the nervous system. Neurofluorescent reporters can be used to 

study the structural patterns of nerves in the central or peripheral nervous system in vivo, as well 

as phenomena involving embryologic or adult neurogenesis, injury, degeneration, and recovery. 

Furthermore, crucial molecular factors can also be screened via the transgenic approach, which 

may eventually play a major role in the development of therapeutic strategies against diseases like 

Alzheimer’s or Parkinson’s. This review describes currently available reporters and their uses in 

the literature as well as potential neural markers that can be leveraged to create additional, robust 

transgenic models for future studies.

Introduction

Detailed analyses of the cytoarchitecture of the nervous system have been accomplished by 

various means in the past. In 1873, Camillo Golgi introduced the silver stain that enabled the 

labeling of entire neurons and established the foundation on which modern neuroscience 

was built [1]. Using this Golgi stain, Cajal was able to reveal the diversity of morphologies 

within the human nervous system [1], demonstrating that some neurons like select granule 

cells can have simple processes extending from a small cell body, while others such as 
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Purkinje cells can have more complex projections. The characterization of the morphology 

and overall network architecture of neurons is a subject heavily covered in the scientific 

literature, perhaps due to its direct implications in revealing the cells’ underlying functions 

and connectivity with surrounding tissue. The culmination of efforts to map the global 

neural connections in the brain (“connectomes”) has greatly expanded our understanding of 

the organization of the central nervous system [2]. Immunohistochemistry has also been a 

common tool for identifying neuronal subtypes and distinguishing them based on 

biochemical charact eristics. Highlighting cells involved in the activity of a certain 

neurotransmitter and identifying neurons that express a certain protein are tasks enabled by 

this method. The discovery of neuron-specific enolase and non-neuronal enolase as markers 

for neuronal and glial cells, respectively [3], has paved the way for immunolabeling to 

become a widely used tool, with subsequent descriptions of other relevant markers (external 

glycoprotein, choline acetyltransferase, parvalbumin, neurofilament protein, etc.).

The advent of recombinant DNA technology soon permitted the growing use of transgenic 

species that express fluorescent reporters developed for use in imaging studies. The elegance 

of transgenic models can be seen not only in the vibrant images taken via fluorescent 

microscopic techniques like confocal microscopy but also in their ability to provide visual 

evidence for physiologic or pathologic phenomena in the nervous system. In 2019 alone, this 

method was used for research related to Huntington’s disease [4], Alzheimer’s disease (AD) 

[5, 6], Parkinson’s disease [7], and amyotrophic lateral sclerosis (ALS) [6], and there has 

been significant effort to innovate novel transgenic species to understand other poorly 

understood disease states like schizophrenia [8]. Another unique area of study is the eye, 

which receives input from both the central (CNS) and peripheral nervous system (PNS) [9]. 

The cornea has become a popular tissue for the visualization and study of peripheral nervous 

structure, repair, and regeneration due to its accessibility, innate avascularity , and immune 

privilege [10]. Recently, Bouheraoua et al. compiled a collection of transgenic mice 

reporters for corneal nerve visualization, including CGRP:GFP BAC and Wnt1:Cre, 

TAG-1:Cre, En1-Cre, Islet1:Cre, and Ret:CreER, that can be crossed with lines expressing 

lox-P-containing fluorescent reporters to generate novel reporter lines [11]. Notably, several 

of the neurofluorescent reporters reviewed herein have been employed in studies of nerve 

structure and regeneration in the cornea [11].

Thy1-YFP (yellow fluorescent protein) and Nestin-GFP (green fluorescent protein) are two 

well-described examples of fluorescent genes coupled with neurally expressed genes to 

enable in vivo imaging of nervous tissue. Thy1 (CD90) is a cell surface glycoprotein that 

contributes to intercellular communication, particularly in the immune and nervous systems. 

Various studies have demonstrated that Thy1 expression occurs predominately in the late 

stages of postnatal development; hence, the Thy1-YFP reporter line can be a tool for 

studying non-embryonic neural development and response to injury [12]. Nestin, on the 

other hand, is an intermediate filament expressed in many cell types including nervous 

tissue. Nestin-GFP allows visualization of neural progenitor cells in the CNS, especially 

during embryonic development. This also becomes particularly relevant in recent 

neuroscience research, with attention recently given to describing the unclear nature and 

mechanism of adult neurogenesis [13]. Thus, in this review, we present an extensive 
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discussion of currently available neurofluorescent reporter mouse models and discuss their 

possible utilities for investigations of the nervous system.

Biochemical markers and neurofluorescence

The synthesis of fluorescent reporters is made possible by the identification of specific 

molecular biomarkers that can be engineered to fluoresce via insertion of the gene of a 

known fluorescent protein (e.g., GFP, YFP, DsRed, mCherry) into the transcriptional site of 

the biomarker DNA [14]. The identification of biomarkers that represent a specific tissue of 

interest is crucial for the development of a transgenic neurofluorescence reporter model. 

Table 1 reviews some key nerve markers and provides examples of their previous 

experimental use [15].

Thy1 and Nestin remain amongst the most popular markers used in the generation of 

transgenic neurofluorescent reporter animal models. Thy1 has been particularly useful in 

visualizing corneal nerves. On the other hand, Nestin has been useful in retinal imaging due 

to its strong expression in the CNS [22, 23]. The following sections expand upon the clinical 

utility of potential nervous tissue markers in more detail.

Thy1

Thymus cell antigen 1 (Thy1 or CD90) is a glycosylphosphatidylinositol (GPI)-anchored 

cell surface glycoprotein involved in various cellular processes that include cell adhesion 

and communication [24]. Thy1 is expressed in various cell types in mice, particularly those 

involved in the nervous and immune systems. In order to selectively label neuronal Thy1 

with YFP, the YFP transgene is directed by modified regulatory elements of the Thy1 gene 

that has a targeted deletion of exon 3 and its flanking introns [25, 26].

Thy1-YFP reporter mice allow for in vitro and in vivo fluorescent imaging in both the CNS 

and PNS. Alic et al. found that at day E14.5 in Thy1-YFP-16 transgenic mice, 22% of CNS 

neurons are positive for Thy1- YFP, and during 1 month of post embryonic development, the 

percentage of Thy1-YFP-positive neurons in the cortex will more than double to 50% [27, 

28]. Thy1-YFP expression thus increases within multiple tissues over the course of 

embryonic development. Expression of Thy1-YFP also persists in mature neurons, which are 

characterized by morphological maturation, completion of neuronal migration, and the 

initiation of dendritic growth [29, 30]. Therefore, Thy1-YFP reporter mice can be used to 

visualize nerve repair and regeneration following injury after neural development [31].

In Thy1-YFP reporter mice, YFP-labeled axons comprise a minority of the total neuronal 

population, allowing for clear visualization of individual neurons and their branching 

patterns. Yu and Rosenblatt first proposed Thy1-YFP-16 reporter mice as a robust model for 

in vivo nerve imaging in the cornea [10]. Most research in Thy1-YFP mice has utilized two 

mouse lines-, Thy1-YFP-H and Thy-1-YFP-16 (Table 2), which have variable expression 

patterns of YFP in nervous tissues [32, 33].

Many studies investigating peripheral nerve injury have utilized Thy1-YFP expression in a 

subset of sensory nerves that innervate the transparent cornea to monitor nerve changes and 
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evaluate putative neurotrophic factors [34]. Using Thy1-YFP-16 reporter mice, Namavari et 

al. demonstrated that surgically transected corneal nerves recover to normal density, albeit 

with abnormal arrangements, compared to uninjured mouse corneas (Figure 1) [35]. In 

another recent study, Sarkar et al. disrupted Thy1-YFP mouse stromal nerve trunks in situ 
using a far infrared laser, which allowed the assessment of nerve regeneration after point, 

rather than planar, transections [36]. This 2019 study reinforces the utility of a Thy1-YFP 

reporter line for studying corneal nerve repair and healing processes in vivo [36].

Other studies have demonstrated that neurotrophins such as brain-derived nerve factor 

(BDNF), small proline-rich repeat protein 1A (Sprr1a), semaphorin 3A (Sema3A), and 

vascular endothelial growth factors A and B (VEGFA and VEGFB) are expressed post 

injury and contribute to corneal nerve regeneration in vivo [37–39], while the 

immunosuppressant cyclosporine inhibits corneal nerve growth [40]. Another study found 

that in Thy1-YFP mice, YFP+ bone marrow cells (YFP+ BMCs) infiltrate the cornea after 

excimer laser annular keratectomy and have the ability to promote trigeminal ganglion 

neurite growth through secretion of growth factors, like such as neural growth factor (NGF) 

[22].

The Thy1-YFP reporter line has been particularly useful in studies of peripheral neuropathy 

caused by diabetes mellitus. Corneal nerves in Thy1-YFP-16 mice treated with streptozocin 

(STZ) were viewed by high-resolution in vivo imaging using two types of confocal 

microscopy: laser scanning microscopy (CLSM) and two-photon microscopy (TPM) (Figure 

2). CLSM is a non-invasive method for assessing nerve fiber changes and, helping determine 

the extent of nerve damage in diabetic patients. TPM is a form of nonlinear microscopy 

possessing a high signal-to-noise ratio and capable of producing can produce multimodal in 
vivo images. Both CLSM and TPM support a statistically significant decrease in corneal 

nerve fiber density in STZ-diabetic mice compared to the control mice [23]. According to 

the wide variety of potential imaging applications for Thy1-YFP reporter mice, we expect 

such imaging approaches to be useful for visualizing nervous structures in tissues beyond 

the cornea [41].

Outside of the cornea, a number of studies have used the Thy1-YFP reporter model to 

characterize peripheral and central nerve morphology and response to injury. Bierowski et 

al. observed Wallerian degeneration of distal tibial nerve axons in Thy1-YFP-H mice 

following sciatic nerve axotomy and validated a delay in degeneration in WldS-

overexpressing mutants [42]. In a seminal paper that assessed nerve injury and regeneration 

in vivo, Kerschensteiner et al. characterized nerves undergoing acute axonal degeneration in 

contrast to the relatively delayed Wallerian degeneration. This was achieved by utilizing 

time-lapse imaging of a Thy1-GFP-S fluorescent reporter mouse line after nerve transection 

of centrally-projecting dorsal root ganglia (DRG) neurons. This study demonstrated that 

although many transected central neurons attempt to regenerate within 24 hours of injury, 

they are unable to meet their original, pre-injury tissue targets [43]. Alternatively, Carter et 

al. used a thoracic dorsal column crush spinal cord injury model in Thy1-YFP-H mice to 

characterize CNS changes within the cortex layer V pyramidal neurons and demonstrate the 

protective effects of chondroitinase ABC intracerebroventircular infusions, demonstrated as 

reduction in cell atrophy, increased axonal sprouting, upregulation of ERK1 and other 
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kinases thought to be important to neuronal survival [44]. This study verifiedthat the 

responses of intrinsically YFP-labeled neurons were comparable with those of neurons 

labeled with retrograde tracing methods, such as Fast Blue cell soma labeling. Additionally, 

patterns of fragmentation in Thy1-YFP+ neurons paralleled patterns of Wallerian 

degeneration as assessed by classical light microscopy and electron microscopy techniques 

(Figure 3) [42]. Therefore, although Comley et al. raised valid concerns that the fluorescent 

proteins expressed in Thy1-YFP mice are not biologically inert in degeneration studies and 

may have diverse unpredictable effects on neurodegeneration [45], the aforementioned 

findings by Carter et al. and Bierowski et al. reinforce the appropriateness of this transgenic 

reporter for the study of neuronal responses to injury.

Beyond mice, recently developed transgenic Thy1-GFP rat reporters have allowed for the 

study of nerve injury in a larger and longer-living animal model. For example, facial nerve 

re-innervation of the zygomaticus muscle was assessed 4 weeks after crush injury via 

confocal microscopic imaging of Thy1GFP labeled neurons in rats [46, 47].

In summary, Thy1 reporter lines demonstrate fluorescence only in a subset of central and 

peripheral neurons. However, this limited expression has proven to be particularly useful for 

in vivo imaging studies that track individual neuronal responses to injury. Use of Thy1 

reporter lines has led to a number of breakthroughs in our understanding of nerve injury, 

regeneration, and putative therapeutic targets for promoting nerve repair.

Nestin

Nestin is a class VI intermediate filament (IF) protein and marker of neural stem cells that is 

expressed in many cell types. Through co-expression with GFP, Nestin has been used to 

identify progenitor cells in the CNS. Neural stem cells express Nestin during early 

embryonic nervous system development, but the protein is downregulated as these cells 

differentiate into mature cells. The differentiated cells in turn express either glial fibrillary 

acidic protein (GFAP) or neurofilaments. Therefore, the expression of Nestin can be used to 

assess the undifferentiated state of neural progenitor cells, whereas downregulation of Nestin 

correlates with differentiation of these cells in the developing CNS (Figure 4) [27, 48]. 

Mignone et al. confirmed this finding by using Nestin-GFP to identify undifferentiated 

neural stem cells [49].

Nestin deficiency leads to reduced self-renewal ability in neural stem cells, but surprisingly, 

such deficiency has no measurable effect on cytoskeletal integrity [50]. Moon et al. found 

that Nestin is expressed in Müller cells (glial cells of the retina) following acute injury, such 

as in experimentally induced glaucoma and pharmaceutically induced retinal degeneration. 

Upon inducing retinal degeneration using N-methyl-N-nitrosourea (MNU), cellular 

localization and temporal patterns were studied. Nestin expression on days 3, 5, 7 and 21 

following MNU treatment was analyzed by Western blotting (Figure 5). The Nestin 

expression levels sharply increased following MNU treatment before returning to baseline, 

suggesting that this protein could be used as an immediate marker of acute retinal injury 

[51].
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Nestin-GFP models have been used to analyze neuronal and glial markers in various parts of 

the gastrointestinal tract of newborn and adult mice under homeostatic conditions. 

Grundmann et al. found that the myenteric plexus houses a specific Nestin-GFP–positive 

neuron population with both marker expression and neuronal morphology (nNGFP). It was 

concluded that Nestin-GFP can serve as a marker of neuronal plasticity in enteric neurons 

[52].

Nestin-GFP models have also been used in vivo to follow mouse mammary tumor (MMT) 

cells and the subsequent nuclear-cytoplasmic deformation and partition during cancer cell 

death following immune rejection. Nestin is found beyond the nervous system in tumors, 

and the protein localizes to the nucleus in tumor cells. MMT cells were dual stained with red 

fluorescent protein (RFP) in the cytoplasm and Nestin-GFP in the nucleus, and at 6 days 

after their transplantation, GFP-expressing nuclei partitioned from RFP-expressing 

cytoplasm [53].

Although Nestin may not be a useful marker for neurons of the PNS, it represents a 

particularly useful marker for tracking early CNS development and tumor progression.

βIII-tubulin

βIII-tubulin is a moderately sensitive and specific nerve marker. Liu et al. synthesized a 

transgenic βIII-tubulin-YFP mouse reporter and demonstrated that βIII-tubulin is expressed 

in the developing CNS and PNS from embryonic day 9 onwards, as well as postnatally in 

structures that exhibit adult neurogenesis, such as the subgranular layer and hilus of the 

dentate gyrus (Figure 6) [17].

Another study conducted by Hwang et al. found that βIII-tubulin also serves as a strongly 

predictive marker for tracking the response to chemotherapy in metastatic gastric cancer, 

suggesting a clinical use for βIII-tubulin that extends beyond the nervous system [54].

Neurofilament heavy chain (NF-H)

Neurofilament (NF) chains generally consist of three filament proteins: light (L), medium 

(M), and heavy (H). These proteins play a major role in the maintenance of neuronal caliber. 

NF-H (Neurofilament-200) is specifically involved in axonal phosphorylation and 

neurofilament transport processes in mature axons; the two smaller NF proteins (NF-L and 

NF-M) are not known to have these functions. Furthermore, NF-H is thought to be involved 

in abnormal neurofilament accumulation during neurodegenerative disease processes; for 

example, mutations in the C-terminal of NF-H have been discovered in patients with ALS 

[18]. Within the sensory system, NF-H has classically been used as a marker of larger 

myelinated sensory neurons [55].

In another study exploring the degeneration and regeneration of corneal nerves, C57BL/6J 

mice were infected with herpes simplex virus type 1 (HSV-1) [56]. Corneas were harvested 

at predetermined time points following infection, and their nerves were assessed for 

expression of different biomarkers such as βIII-tubulin and NF-H by immunohistochemistry 

[57]. Analysis of corneal whole mounts revealed a regression of sensory fibers (and NF-H+ 
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and βIII-tubulin+ staining) by day 8 post-infection. Moreover, this was followed by a 

pathological response characterized by abnormal nerve regeneration (with an abnormal 

presence of NF-H+ nerves) [58].

S100

The S100 group of proteins consists of 24 members and is expressed only in vertebrates. 

These members are functionally categorized into three subgroups: those with intracellular 

regulatory effects, those with extracellular regulatory effects, and those with both. Their 

expression is linked to the refinement of cell-specific gene expression and responses to 

external stimuli [59].

Certain cancers have been shown to express S100, including schwannoma and melanoma. 

S100A1 is abundantly expressed in skeletal muscle fibers, cardiomyocytes, and certain 

neuronal populations. S100A2 expression is downregulated in many cancers, where a loss of 

nuclear expression is associated with poor prognosis [59]. Extracellular S100A4 and S100B 

interact with epidermal growth factor and basic fibroblast growth factor, respectively. These 

interactions enhance the ability of the growth factors to affect the downstream activity of 

their corresponding receptors. In certain cases, the increased expression of an S100 protein 

may be an indicator of the cell’s response to a stressor. For example, S100B is not typically 

expressed in cardiomyocytes but has been observed after an infarct, as it functions to limit 

the hypertrophic response of cardiomyocytes [59]. By using a S100B-EGFP transgenic 

reporter, Vives et al. found that S100B is expressed in both CNS and PNS glial cells, as well 

as certain neuronal populations. However, the diffuse expression and unknown precise 

physiological function of S100B in nervous tissue reduce its utility in monitoring individual 

neuronal growth and repair patterns following injury [60].

Substance P (SP)

Substance P (SP) is an 11-amino acid neuropeptide involved in pain transmission, 

inflammation, and wound healing. SP exerts its actions by interacting with neurokinin 

receptors, like NK-1. SP is expressedin naïve corneal nerve fibers and mobilizes stem cells 

for corneal repair [61]. SP can also activate epidermal growth factor receptor (EGFR), 

mitogen-activated protein kinases (MAPKs), extracellular signal–regulated kinases (ERKs), 

and phosphoinositide 3-kinase–Akt (PI3K-Akt) signaling pathways. Yang et al. analyzed the 

mechanism of SP in corneal epithelial wound healing in type 1 diabetic mice. After 

induction of type 1 diabetes in adult male C57BL/6 mice, topical SP was administered to the 

eye [62]. The effects of SP on corneal sensitivity and epithelial wound healing were assessed 

in control, diabetic, and NK-1 receptor antagonist-injected mice. SP application attenuated 

corneal sensitivity and significantly improved corneal epithelial wound healing in diabetic 

mice. In mice injected with NK-1 antagonist, SP did not alter the activation of the Akt, 

EGFR, and Sirt1 signaling cascades, and thus, epithelial wound healing was not observed 

[19].
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Neuron-specific enolase (NSE)

Neuron-specific enolase (NSE) is an isoenzyme of the glycolytic enzyme enolase that is 

found in terminally differentiated neurons and neuroendocrine cells. As CNS neurons 

increase in number, levels of NSE also increase. In adults, NSE is one of the most abundant 

brain-specific proteins [20]. The utility of NSE in imaging mouse neurons when paired to a 

fluorescent marker is relatively unknown. However, one study that utilized a rat gamma 

protein kinase C-GFP reporter (which was under the control of an NSE promoter) confirmed 

that GFP expression was present in the majority of neurons and at significantly higher levels 

in pups than in adult rats.

Piezo2

Piezo channels represent a novel class of mechanically sensitive channels. A study on 

Piezo2 expression in guinea pig corneal afferent neurons found that approximately 26% of 

trigeminal ganglion neurons (Figure 7) and 30% of corneal afferent neurons express Piezo2. 

These neurons are neurochemically distinct from corneal polymodal nociceptors or cold-

sensing neurons, suggesting that Piezo2 may solely contribute to the transduction of noxious 

mechanical stimuli. Therefore, Piezo2 could be a useful marker for analyzing the effects of 

physical injury and trauma in the cornea [63].

Calcitonin gene-related peptide (CGRP)

Calcitonin gene-related peptide (CGRP) is a well-documented marker of nociceptive DRG 

neurons. A 2012 study that used CGRPα-GFP reporter mice and confocal microscopy 

imaging found that CGRPα(+) DRG neurons contribute to responses in a pathway that is 

distinct from nonpeptidergic and cool temperature nociceptive pathways (Figure 8). A wide 

range of nociceptive ligands induced mostly small-to medium-diameter CGRPα-GFP+ 

neurons; these neurons innervate various cutaneous and visceral tissues, such as the 

submucosal layer of the small intestine. CGRPα-GFP expression was additionally present in 

a small subset of motor neurons, neurons intrinsic to the dorsal spinal cord, and in regions of 

the brain (which includes the visual cortex) [21].

Transient Receptor Potential Ankyrin 1 (TRPA1)

Transient Receptor Potential Ankyrin 1 (TRPA1) is a member of the structurally related TRP 

family, which includes seven channel groups: TRPA (ankyrin), TRPC (canonical), TRPN 

(no mechanoreceptor potential C), TRPM (melastatin), TRPML (mucolipin), TRPP 

(polycystin), and TRPV (vanilloid). Rec ent research on TRPV1 and TRPA1 demonstrated a 

correlation between these two channels. A study conducted by Fernandes et al. showed that 

97% of TRPA1-expressing sensory neurons concomitantly express TRPV1. On the other 

hand, 30% of TRPV1-expressing neurons also express TRPA1. TRPA1 was shown to play 

an important role in pain and neurogenic inflammation via sensory nerve activation, aiding 

in the integration and processing of noxious stimuli [64] . As such, there may be a role for 

TRPA1 in further understanding the pathology of disease states where sensation to noxious 

stimuli is attenuated or diminished.
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Transient Receptor Potential Vanilloid type 1 (TRPV1)

Transient Receptor Potential Vanilloid type 1 (TRPV1) is a non-specific cation channel that 

reacts to noxious stimuli, making it a mediator of inflammation. The expression of TRPV1 

in the nervous system has become a recent topic of discussion. Some studies have reported 

that TRPV1 expression is limited to extrinsic afferent fibers, while others have argued for a 

role of TRPV1 in intrinsic afferent fibers. In a study by Buckinx et al., the distribution 

pattern of TRPV1 expression was shown to be dependent on the type of antibody used in 

immunohistochemical staining. This study was carried out using two antibodies directed 

against different epitopes of TRPV1. One primarily stained neuronal fibers, while the other 

stained perikarya of enteric neurons [65]. This suggests that different modulated forms of 

TRPV1 exist, and that each displays a unique imaging distribution pattern based on the 

specific antibody used.

Cavanaugh et al. used two separate lines of TRPV1 reporter mice by crossing TRPV1-Cre 

mice with multiple Cre-dependent reporter lines to investigate primary afferent expression of 

TRPV1. They found that TRPV1 is transiently expressed in peptidergic and nonpeptidergic 

C-fibers as well as in some myelinated DRG neurons during development (Figure 9). This 

expression ultimately narrows over time to a specific group of peptidergic sensory neurons. 

The study also emphasized that TRPV1 is more extensively expressed in primary pain 

afferents than previously thought [66]. An additional study found that 45% of corneal 

afferent neurons expressed TRPV1 in a guinea pig model, of which most neurons serve as 

polymodal nociceptors. This supports the notion that TRPV1 serves as a potential modulator 

of corneal sensation processes [67].

Additional neurofluorescent reporter mouse lines

Table 3 and the figures that follow serve to reinforce and further add to the list of transgenic 

mouse reporter lines that have been previously used in the context of in vivo imaging 

studies.

Discussion

In the last decade alone, there has been rapid development in tissue biology research, which 

can be partially attributed to the advent of transgenic fluorescent reporter mice. Specifically, 

an extensive literature search demonstrates a handful of useful neurofluorescent reporters 

now available for nerve assay-related studies. Each mouse reporter described in this review 

has distinctive features that make it applicable to specific neuroscience investigations. 

Collectively, we can appreciate the advantages that fluorescent mice provide for the in vivo 
study of both sensory and motor nerves in the CNS and PNS.

These mice have demonstrated stable and robust fluorescence along their axons, often 

extending to their terminals.[248] With these advantages, neurofluorescent reporter mice 

have been used extensively in brain imaging, especially for neurofluorescence using the 

promoter region of Thy1. [27, 68, 71, 74–76, 80, 83, 86, 87, 93, 112, 249–252] Some 

transgenic neurofluorescent reporters can additionally express multiple colored fluorescent 

proteins in different subsets of neurons via the Brainbow system, which uniquely labels 
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neurons with distinct colors using Cre/lox recombination to create a random expression 

between multiple fluorescent proteins. Brainbow elevates the utilization of neurofluorescent 

reporter mice for strategies such as for neuronal mapping, cellular dynamics, lineage tracing, 

and in-depth genomic and genetic analysis.[253, 254]. Nestin, another robust promoter for 

neurofluorescent, along with co-expression of GFP, has also been extensively used for 

investigating the nervous system, specifically in early CNS embryonic development. Nestin 

expression correlates with the undifferentiated state of neural progenitor cells, and its 

downregulation correlates with the differentiation of these cells [27, 49, 50, 52, 131, 255–

258]. To further enhance the capability for deep tissue imaging and to preserve the quality 

and fluorescence of the specimens, several techniques of tissue preparation have been 

introduced, such as using dibenzyl ether clearing medium and tetrahydrofuran dehydration 

medium or utilizing the CLARITY or uDISCO clearing protocol.[259–262]

The ability to combine fluorescence has also permitted discoveries relating to the 

physiological competition and elimination of neonatal synapses that occurs in 

neuromuscular junctions [263]. Recently, transgenic reporter mice have been used to assess 

nerve regeneration as well as the performance of bioengineered nerve guidance conduits 

[264]. Fluorescent reporters optimize the time and cost associated with in vivo imaging, and 

ultimately, serve as a very useful tool in the detailed study of nerve physiology and 

pathophysiology.

Given that research using transgenic mice is becoming increasingly popular, novel reporter 

subtypes beyond those discussed in this review are continuously being generated. Transgenic 

reporters have been valuable in studies of nervous system development [265], physiology, 

and poorly understood pathologies, such as neurodegenerative diseases like Alzheimer’s 

[266] and prion disease [267], as well as ethanol-induced neurodegeneration during fetal 

development [268]. This approach has also shown promise in ophthalmology research that 

extends beyond the cornea; one recent study successfully implemented spatiotemporal 

mapping to quantified patterns of photoreceptor degeneration in retinitis pigmentosa [269], 

while another explored potential neuroprotective features of mitochondrial uncoupling 

protein 2 (UCP2) in a glaucoma mouse model [270].

Though transgenic animal models have fundamentally changed modern approaches to 

understanding nervous system function and disease states, the generation of appropriate 

visualization models is a challenging and time-consuming process. One of the limitations to 

this process occurs in the pronuclear promoter transgene assembly injection. For a gene that 

is expressed in many cell types, the regulatory mechanism for that gene within a specific 

system is difficult to ascertain from imaging studies alone. Additionally, cis-acting elements 

that serve as enhancers to promote the specificity of expression could be located too far from 

the gene’s recorded start site and may not have been fully identified yet [271]. During this 

process, the expected repetition of specific gene patterns by a relatively short promoter is not 

guaranteed. To date, only a small number of such promoters have successfully driven cell-

specific expression in transgenic mice neurons [272]. Moreover, the integration process of 

these transgenes is a random process, and thus, their expression can be vastly influenced by 

uncontrolled activation/inactivation effects. This results in an expression that is ectopic and 

impertinent to the promoter in question or suppressed in targeted cells.
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Transgene synthesis may also fail due to incomplete, erratic, and sometimes variable 

expression across the targeted cell region of an individual animal. For example, in the 

Thy1.2 YFP-16 model, it was found that YFP is only expressed in a select portion of non-

nociceptive sensory neurons, while a significant portion of large, NF200-positive sensory 

neurons fail to express YFP [273]. Inherent variability among animal subjects being treated 

is also a significant limitation. These methods require laborious validation and verification 

of the expression of the transgenes for each animal. Interpreting data variation within mice 

groups can thus be a difficult task. To overcome these limitations, it seems necessary to 

develop transgenic lines of mice that have genetically encoded actuators and indicators that 

can produce regulated and inducible expressions. Additionally, there are conflicting data 

regarding the biological inertness of fluorescent proteins in vivo. Feng et al. claimed that 

repeated imaging is neither toxic nor phototoxic [32]. However, Comley et al. claimed that 

neuronal cells expressing YFP exhibit cell stress at the RNA and protein levels, leading to 

diverse and unpredictable effects on neurodegeneration pathways [45]. Furthermore, it is 

difficult to predict the variance of transgene expression due to the effects of genomic 

integration sites and transgene copy numbers, as mice used to exhibit a high expression level 

of transgenes are usually infertile and not viable.

The purpose of this review was to provide an in-depth exploration and discussion of the 

major transgenic fluorescent reporters used in nerve tissue visualization, including important 

considerations of their limitations and local expressions. For instance, Nestin has been used 

in studies of neural progenitor cell development, while S100 expression has been used to 

assess neoplastic growth and longitudinal therapeutic responses. These markers can be 

further used in studies that aim to uncover the molecular regulators driving nerve 

development following injury. For example, studies investigating the effects of NGF on 

corneal nerve regeneration and patterning may utilize a Thy1 transgenic mouse model in 

order to track the changes in nerve structure over time. Alternatively, investigations of the 

interactions of nerve patterning with vasculature (or other structures) following injury could 

bolster our understanding of how nerve regeneration may involve signaling pathways that 

extend beyond the nervous system. Future studies may also directly compare the relative 

success of IVCM versus transgenic mouse reporters in studies of neuronal regeneration and 

repair.

The application of transgenic mouse reporters extends beyond studies of just the nervous 

system. For example, one recent study used a type 1 collagen promoter-driven GFP reporter 

to study osteoblastic activity during skeletal regeneration [274], while another used 

Rip1Tag2 transgenic mice to monitor the progression of pancreatic neuroendocrine tumors 

[275]. The application of Flt1-dsRed and Prox1-GFP transgenic reporters in our lab at the 

University of Illinois have further enabled visualization of blood and lymphatic vessels, 

respectively. Such reporters have been important when analyzing patterns of 

neovascularization following corneal injury and how knockout of selected growth factors 

and their receptors may reduce unwanted vascular proliferation that results from hypoxic 

disease states. These transgenic reporters have also been bred to generate a Prox1-GFP/Flt1-

dsRed (PGFD) dual transgenic reporter that permits simultaneous visualization of both 

vessel types[276] [277]. Similarly, we have bred Thy1-YFP with Flt1-dsRed mice to 

establish a dual blood vessel and nerve reporter, useful in imaging neurovasculature in 
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tissues including spinal dorsal root ganglia and the nervous plexus of the gastrointestinal 

tract. The generation of dual transgenic reporters serves to improve knowledge of the 

mechanistic interactions shared between multiple organ systems (rather than one system in 

isolation), and how the pathophysiology of one system may influence and/or be influenced 

by the other.

Sümbül et al. has introduced a reproducible, objective approach to classify neuronal cell 

types, by using dendritic arbor distribution and density as well as molecular characteristics 

of the cells.[278, 279] This algorithm was tested using the retina as the study bed, which is 

known to contain diverse types of neuronal cells,[280, 281] specifically the retinal ganglion 

cells (RGCs).[278, 279] It would be very compelling to combine this classification 

technique with the available neurofluorescent reporter transgenic mice. This could create a 

more robust and accurate neuronal cell classification system that may further impact the 

development of therapies for many nervous system-related diseases, such as those in the 

cornea and retina.[282]

Beyond injury models, transgenic reporter mice enable us to observe the anatomical 

evolution of neurons and vascular structures that occur because of development or normal 

aging. This serves to improve knowledge of normal physiologic functioning and isolate age-

related structural changes from potentially pathologic ones. Ultimately, the application of 

this experimental approach can extend across multiple lines of research that take advantage 

of in vivo tissue imaging techniques. With the emergence of advanced imaging approaches 

such as those discussed in this paper, a clearer concept of the interrelationship between 

structure and function, as well as the mechanisms that drive inflammation and healing may 

pave the way for the development of improved therapeutic interventions for relevant 

pathologies.
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List of Abbreviations

5-HT 5-Hydroxytryptamine (serotonin)

ACh Acetylcholine

Akt Protein kinase B (PKB)

Mapttm1(EGFP)kit Transgenic mouse reporter for microtubule-associated 

protein tau

βIII-tubulin-YFP Transgenic mouse reporter for βIII-tubulin neuronal marker

BAC Bacterial artificial chromosome (DNA construct)

BGEM Brain gene expression map
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BMC Bone marrow concentrate

CCK-RGC Cholecystokinin-retinal ganglion cell

CFP Cyan fluorescent protein

CGRP Calcitonin gene-related peptide

CGX Cingulate cortex

ChATBAC-EGFP Transgenic mouse reporter for choline acetyltransferase 

expression

ChAT-ChR2-EYFP BAC Channel rhodopsin-expressing fluorescent mouse reporter

CLSM Confocal laser scanning microscopy

CNPase 2’,3’-Cyclic-nucleotide 3’-phosphodiesterase (myelin-

associated enzyme)

CNPase-GFP Transgenic mouse reporter

CNP-EGFP Transgenic mouse reporter

CNS Central nervous system

Cp Choroid plexus

CPZ Cuprizone (copper-chelating agent)

Cre Protein used in site-specific recombinant technology

CRISPR-Cas9 Clustered regularly interspaced short palindromic repeats 

and CRISPR-associated protein 9, a DNA editing 

technology

CST Corticospinal tract

CTb-594 Cholera toxin beta subunit coupled to alexa 594 (axon 

tracer)

D1-MSN Direct dopamine pathway medium spiny neuron

DAPI 4′,6-Diamidino-2-phenylindole (blue-fluorescent DNA 

stain)dLGN: Dorsolateral geniculate nucleus of the 

thalamus

Drd1a-EGFP Transgenic mouse reporter for type 1a dopamine receptor 

gene

Drd1a-tdTomato Transgenic mouse reporter for type 1a dopamine receptor 

gene
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Drd2-EGFP Transgenic mouse reporter for dopamine receptor D2 

expression

DRG Dorsal root ganglia

ED Embryonic day

EAE Experimental autoimmune encephalomyelitis (used in 

transgenic mouse models)

EDL Extensor digitorum longus

EGFP Enhanced green fluorescent protein

EGFR Epidermal growth factor receptor

EGL External granular layer of the developing cerebellum

En1-Cre Knock-in Cre expression mouse reporter line for the 

engrailed gene

ENS Enteric nervous system

EPC Endothelial progenitor cell

ERCC1 Excision repair cross-complementation group 1

FRAP Fluoride-resistant acid phosphatase

GCL Ganglion cell layer

GFAP Glial fibrillary acidic protein

GFP Green fluorescent protein

GFP-Cre Transgenic mice reporter construct where GFP 

fluorescence is coupled to Cre expression

GPe Globus pallidus externa

HDB Horizontal diagonal band of Broca

Hoxb4 Homeobox B4 gene

hPRPH1-G Peripherin-EGFP genomic reporter construct

HSV-1 Herpes simplex virus type 1

IBA Ionized calcium binding adaptor molecule

IF Immunofluorescence

iGABASnFR GABA-sensing fluorescence reporter

INL Inner nuclear layer of the retina

Yamakawa et al. Page 14

Biochim Biophys Acta Gen Subj. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IVCM In vivo confocal microscopy

LASIK Laser-assisted in situ keratomileusis

CLSM Laser scanning microscopy

MAP2 Microtubule-associated protein 2

MAPK Mitogen-activated protein kinases

Math1 Basic helix-loop-helix (bHLH) transcription factor (in 

neural progenitor cells)

Math1-GFP Transgenic mouse reporter

MIP Maximum intensity projection

ml Molecular layer

MNU N-methyl-N-nitrosourea

MOB Main olfactory bulb

MP Myenteric plexus of the gastrointestinal tract

mRNA Messenger RNA

NE Norepinephrine

Nestin-GFP Transgenic mouse reporter

Neu-N Neuronal nuclei specific marker

NF Neurofilament

NF-H Neurofilament heavy chain

NF-200 Neurofilament 200

NGF Nerve growth factor

NGF-EGFP Transgenic mouse reporter

NGFR Mouse nerve growth factor receptor

NGFpr Nerve growth factor promoter

NK Neurotrophic keratitis

NK-1 Neurokinin-1 receptor that binds Substance P

NMPP1 Cell-permeable protein phosphatase 1 (PP1) analog

nNGFP Neuronal Nestin-GFP

NPC Neural precursor cell
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NPY Neuropeptide Y

NSE Neuron-specific enolase

OCT Optical coherence tomography

OEC Olfactory ensheathing cell

ONL Outer nuclear layer of the retina

OVA Ovalbumin

p75NTR p75 neurotrophin receptor

PACAP Pituitary adenylate cyclase-activating peptide

PD Postnatal day

Peripherin-EGFP Transgenic mouse reporter

PI3K Phosphoinositide 3-kinase

Piezo2 Piezo type mechanosensitive ion channel component 2

PKH26 Red fluorescent dye

PNS Peripheral nervous system

PSD95 Postsynaptic density protein 95 (membrane associated 

guanylate kinase)

rAAV/EnvA Recombinant adeno-associated virus/avian virus envelope 

protein

RAG Recombination-activating gene

rAION rodent Anterior ischemic optic neuropathy

Ret-CreER Transgenic mouse reporter

RFP Red fluorescent protein

RT-PCR Reverse transcriptase polymerase chain reaction

SC Sympathetic chain

SCG Sympathetic chain ganglia

Sirt1 NAD-dependent deacetylase sirtuin-1 protein

SMN Spinal motor neurons

SNr Substantia nigra pars reticulata

SOX2-EGFP Transgenic mouse reporter
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SP Substance P or Submucosal plexus of the gastrointestinal 

tract

Sprr1a Small proline rich protein 1A

Str Striatum

STZ Streptozotocin

TAG-1 Transient axonal glycoprotein-1 or contactin-2

TAG1-Cre Transgenic mouse reporter

TG Trigeminal ganglia

Thy1 Thy-1 cell surface antigen (Thy1 or CD90)

TPM Two-photon microscopy

TrKA Tropomyosin receptor kinase A

TRPA1 Transient receptor potential ankyrin 1

TRPC Transient receptor potential channel

TRPM Transient receptor potential melastatin channels

TRPM8 Transient receptor potential cation channel, subfamily M 

member 8

TRPML Transient receptor potential cation channel, mucolipin 

subfamily

TRPP Transient receptor potential polycystic

TRPV Transient receptor potential cation channel, vanilloid 

subfamily

TRPV1 Transient receptor potential cation channel, subfamily V 

member 1

TPM Two-photon microscopy

UCHL1-EGFP Ubiquitin carboxy-terminal hydrolase isozyme L1 

transgenic mouse reporter

VAChT Vesicular acetylcholine transporter

VEGF Vascular endothelial growth factor

VIP Vasoactive intestinal peptide

vLGN Ventral lateral geniculate nucleus

Wnt1 Wnt family member 1
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WP Whisker pad

XFP Generic abbreviation for fluorescent proteins (i.e. CFP, 

GFP, YFP, RFP, etc.)

YFP Yellow fluorescent protein
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Highlights

• In neurofluorescent reporter mice, nerve cells are viewable via fluorescence 

imaging.

• In these models, fluorescent proteins are co-expressed with specific marker 

proteins.

• This fluorescence allows for studies of the structural patterns of nerves in 
vivo.

• These mice are useful for examining nerve formation, injury, repair, and 

degeneration.

• Marker proteins Thy1 and Nestin are used to visualize different subsets of 

neurons.

Yamakawa et al. Page 36

Biochim Biophys Acta Gen Subj. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
In vivo image of fluorescent nerves in the healthy Thy1-YFP-16 mouse cornea focusing 

particularly on the stromal plexus. Following surgical transection, nerves display 

disorganized regenerated fibers Scale bar, 500 μm. Reproduced with permission from [35].
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Figure 2. 
Mean nerve corneal subbasal fiber density in four STZ-treated and three control Thy1-YFP 

mice. Based on quantitative results from confocal laser scanning microscopy (CLSM) and 

two-photon microscopy (TPM) (both of which are forms of confocal microscopy) of corneal 

nerves in vivo, STZ treatment caused significant reductions in corneal nerve fiber density. 

Reproduced with permission from [23].
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Figure 3. 
Imaging of Thy1-YFP+ neurons revealed that YFP axons could be successfully used to 

display nerve changes following Wallerian degeneration. Such imaging was achieved 

through light and electron microscopy techniques. Scale bars, (A–F) 100 μm, magnification: 

(G–L) 1000×, magnification: (M–R) 4400×. Reproduced with permission from [42].
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Figure 4. 
Quantitative analyses of various cellular markers by immunocytochemistry (A–B) and RT-

PCR (C). Notably, the percentage of cells expressing Nestin decreased from 99% to 7% 

during in vitro differentiation, because Nestin is preferentially expressed in undifferentiated 

neural progenitors. However, the expression of MAP2 and β3-tubulin conversely increased 

over time. Legend: x-axis – days in differentiation conditions; y-axis – number of counted 

cells (A), % of counted cells (B), and relative expression in RNA (C). Reproduced with 

permission from [27].
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Figure 5. 
Images showing Nestin, GFAP, and DAPI staining as green, red, and blue fluorescence, 

respectively. Following MNU-induced retinal degeneration, marker expression was assessed 

on days 1, 3, 5, 7, and 21 by Western blotting. Nestin expression in Müller cells 

progressively increased for 5 days and then decreased thereafter. Image labels: ONL – outer 

nuclear layer, OPL – outer plexiform layer, INL – inner nuclear layer, IPL – inner plexiform 

layer. Reproduced with permission from [51].
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Figure 6. 
Cellular and dendritic expression of YFP in a transgenic βIII-tubulin-YFP reporter. YFP+ 

cells were observed in the (A) mitral cell (m) and external plexiform (ep) layers of the 

olfactory bulb (OB), (B) hilus (h) and surrounding structures of the dentate gyrus (DG), (C) 

cortex (CTX), (D) cerebellum (CB), and (E-G) rostral migratory stream (RMS). Scale bars, 

50 μm. Reproduced with permission from [17].
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Figure 7. 
Piezo2 expression in trigeminal ganglion neurons of guinea pigs. Approximately one-quarter 

of neurons were found to express Piezo2, as indicated by green fluorescence in image (G). 

Scale bars, 200 μm for main images, 20 μm for insets. Reproduced with permission from 

[63].
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Figure 8. 
Through confocal imaging of CGRPα-GFP reporter mice, sections of DRG from L4-L6 

were stained with GFP-targeting antibodies to view CGRPα expression. CGRPα typically 

colocalized with peptidergic nociceptive neuronal markers. Scale bar, 50 μm. Reproduced 

with permission from [21].
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Figure 9. 
Staining of DRG and spinal cord from TRPV1Cre mice crossed with multiple Cre-dependent 

reporter lines. Immunohistochemical staining revealed TRPV1 expression in peptidergic and 

nonpeptidergic C-fibers, as well as myelinated DRG neurons during development. Scale 

bars, (D) and (G) 100 μm, (F) 200 μm. Reproduced with permission from [66].
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Figure 10. 
Changes in Thy1-YFP expression in the mouse brain following PKH26-labeled cell 

transplantation over a 14-week period; (A-C) 2 weeks, (D-F) 4 weeks, (G-I) 8 weeks, and (J-

L) 14 weeks. Thy1 expression consistently increased as time progressed, while PKH26 

expression mostly regressed within 1 month of transplantation. Reproduced with permission 

from [27].

Yamakawa et al. Page 46

Biochim Biophys Acta Gen Subj. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. 
Confocal images displaying Thy1 expression in striatal and hippocampal neurons of a Thy1-

EGFP transgenic reporter mouse (GFP+ neurons in green, PSD95+ neurons in red). Scale 

bars, 100 μm. Reproduced with permission from [87].
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Figure 12. 
Transgenic cyan fluorescence protein (CFP) expression in neurons of the third extensor 

digitorum longus (EDL) compartment in wild-type and mdx mice (for neuronal visualization 

in Duchenne muscular dystrophy mice); mdx muscles demonstrated profound infiltration of 

cells expressing acetylcholine receptors (AChR). Scale bars, (A) 100 μm, (B) and (D) 30 

μm. Reproduced with permission from [110].
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Figure 13. 
Expression of four fluorescent proteins important for transgenic reporter staining. Muscles 

were labeled with bungarotoxin, and neuromuscular junctions were imaged in (A) Thy1-

YFP line H, (B) Thy1-GFP line H, (C) Thy1-CFP line D, and (D) Thy1-RFP line 8 

transgenic mice. Reproduced with permission from [32].
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Figure 14. 
Anterior to posterior expression of Nestin-GFP and endogenous Nestin mRNA in trigeminal 

neurons of the mouse cerebrum in confocal single optical sections (insets indicate the plane 

of section for each row). GFP+ cells emanated in projections from the ventricular zone; 

endogenous Nestin expression was most prominent in the ventricular zone as well as in 

scattered cells of the brain parenchyma. Scale bars, (A) 100 μm, (A’) 50 μm. Reproduced 

with permission from [202].
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Figure 15. 
Immunostaining against VAChT (red) revealed the expression of ChAT–ChR2–EYFP+ cells, 

with an affinity towards cholinergic transgenic mouse neurons. (A) Images taken from the 

horizontal diagonal band of Broca (HDB). EYFP expression was weak in somata, because 

ChR2 protein tends to localize to neuronal membranes. (B) Retrograde tracing confirmed 

that HDB neurons feed into the main olfactory bulb (MOB). Some neurons lacked EYFP 

expression, since the MOB is only partially innervated by cholinergic neurons. (C-D) Blue 

light stimulation up to 50 Hz led to activation and firing of ChR2– EYFP+ neurons in the 

HDB. (E) Light pulses produced vigorous subsequent firing of HDB neurons. Reproduced 

with permission from [204].
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Figure 16. 
The use of a UCHL1-EGFP transgenic reporter model enabled visualization of peripheral 

nerves in vivo starting from embryonic day (E) 12 (A). Levels of EGFP expression across 

various time points and tissues are displayed in this figure. (B-D) TG and DRG neurons at 

E12. (E) DRG neurons, sympathetic chain ganglia (SCG), and spinal motor neurons (SMN) 

of the ventral spinal cord on PD0. (F-G) Adult DRG neurons (with zoomed inset). (H) TG 

neurons on PD0. (I) Adult TG neurons. (J) SCG neurons (with zoomed inset). (K) Enteric 

nervous system (ENS) neurons (with zoomed inset). (L-M) Myenteric plexus (MP) and 

submucosal plexus (SP) of the gastrointestinal tract. (N-0) Adult testis neurons. (P) Lack of 

EGFP expression in the retina. Scale bars, (A, B, F inset and J inset) 1 mm; (C) 500 μm; (D, 

E, K, N) 200 μm; (F, H, J) 2 mm; (G, I, K inset, L, M, O) 50 μm; (O inset) 10 μm; (P) 100 

μm. Reproduced with permission from [207].
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Figure 17. 
ChATBAC-EGFP mice were used to visualize neurons of the central nervous system. (A) 

Light (left) and fluorescent (right) ex vivo microscopy images of adult mice. (B) Magnified 

in vivo images from the brainstem and rostral spinal cord. (C) Immunostaining for anti-

EGFP antibody in various cross-sections of the brain. (D) Ventral spinal cord view on PD2. 

(E) Immunostaining for anti-EGFP antibody in various spinal cord segments. (F) Sections of 

the medial habenular nucleus of the brain showing expression of anti-ChAT (left) and anti-

EGFP (right). Roman numerals III-XII correspond to their respective cranial nerves (e.g., III 

is oculomotor). Other abbreviations: AO, anterior olfactory nucleus; CPu, caudate putamen; 

AcbC, accumbens nucleus core; AcbSh, accumbens nucleus shell; OC, olfactory cortex; 

LGP, lateral globus pallidus; Mnb, medial habenular nucleus; BL, basolateral amygdaloid 

nucleus; 7, facial nucleus; Sp5, spinal 5 nucleus; MVeMC, medial vestibular nucleus; Pr, 

prepositus hypoglossal nucleus; 7PA, facial nucleus proximal axons; 12, hypoglossal 

nucleus; Sol, solitary tract nucleus; Amb, ambiguus nucleus; VH, ventral horn; L9, lamina 9; 

DH, dorsal horn; VNR, ventral nerve root. Scale bars, (A and B cranial left) 1 mm; (B 

cranial right) 500 μm; (B cervical nerves) 1 mm; (C) 500 μm; (D) 1 mm; (E) 250 μm; (F) 50 

μm. Reproduced with permission from [208].
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Figure 18. 
Expression of tau in the myenteric plexus of various segments of the gastrointestinal system 

of 2-month-old htau (Mapttm1(EGFP)kit), wild-type (WT), and tau knockout (KO) mice. 

Images are merged showing tau in red, EGFP in green, and nucleic acid labels in blue. Scale 

bar, 100 μm. Reproduced with permission from [211].
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Figure 19. 
(A) Confocal microscopy images of oligodendrocyte progenitors (OPCs) in CNP-EGFP and 

WT mice following 1 or 3 weeks of treatment with cuprizone (CPZ). OPC expression was 

markedly elevated in CNP-EGFP mice compared to WT mice, as confirmed by analysis of 

variance (ANOVA) and Bonferroni post-hoc statistical tests (ns = non-significant, **p<0.01, 

***p<0.001). Scale bars, 50 μm. Reproduced with permission from [213].
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Figure 20. 
Expression of peripherin-EGFP (hPRPH1-G) in unfixed tissues viewed by multiphoton and 

confocal microscopy. (A) Cervical spinal cord at 200× magnification. (B) Images combined 

to show the DRG. (C) DRG sensory neuron cell bodies. (D-E) Small intestine seen by 

fluorescence (D) and confocal (E) microscopy at 100× and 400× magnification, respectively. 

(F) Retinal images showing RGC bodies at 1000× magnification. Reproduced with 

permission from [220].
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Figure 21. 
GFP-Cre expression in RGCs. (A) Experimentation strategy for labeling CCK -RGCs at 

axon terminals. (B) GFP-labeled CCK-RGCs in the retina of CCKires-Cre mice. (C-F) 

Neuronal morphology of various CCK-RGCs. (G) CCK-RGC axon terminals in the spinal 

cord, dLGN, and vLGN (red corresponds to CTb-594 labeling of all RGC axons). Scale 

bars, (B) 100 μm; (C-F) 50 μm; (G) 200 μm. Reproduced with permission from [247].
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Figure 22. 
Images of cerebellar granule cells on either P0 (A, C, D) or P10 (B, E). Math1-GFP 

expression was most prominent in the outer cerebellar EGL, which corresponds to normal 

expression of Math1. At P0, a lack of GFP expression overlap with markers of 

differentiating granule cells [TAG-1 and Neu-N in (C) and (D), respectively] was noted. (B) 

The majority of Math1-GFP–expressing cells were observed in the EGL, with minimal 

Math1-GFP expression in the IGL at P10. (E) Higher magnification images of the outer/

inner EGL, with more intense Math1-GFP expression in the outer EGL; low Math1-GFP 

expression was also noted in the molecular layer (ml). Scale bars, (A) 150 μm; (B) 300 μm; 

(C-D) 25 μm; (E) 30 μm. Reproduced with permission from [222].
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Figure 23. 
Expression of Thy1-CFP and CNPase-GFP in the retina and optic nerve of a mouse model 

of experimentally-induced rodent anterior ischemic optic neuropathy (rAION). (A) Optic 

nerve images in control Thy1-CFP mice before induction of rAION. (B) View of optic nerve 

21 days after induction of rAION, with arrows noting regions of significant axon loss. (C) 

Retina of control mouse before induction of rAION. (D) Optic nerve of CNPase-GFP mouse 

before induction of rAION. (F) Loss of oligodendrocyte expression 21 days after induction 

of rAION. Reproduced with permission from [105].
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Figure 24. 
EGFP expression in the cortex (axial sections) of NGF-EGFP transgenic mice. (A) The 

piriform cortex displayed prominent EGFP expression, especially in layer III. (B) Magnified 

image of the piriform cortex, showing both larger and smaller neurons. (C-D) The neocortex 

also displayed prominent EGFP expression, particularly in layer V. Scale bars, (A) 200 μm; 

(B & C) 100 μm. Reproduced with permission from [225].
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Figure 25. 
(A) Comparison of total mouse colonies vs. colonies that express SOX2-EGFP 24 days after 

experimental transgene induction. (B) SOX2-EGFP expression in brain tissue, imaged 25 

days after 5-Factor transgene induction, compared with MAP2+ (neuronal) and GFAP+ 

(astrocyte) cell expression. Scale bars, 50 μm. Reproduced with permission from [232].
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Figure 26. 
Expression patterns in key basal ganglia structures of BAC transgenic mice. (A) Drd1a-

EGFP, (B) Drd2-EGFP, and (C) Drd1a-tdTomato BAC lines. Fluorescence was most 

prominent in striatal soma and axonal projections. Scale bar, 1 mm. Other abbreviations: 

GPe, globus pallidus externa; SNr, substantia nigra pars reticulata; Str, striatum. Reproduced 

with permission from [243].
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Figure 27. 
Cortical iGABASnFR expression viewed under immunofluorescence microscopy. (A) 

Experiment diagram and design. (B) Images of cortical layers I-VI. (C) Images of cortical 

neurons proximal to the inferior pia. (D) Average intensity of interictal iGABASnFR 

fluorescence. (E) Interictal neuronal activity, as measured by electrocorticography. Scale 

bars, (B) 100 μm; (C) 20 μm; (D) 50 μm. Reproduced with permission from [245].
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Table 1.

Common nerve markers and their locations, functions, and cited experimental application

Biomarker Location Function Experimental Application

Thy-1 (CD90)

Subsets of neurons, 
thymocytes, peripheral T 
cells, myoblasts, epidermal 
cells, keratinocytes

Cell interactions Visualization of nerve structure and regeneration 
in the cornea [10]

Nestin

Neuroepithelial cells, radial 
glia, ventricular zone 
progenitor cells, nascent 
ependyma/subependyma

Class VI Intermediate 
filament

Visualization of self-renewal and multipotency of 
CNS stem cells [16]

βIII tubulin Neurons Structural protein Expression in the developing PNS and CNS 
using YFP [17]

Neurofilament heavy 
chain (NF-H)

Neurons (mature myelinated 
axons)

Axonal phosphorylation and 
neurofilament transport

Expression of high molecular weight 
neurofilaments in neurons and their 
transportation along axons [18]

Substance P Subsets of sensory nerves Pain transmission in CNS 
inflammation, wound healing

Understanding the contribution of Substance P to 
corneal epithelial w ound healing via 
mechanisms involving the Neurokinin-1 Receptor 
[19]

Neuron-specifice 
nolase (NSE)

Neurons, peripheral 
neuroendocrine cells

Neural differentiation and 
maturation

Expression of β-galactosidase in mature neurons 
under the control of a neuron-specific enolase 
promoter [20]

Calcitonin gene-
related peptide 
(CGRP)

Subsets of sensory neurons

Vasodilation, smooth muscle 
relaxation, potentiates 
excitation caused by noxious 
stimuli and pronociceptive 
chemicals

Expression of CGRPα in sensory neurons to 
integrate pain and itch responses [21]

Biochim Biophys Acta Gen Subj. Author manuscript; available in PMC 2021 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yamakawa et al. Page 65

Table 2.

Thy1-YFP expression during embryonic development in Thy1-YFP-16 mice

Neural system E12.5 E13.5 E14.5 E15.5 E16.5 E17.5 P0 W1 M1

CNS

Brain

Prosencephalon +/− +/− + + ++ ++ ++ +++ +++

Mesencephalon

Rhombencephalon + + ++ ++ +++ +++ +++ +++ +++

Spinal cord

Ventral horn + ++ ++ +++ +++ +++ +++ +++ +++

Dorsal horn +/− + + ++ +++ +++ +++ +++ +++

PNS

Cranial nerves + ++ ++ ++ ++ +++ +++

Spinal nerves + + ++ ++ ++ ++ ++ +++ +++

Retina + ++ +++ +++

E17.5 has been defined as the referral point and at that stage number of cells has been counted: “−” refers to no signal, “+/−” to signal present in 
less than 10% of cells, “ +” to signal present in 10–20% of cells, “++” to signal present in 20–35% of cells, “+++” to signal present in 35–50% of 
cells. Other stages were compared to the referral point and evaluated semi-quantitatively. “PNS” peripheral nervous system, “E” embryonic day, 
“P” newborn, “W1” 1-week-old pups, “M1” 1-month-old mice. Reproduced with permission from [27].
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Table 3.

Previously used transgenic mouse reporters

Mouse Reporter Line Other Associated References

Thy1-YFP [68–84]

Thy1-EGFP [85–87]

Thy1-CFP [88–111]

Thy1-RFP [112]

Nestin-GFP [113–202]

ChAT-ChR2-EYFP BAC [203–205]

UCHL1-EGFP [206, 207]

ChATBAC-EGFP [208, 209]

Mapttm1(EGFP)kit [210–212]

CNP-EGFP [213–219]

Peripherin-EGFP (hPRPH1-G) [220]

Hoxb4-ENE-GFP-cre [221]

Math1-GFP [222]

CNPase-GFP [105, 223]

NGF-EGFP [224–226]

SOX2-EGFP [227–240]

Drd1a- & Drd2-EGFP, Drd1a-tdTomato [241–244]

GABASnFR [245, 246]
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