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Abstract

Heparin-binding EGF-like growth factor (HB-EGF) is an EGF family member that interacts with epidermal
growth factor receptor (EGFR) and ERBB4. Since HB-EGF was first identified as a novel growth factor se-
creted from a human macrophage cell line, numerous pathological and physiological functions related to cell
proliferation, migration, and inflammation have been reported. Notably, the expression of HB-EGF is sensi-
tively upregulated by oxidative stress in the endothelial cells and functions for auto- and paracrine-EGFR
signaling. Overnutrition and obesity cause elevation of HB-EGF expression and EGFR signaling in the hepatic
and vascular systems. Modulations of HB-EGF signaling showed a series of protections against phenotypes
related to metabolic syndrome and advanced metabolic diseases, suggesting HB-EGF as a potential target
against metabolic diseases.
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Introduction

Heparin-binding EGF-like growth factor (HB-EGF)
is a primary protein in the macrophage cell superna-

tants that interacts with the heparin column.1 Later, it was
shown to be a member of the EGF family that interacts with
epidermal growth factor receptor (EGFR) and ERBB4.2–4

The HB-EGF-EGFR pathway induces multiple signaling
pathways depending on cell types, including ERK1/2, PI3K-
Akt, PLC-g, and STATs.5 HB-EGF is expressed as a type I
transmembrane protein on the cell surface.4,6 A list of
metalloproteinases (MPs) activates the HB-EGF for auto-
or paracrine-signaling.7 Mature HB-EGF still contains a
heparin-binding motif; thus, it interacts with cell surface
proteoglycan.1,6,8,9 Membrane-tethered HB-EGF can form a
complex with neighbor cell EGFR for juxtacrine signal-
ing.4,10 Oxidative stress inducers sensitively upregulate the
HB-EGF transcription in the endothelial cells.11,12 HB-EGF
expression in bone marrow stromal cells increases the pro-
liferation of the hematopoietic stem cells and progenitor
cells (HSPCs).13,14 Recent research results indicate that in-
creased myeloid cell production in bone marrow is a signifi-
cant feature in the development of metabolic diseases.15,16

The regulatory function of HB-EGF in hematopoiesis may
be a connection of oxidative stress with induction of low-
grade inflammation under metabolic stress environments.
We also summarized recent reports on the potential of HB-
EGF targeting against the advancement of metabolic dis-
eases (Table 1). Different approaches of HB-EGF targeting
induced a list of protective phenotypes in the animal and
human studies, suggesting HB-EGF as a potential target for
therapeutic purposes.

Effects of the HB-EGF gene deletion
and overexpression in metabolic
disease phenotypes

Germline deletion of HB-EGF in systemic or vascular
endothelium caused cardiac hypertrophy with gross en-
largement of ventricular chambers of the heart17,18; how-
ever, the postnatal induction of HB-EGF gene deletion did
not induce the deleterious effects.19–21 Although the basal
level of HB-EGF expression in the hepatocytes is low,
hepatocyte-specific HB-EGF gene deletion induced an in-
crease of inflammation and fibrosis in the liver.22–24 Interest-
ingly, HB-EGF overexpression also enhanced the induction
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of liver damage,25 suggesting that a physiological range of
HB-EGF expression is essential for a healthy liver. The
endothelial cell-specific HB-EGF gene deletion protected
against both diabetic- and angiotensin-II (AngII)-induced
renal disease phenotypes in animal models.19,26 The podocyte-
specific HB-EGF gene deletion also induced protection against
acute renal disease in a mouse model.21

HB-EGF mediates EGFR transactivation under
oxidative stress

Reactive oxygen species (ROS) formations and activation
of MPs are involved in EGFR transactivation in the cells and
tissues under oxidative stress environments.3,12,27,28 Nu-
merous reports indicated a crucial role of HB-EGF in the
EGFR transactivation by oxidative stress inducers,3,29,30

including AngII,31 catecholamines,32 and lipid oxidation
products.33,34 Differently to the canonical ligand-activated
signaling, the stress-induced EGFR transactivation showed a
low-level but prolonged signaling with minimal internali-
zation or desensitization of EGFR.30 Although there are
>10 ligands for EGFR, the HB-EGF almost exclusively
mediates EGFR transactivation under various stress environ-
ments,4,35 suggesting that the HB-EGF is a specialized and
conserved mediator for the connection of oxidative stress
with cell signaling.3,36 A report indicated that the EGFR was
activated in <1 min by endothelin-1, suggesting a mecha-
nism of transcription-independent fashion for the transacti-
vation process.37 In addition, the upregulation of HB-EGF
expression would contribute to the sustained EGFR signal-
ing.12 The transcription of HB-EGF is mainly controlled by
a stress signal associated activator protein-1 (AP-1) tran-
scriptional factor in the cells.11,38 Oxidative stress inducers
also upregulated a list of MPs involved in the HB-EGF
processing on the cell surface of endothelial cells.7,12,34

The obese individuals showed accumulations of oxidation
products of phospholipid in the adipose and skeletal muscle
tissues.39–41 The oxidation products activated AP-1 in the
endothelial cells, as demonstrated by a recent Chip-Seq
analysis.42 AngII is a well-known oxidative stress inducer

via ROS production through the NADPH oxidase (NOX)
system in the vascular smooth muscle cells.43,44 Correspond-
ingly, AngII induces EGFR transactivation in the cells via
HB-EGF mediation.7,45,46 The EGFR transactivation was an
underlying mechanism for the proliferation and migration of
vascular smooth muscle or glomerular mesangial cells under
the stress conditions.35,45,47,48 Unsaturated lysophosphatidic
acid also induced intimal thickness in the carotid artery via
HB-EGF-mediated EGFR transactivation.29,30,49,50

Role of HB-EGF in the Development
of Metabolic Syndrome and Low-Grade-
Inflammation

The metabolic syndrome is a cluster of metabolic dys-
functions, including central obesity, insulin resistance,
dyslipidemia with a manifestation of hypertriglyceridemia,
and hypertension.51–53 Downregulation of high-density li-
poprotein (HDL) and production of small dense low-density
lipoprotein (sdLDL) are frequently associated because of the
enzyme activity of cholesteryl ester transfer protein, spe-
cifically in humans.53,54

Hyperlipidemia, particularly hypercholesterolemia, is clo-
sely associated with the proliferation of HSPCs and the
production of myeloid cell progenitors in the bone mar-
row.15,55–57 Under obesity, there are increases in bone
marrow-derived monocytes in the bloodstream (monocytosis)
and accumulation of proinflammatory macrophages in the
adipose tissue.58 There is also an increase in the local pro-
liferation of macrophages in the atherosclerotic lesion.59

Role of HB-EGF in the development
of low-grade inflammation

The oxidation products of phospholipids induced the up-
regulation of HB-EGF in the vascular wall, causing inflam-
matory responses.60,61 Also, the products of phospholipid
peroxidation upregulated the expression of inflammatory
cytokines (IL-8 and MCP1/CCL2) and cell adhesion mole-
cules (e.g., ICAM1) in the endothelial cells, leading to the

Table 1. Functions of Heparin-Binding EGF-Like Growth Factor Related

to Phenotypes of Metabolic Syndrome and Diseases

Physiological and pathophysiological function Cell type or tissues involved Refs.

Interaction with EGFR and ERBB4
for cell signaling

Multiple cell types that express EGFR and ERBB4 1

Induction of proliferation of HSPCs Bone marrow hematopoietic and stromal cells 13,14

Development of the heart structure and function Endothelial cells 17

Liver function Hepatocytes 22–24

Renal function Renal endothelial cells 19

Renal podocytes 21

Renal tubular epithelial cells 112,116

EGFR transactivation Multiple cell types under stress environments 12,29

Induction of insulin resistance Adipocytes and skeletal muscle cells 37

Interaction with adiponectin Vascular smooth muscle cells 82,83

Induction of neointimal thickness Vascular smooth muscle cells 49

Regulation of hepatic VLDL production LSECs or hepatocytes 92

Regulation of inflammatory cytokine expression Vascular endothelial cells 34

Atherosclerosis and aneurysm development Aortic smooth muscle cells 61,98,99,102,103

Interaction with diphtheria toxin Multiple cell types 134

EGFR, epidermal growth factor receptor; HSPCs, hematopoietic stem and progenitor cells; LSECs, liver sinusoidal endothelial cells;
VLDL, very-low-density lipoprotein.
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recruitment of bone marrow-derived monocytes into the
subendothelial space.62,63

Under homeostatic conditions, the liver sinusoidal endo-
thelial cells (LSECs) effectively clear any harmful oxidants
in circulation, such as oxidized LDL particles (Ox-LDLs)
and advanced glycation end products (AGEs).64–67 How-
ever, a sustained influx of oxidants overproduced in the sys-
temic or splanchnic circulation may induce saturation and
activation of the endothelial cells.68 The saturation of LSECs
leads to the activation of extrahepatic endothelial cells and
chronic inflammation by prolonged exposure to proinflamma-
tory oxidants.

Krampera et al. demonstrated that HB-EGF is a crucial
regulator for the self-renewal of hematopoietic stem cells
(HSCs) in the bone marrow.13,14 The coordination of HB-
EGF and CXCL12/SDF-1 in the hematopoietic niches is
a determinant for stem cell proliferation and blood cell
production in the bone marrow.14 Various exogenous and
endogenous stress inducers, including phorbol myristate
acetate and tumor necrosis factor-alpha, upregulated HB-
EGF gene expression in the bone marrow. Bone marrow
sinusoidal endothelial cells also effectively endocytose ox-
idants, including minimally oxidized LDLs and AGEs.64,67

The upregulation of HB-EGF expression in the sinusoidal
endothelial cells may lead to the proliferation of HSPCs and
the production of myeloid progenitor cells.69 The endothe-
lial permeability also increased by oxidants,70 which would
lead to the increased mobilization of the HSPCs and im-
mune cells from the bone marrow tissues into circulation.71

Role of HB-EGF in the development
of insulin resistance

Insulin resistance is a central phenotype of metabolic
syndrome and is frequently associated with systemic oxi-
dative stress and low-grade inflammation.53,72 HB-EGF was
shown to be involved in the development of insulin resis-
tance by oxidative stress inducers, including endothelin-1,
thrombin, and 5-hydroxytryptamine (serotonin) in the adi-
pocytes and skeletal muscle cells.73 Obesity is a risk factor
for the accumulation of ROS in adipose, skeletal mus-
cle tissues, and circulation.39,40,51 A list of phospholipid
peroxidation products also induced insulin resistance in the
primary culture of adipocytes and skeletal muscle cells.41,74–

76 The obese adipose tissue is enriched with proin-
flammatory M1 macrophages.39 Concordantly, the HB-
EGF gene expression is upregulated in adipose tissue in
obese persons.77 Adiponectin is an established adipokine
that is a potent insulin sensitizer.78,79 The adiponectin level
inversely correlated with systemic oxidative stress and
visceral obesity.51,80 Intriguingly, adiponectin directly in-
teracts with HB-EGF for sequestering,81–83 which may
partly explain the anti-atherogenic and anti-inflammatory
functions of adiponectin.84

The role of HB-EGF in the induction of dyslipidemia

Dyslipidemia, as manifested by hypertriglyceridemia and
the reduction of HDL, is the earliest event of metabolic
syndrome in obese people.85 Hepatic very-low-density li-
poprotein (VLDL) overproduction is a common feature of
hypertriglyceridemia in obese individuals.53 HB-EGF is
mainly expressed in the LSECs in the liver tissue.86,87 The

antisense oligonucleotide (ASO) with a phosphorothioate
modification is effectively uptaken by LSECs with effective
induction of target gene silencing in the cells.88–91 A recent
report showed that the HB-EGF ASO administration in-
duced a competent downregulation of circulatory triglycer-
ide (TG) levels by suppressing hepatic VLDL production in
a mouse model.92 Under the obesity condition, the elevated
HB-EGF expression in the LSECs may enhance VLDL
production in the hepatocytes via a paracrine mechanism.
As shown in several cancer cell types, the EGFR pathway
may activate the sterol regulatory element-binding protein
1c (SREBP-1c) pathway for the increase of lipogenesis in
the hepatocytes.93,94

The Role of HB-EGF in the Progress
of Metabolic Disease Phenotypes

Role of HB-EGF in the development
of atherosclerosis

The elevation of TG-rich VLDL particles in circulation
is an independent risk factor for the development of ath-
erosclerosis and coronary artery disease.95,96 Particularly,
VLDL remnant and LDL particles derived from VLDLs
have optimal sizes for the infiltration into the vascular
wall.62 In addition, the modification of the lipoprotein par-
ticles induced self-aggregation in the subendothelial
space,97 which are associated with enhanced scavenging by
the macrophages in the subendothelial space.62 The bioac-
tive components of minimally modified LDL particles, ox-
idized phospholipids (Ox-PLs), increased gene transcription
of HB-EGF and MPs like a disintegrin and metallopro-
teinase 17 (ADAM17) in the vascular endothelial cells34,63

(Fig. 1). There were positive associations of HB-EGF con-
tent in the vessel wall with the intensity of atherosclerosis in
hyperlipidemic mouse and human vessels.61,98,99 AngII in-
fusion, which elevates HB-EGF-EFR signaling, significantly
increased atherosclerosis and aneurysm in hyperlipidemic
animal models via HB-EGF upregulation in the vessel
wall.7,100,101 Small-molecule inhibitors of EGFR also
showed protection against atherosclerosis and aneurysm in
hyperlipidemic animal models.102,103

Role of HB-EGF in the development
of hepatic inflammation

HB-EGF is mainly expressed in the sinusoidal endothelial
cells in the liver.86,87 Different from the endothelial cells in
the other tissues of the body, the LSECs are the scavenger
endothelial cells as gatekeepers of the body.68,104 LSECs
effectively scavenge oxidant wastes, including modified
(heavily- or minimally oxidized) LDL particles and AGEs,
which are significantly enriched in the splanchnic circula-
tion of centrally obese individuals.51,66,105,106 The sustained
influx of oxidants into the hepatic sinusoidal lumen causes
the saturation and activation of LSECs for the induction of
inflammatory cytokine expression.68,107,108 The upregula-
tion of HB-EGF in the activated LSECs would induce
paracrine EGFR signaling in the hepatocytes for the stim-
ulation of VLDL production. The HB-EGF expressed on
and released from the LSECs may cause dyslipidemia and
low-grade inflammation in the liver (Fig. 2 for the schematic
diagram for events related to chronic inflammation and
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dyslipidemia induced by the overnutrition). The saturation
of the LSECs would also induce extrahepatic endothelial
cell activation, causing low-grade systemic inflammation.

Pathological role of HB-EGF in renal diseases

Previous reports indicated that HB-EGF-mediated EGFR
signaling is involved in the pathology of renal dis-
eases.21,43,48,109–112 HB-EGF mediates the disease pheno-
types associated with AngII signaling in the kidney.43 The
HB-EGF-mediated EGFR transactivation signaling mediates
the fibronectin and transforming growth factor-beta upre-
gulation in renal mesangial cells induced by AngII or high
glucose.47,48 Bollee et al. demonstrated that the podocyte-
specific HB-EGF gene deletion or the administration of
EGFR blocker induced protections against rapidly pro-
gressive glomerulonephritis in a mouse model.21 The
endothelial-specific HB-EGF deletion also induced a series
of protection against renal disease induced by AngII, uni-
lateral nephrectomy,19,113–115 or ischemic reperfusion.116 In
contrast, the administration of recombinant HB-EGF down-

regulated glomerulus filtration in the animal model of glo-
merulonephritis.20 Because HB-EGF is abundantly expressed
in the epithelial cells in distal tubules, there were signifi-
cant increases in soluble HB-EGF content in the urines un-
der renal disease conditions.116 Overstreet et al. showed
that renal tubular HB-EGF overexpression caused the de-
velopment of renal fibrosis.112

The HB-EGF as a Potential Target Against
Metabolic Diseases

The accumulation of lipid peroxidation products (e.g.,
Ox-PLs) in circulation appears to be a risk factor for the
development of metabolic syndrome associated with central
obesity.51,52,117,118 The inhibition of ROS production or the
neutralization of the oxidants is a possible approach for the
protection against metabolic syndrome and disease pheno-
types.119 Considering the upregulation of the HB-EGF in the
endothelium by oxidative stress, the HB-EGF targeting or
modulation of the HB-EGF signaling could be another op-
tion for treatment. The clinical application of HB-EGF

FIG. 1. Lipid peroxidation products increased the expression of genes involved in the HB-EGF-activated EGFR pathway
in the vascular endothelial cells. The human aortic endothelial cells isolated from 96 different human donors were treated
with vehicle and oxidized phospholipid (Ox-PAPC, 50 mg/mL) for 4 hr. The HB-EGF, ADAM10, -17, and EGFR transcript
values from the microarray dataset of the donor cells were plotted by order of basal transcript levels. The openly available
dataset was reanalyzed (NCBI GEO: www.ncbi.nlm.nih.gov/geo/; reference number GSE20060).63 The unique probe ID
was inserted for each gene. P values mean the differential P-value from the Student’s t-test for paired values of the vehicle
and Ox-PAPC treatment groups after adjustment for multiple comparisons. ADAM, a disintegrin and metalloproteinase;
EGFR, epidermal growth factor receptor; HB-EGF, heparin-binding EGF-like growth factor; Ox-PAPC, oxidized 1-
palmitoyl-2-arachidonyl-sn-glycero phosphorylcholine.
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modulators on the development of metabolic dysfunction has
not been reported yet (as far as we know). Most of the pre-
vious interventional clinical studies using HB-EGF modulators
have focused on the treatment of cancer patients.3,34,120,121

Antioxidant approaches against
metabolic dysfunction

Obesity is closely associated with the induction of oxi-
dative stress in adipose tissue and circulation.51 There was a
close association of oxidative stress with the development of
metabolic syndrome.52,84,118 As an example of the useful
therapeutic application of antioxidants, the administration of
a free thiol N-acetyl-L-cysteine ameliorated the liver endo-
thelial cell damage caused by the paracetamol over-
dose.122–124 However, the beneficial effects of neutralization
of the oxidants using antioxidants against metabolic disease
phenotypes are still under controversy.119,125 Because local
transient ROS production is essential for physiological and
cellular functions,125,126 nonspecific targeting of superoxide
(O2

-) and hydrogen peroxide (H2O2) may cause deleterious
effects. Another pitfall of antioxidant therapy could be the
differential reactivities of an antioxidant with oxidants due
to different chemical structures and properties.119 The time
point for the administration might be another determining
factor for therapeutic effects.119,127 Administration of anti-

oxidants at the end stage of metabolic diseases did not in-
duce significant beneficial effects.125,126

HB-EGF targeting against metabolic diseases

HB-EGF blocking antibodies were evaluated for thera-
peutic applications for antitumor purposes.128–132 In human
clinical trials, the administration of HB-EGF neutralizing
antibody showed protection against cancer progression.
However, the administration induced unexpected psychiatric
side effects.130,133 A recent trial using another HB-EGF
blocking antibody did not show the deleterious effects.132

The membrane-tethered HB-EGF is the bona fide receptor
for diphtheria toxin (DTX) in primates.134 Inert DTX analog
has been evaluated for the suppression of HB-EGF signaling
in varying pathological conditions.121,135–137 A representa-
tive DTX analog, CRM-197, showed protection against the
proliferation and metastasis of cancer cells135–139; however,
the effects of the analog on the metabolic disease pheno-
types have not yet been reported.

As mentioned, the administration HB-EGF ASO signifi-
cantly downregulated the rate of hepatic VLDL production
and effectively suppressed circulatory VLDL- and LDL-
associated TG and cholesterol levels in hyperlipidemic
mouse models (LDLR- or apoE-deficient mice under the
Western diet).92 Concordantly, the ASO administration

FIG. 2. The role of HB-EGF in the regulation of the hepatic inflammation under overnutrition and obesity. In homeostatic
condition, HB-EGF is constitutively expressed in and released from the LSECs for the paracrine EGFR signaling in the
hepatocytes for basal VLDL production. The oxidative stress associated with nutrition excess and visceral obesity increased
the production of harmful oxidants, including oxidized LDL particles in circulation. The oxidants induce saturation and
activation of LSECs and upregulation of HB-EGF expression, which may cause extrahepatic endothelial cell activation
and recruitment of bone marrow-derived monocyte recruitment and hepatic VLDL overproduction. The elevation of the
circulatory cholesterol induces increased proliferation of the myeloid progenitor in the bone marrow, leading to mono-
cytosis and low-grade inflammation. KC, Kupffer cell; LDL, low-density lipoprotein; LSECs, liver sinusoidal endothelial
cells; MoMF, monocyte-derived macrophage; MTP, microsomal triglyceride transfer protein; VLDL, very-low-density
lipoprotein. Color images are available online.
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induced an effective suppression of atherosclerosis and an-
eurysm developments in the models.92,140 The inhibition of
hepatic VLDL production and downregulation of innate
immune cell production in the bone marrow appears to be
involved in the protection.14

Recently, a list of small-molecule EGFR blockers (e.g.,
gefitinib and AG1478) showed protection against athero-
sclerosis and hyperlipidemia in animal models.102,141 The
inhibitors also downregulated circulatory lipid levels in
hyperlipidemic mouse models. The EGFR blocker erlotinib
showed protection against diabetes in humans by suppres-
sing inflammatory cytokine production and inflammatory
cell infiltration into the pancreas.142 Gefitinib administration
protected against renal, vascular, and glomerular fibrosis.109

Potentially, the re-evaluation of the clinically available
EGFR blockers could be an approach for the development of
therapeutic tools against metabolic diseases.12,43

Conclusion and Perspectives

Since the first identification of the HB-EGF as a ligand of
EGFR and ERBB4,1 numerous features of HB-EGF asso-
ciated with cell proliferation and metabolic disease pheno-
types were reported. Different from the other EGFR ligands,
the HB-EGF transcription is sensitively upregulated by ox-
idative stresses in the endothelial cells. The role of the HB-
EGF in regulating the proliferation and differentiation of
HSCs could be a compelling connection of oxidative stress
with the induction of low-grade inflammation in obese
people. The increase of the hepatic VLDL production by the
HB-EGF signaling in the hepatocytes could be the linkage
of oxidative stress with dyslipidemia in obese people. As
illustrated in Fig. 3, the HB-EGF upregulated in the hepatic
or bone marrow sinusoidal endothelial cells by overpro-
duction of harmful oxidants in circulation appears to be a

proximal event for the induction of dyslipidemia and low-
grade inflammatory responses under oxidative stress envi-
ronments. The vicious cycle of accumulation of oxidants in
circulation and increased myeloid cell production in the
bone marrow would lead to the progress of metabolic dis-
eases to atherosclerosis and non-alcoholic steatohepatitis.
HB-EGF is also involved in the induction of suppression of
insulin signaling in the adipocytes and skeletal muscle cells.

Although the therapeutic potential of the HB-EGF
modulation is a promising approach from the experimental
results using animal models, still many barriers are to be
overcome for the clinical applications. Previous reports in-
dicated barriers in the translational application of the pre-
clinical results to humans on metabolic and vascular disease
phenotypes,143,144 as exemplified by the increased suscep-
tibility of the patients with anti-inflammatory reagent ca-
nakinumab (IL-1beta blocking antibody) administration to
the sepsis and infection.145 For each approach of HB-EGF
targeting, a thorough evaluation of the potential side effects
should be addressed. The administration of an HB-EGF
blocking antibody caused psychiatric disturbances in hu-
man studies, partly because of the interruption of the cere-
bral function of HB-EGF.130,133 The ASO would provide a
benefit of minimal side effects in the brain via the imper-
meability of the ASO through the blood–brain barrier146;
however, the HB-EGF ASO induced buildup of the neutral
lipids (TG and cholesterol ester) in the liver and potential
suppression of blood cell formation in the bone marrow.92

Further evaluation of the side effects associated with liver
and bone marrow functions is required. The DTX analog
showed significant beneficial effects in suppressing cancer
cell proliferation and metastasis. The cost of production of
DTX analog and residual toxic effects of the analog could
be barriers for long-term clinical usages. Collectively,
considerable results indicate that the HB-EGF pathway is a
target candidate for the prevention and reverse of metabolic
diseases in humans, although further evaluation on potential
side effects is needed.
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FIG. 3. The working hypothesis of HB-EGF in metabolic
disease development. Oxidants produced by the oxidative
stress increased HB-EGF expression in the sinusoidal endo-
thelial cells in the liver and bone marrow, causing increases
in hepatic VLDL secretion and myeloid cell production. The
bone marrow-derived monocytes can be recruited into the
subendothelial space of the liver sinusoids and vessel en-
dothelium for the development of inflammation in the liver
and vessels. HB-EGF targeting would downregulate the he-
patic VLDL production and reduction of the myeloid cell
production. FFA, free fatty acid; HSPC, hematopoietic stem
and progenitor cell; Mj, macrophage; MO, monocyte; MPC,
myeloid progenitor cell. Color images are available online.
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