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Abstract

Significance: Epidemiological studies indicate that metabolic disorders are associated with an increased risk for
Alzheimer’s disease (AD). Metabolic remodeling occurs in the central nervous system (CNS) and periphery,
even in the early stages of AD. Mitochondrial dysfunction has been widely accepted as a molecular mechanism
underlying metabolic disorders. Therefore, focusing on early metabolic changes, especially from the perspec-
tive of mitochondria, could be of interest for early AD diagnosis and intervention.
Recent Advances: We and others have identified that the levels of several metabolites are fluctuated in the
periphery before their accumulation in the CNS, which plays an important role in the pathogenesis of AD.
Mitochondrial remodeling is likely one of the earliest signs of AD, linking nutritional imbalance to cognitive
deficits. Notably, by improving mitochondrial function, mitochondrial nutrients efficiently rescue cellular met-
abolic dysfunction in the CNS and periphery in individuals with AD.
Critical Issues: Peripheral metabolic disorders should be intensively explored and evaluated for the early
diagnosis of AD. The circulating metabolites derived from mitochondrial remodeling represent novel potential
diagnostic biomarkers for AD that are more readily detected than CNS-oriented biomarkers. Moreover, mito-
chondrial nutrients provide a promising approach to preventing and delaying AD progression.
Future Directions: Abnormal mitochondrial metabolism in the CNS and periphery is involved in AD pathogenesis.
More clinical studies provide evidence for the suitability and reliability of circulating metabolites and cytokines for
the early diagnosis of AD. Targeting mitochondria to rewire cellular metabolism is a promising approach to
preventing AD and ameliorating AD-related metabolic disorders. Antioxid. Redox Signal. 32, 1188–1236.
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I. Introduction

Alzheimer’s disease (AD), the most common type of
dementia, is a progressive and irreversible neuro-

degenerative disease, characterized by a progressive loss of
learning, memory, orientation, language, comprehension,
judgment, and intellectual performance (8, 430). This disease
was first observed in 1906 by Dr. Alois Alzheimer, who
found abnormal plaques and fibrillary pathology in the
brain of his patient Auguste Deter, who died due to an
atypical mental illness (7). In the United States, *5.8 million
patients are living with AD, the majority of whom are
older than 65 years. Statistics show that in 2010, about 10
million people suffered from AD in China, which is the
country with the largest number of patients in the world. The
prevalence of AD in China was estimated at 3.21% among
people aged ‡65 years (181). AD is the sixth leading cause of
death in the United States: Deaths from AD have increased
*1.5-fold, whereas deaths from others have decreased dur-
ing the past two decades.

Once clinically diagnosed, the patient has an average life
expectancy of 3 to 9 years. In the clinic, only a few Food and
Drug Administration drugs have been approved for the

treatment of AD, including donepezil, rivastigmine, ga-
lantamine, and memantine; however, these drugs have lim-
ited abilities to reverse AD progression and only temporarily
improve the quality of life for patients (8, 158).

Pathologically, AD is characterized by Ab and neuro-
fibrillary tangles (NFTs) in the brain. Although there is no
conclusion about the molecular mechanism(s) of AD, pos-
sibilities include (i) beta amyloid (Ab) and amyloid plaques,
(ii) hyperphosphorylation of the Tau protein and NFTs, (iii)
oxidative stress and inflammation, (iv) and mitochondrial
dysfunction (Fig. 1).

A. Ab and amyloid plaques

AD can be divided into three main types: early-onset
familial AD (FAD), early-onset sporadic AD, and late-onset
sporadic AD. The early-onset FAD subtype accounts for
*1% of all AD cases, with 326 total families worldwide
living with this type of AD. The genetic variants in autosomal
dominant FAD include genes encoding the transmembrane
protein amyloid beta precursor protein (APP), presenilin 1
(PSEN1, also known as PS1), and presenilin 2 (PSEN2) (311,
336, 394), which are all involved in APP processing.
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The APP gene is located on chromosome 21, and the
mutations include A201V (344), A235V (295), D243N (295),
E246K (111), E296K (295), P299L (295), R468H (347),
A479S (111), K496Q (344), A500T (347), Y538H (285,
344), V562I (344), E599K (344), T600M (347), P620A
(295), P620L (344), T663M (347), E665D (306), V669L
(Seoul) (20), KM670/671NL (283), A673T (306), A673V
(79), H677R (179), D678H (52), D678N (403), E682K (472),
K687N (187), A692G (154), E693G (188), E693K (383),
E693Q (221), D694N (128), L705V (297), G708G (21),
G709S (347), A713T (47), T714A (304), T714I (210),
V715A (70), V715M (11), I716F (139), I716M (32), I716T

(391), I716V (94), V717F (284), V717G (51), V717I (125),
V717L (285), T719N (168), T719P (121), M722K (416),
L723P (211), and K724N (392).

PSEN1 and PSEN2 are located on chromosomes 14 and 1
and contain 13 exons and 12 exons, respectively, and more
than 300 mutations have been reported in PSEN, which
represents the most common genetic variation in AD (214).
On the other hand, PSEN2 is very rarely mutated and is re-
lated to AD (44). Mutations in the APP gene trigger the
overproduction of neurotoxic and aggregation-prone forms
of Ab peptides by shifting the cleavage of APP toward
amyloidogenic processing (24). The PSEN1 and PSEN2 genes

FIG. 1. Possible mechanisms of AD. Pathologically, AD is characterized by Ab and NFTs in the brain. However, the
molecular mechanism(s) of AD is inconclusive. The possibilities include (i) Ab and amyloid plaque. APP is a trans-
membrane protein that can be processed in two distinct ways: nonamyloidogenic processing and amyloidogenic processing.
In the nonamyloidogenic processing method, APP is sequentially cleaved by a-secretase and c-secretase. In amyloidogenic
processing, APP is sequentially cleaved by b-secretase and c-secretase, producing toxic Ab fragments, which play roles in
both CNS and periphery. This sequential cleavage occurs on the plasma membranes of neurons, adipocytes, and hepato-
cytes. The genetic variants in autosomal dominant FAD include genes encoding the transmembrane protein APP, PSEN1,
and PSEN2. The most common variant in sporadic AD patients is APOE. The GWAS identified other rare genetic variants
such as TREM2. The mitochondria-related variants such as UCP2 and TOMM40 are also identified. (ii) Hyperphosphor-
ylation of Tau protein and NFTs. Tau is the primary component of NFTs in AD, and the most prominent post-translational
modification of Tau in AD is hyperphosphorylation. Hyperphosphorylated Tau eventually forms abundant NFTs, which is
toxic to synapses and neurons and impairs cognitive function. (iii) Oxidative stress and inflammation. Mitochondria-
associated oxidative damage and the inflammatory response are early key factors in the development of AD. Ab directly
dampens mitochondrial structure and function, which promotes oxidative stress and inflammation, and further facilitates the
pathogenesis of AD. (iv) Mitochondrial dysfunction. Two major biological functions that occur in mitochondria are the
TCA cycle and respiration. Hyperglycemia and hyperlipidemia impair mitochondrial function and disturb the mitochondrial
homeostasis, leading to metabolic disorder and neuronal bioenergetic deficit in AD. Ab, beta amyloid; AD, Alzheimer’s
disease; APOE, apolipoprotein E; APP, amyloid beta precursor protein; CNS, central nervous system; FAD, familial AD;
GLUTs, glucose transporters; GWAS, genome-wide association studies; NFTs, neurofibrillary tangles; PSEN1, presenilin 1;
PSEN2, presenilin 2; TCA, tricarboxylic acid; TOMM40, translocase of outer mitochondrial membrane 40; TREM2,
triggering receptor expressed on myeloid cells 2; UCP, mitochondrial uncoupling proteins. Color images are available
online.
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aggravate the production ratio of Ab42 by regulating the c-
secretase-mediated cleavage of APP (24). However, the ma-
jority of sporadic AD cases have no such mutations in APP,
PSEN, and PSEN2 (186), indicating a different or additional
mechanism underlying AD pathogenesis.

APP is a transmembrane protein that can be processed in
two distinct ways: nonamyloidogenic processing and amy-
loidogenic processing. In the nonamyloidogenic processing
method, APP is sequentially cleaved by a-secretase and
c-secretase (PS1) into a secreted C-terminal fragment (sAP-
Pa), p3 and amyloid intracellular domain. In amyloidogenic
processing, APP is sequentially cleaved by b-secretase
(b-site APP cleaving enzyme 1 [BACE1]) and c-secretase,
producing toxic Ab fragments. This sequential cleavage oc-
curs on the plasma membranes of neurons, adipocytes, and
hepatocytes (463, 473). Ab deposition in the central nervous
system (CNS) serves as the most significant pathological
hallmark of AD at patient autopsy (8). Under pathological
conditions, amyloidogenic processing predominates, and AD
is thus initiated by an imbalance between the formation and
degradation of Ab, leading to the deposition of Ab and sub-
sequent disruption of synapse and neuronal function (423),
representing the so-called Ab hypothesis (151). Moreover,
Ab has expanded roles in other peripheral organs (412).

The Ab peptide constitutes 37 to 43 amino acids, most of
which are Ab40 and Ab42. Ab42 differs from Ab40 by two
extra isoleucine and alanine residues at the C-terminus. Ab42

is the major component of plaque deposition, whereas Ab40 is
the major component of cerebrovascular Ab (137). Ab42 is
more amyloidogenic and has a higher cellular toxicity than
Ab40 (319). A higher Ab40/Ab42 ratio may promote the
construction of cerebral amyloid angiopathy over parenchy-
mal deposition (156, 443). The Ab peptide can be cleared
under normal conditions but accumulates as neurotoxic Ab-
derived diffusible ligands in AD pathogenesis. Ab peptide
deposition by the self-assembly and aggregation of 4 kD Ab
peptides not only shows strong neurotoxicity related to
neuronal degeneration but also induces a series of patho-
logical events, such as astrocyte and microglia activation,
blood-brain barrier (BBB) destruction, and microcirculation
changes, leading to neurodegeneration and death in AD (349).
Ab can be degraded by insulin degrading enzyme (IDE), ne-
prilysin (NEP), and other degrading enzymes (339).

The most common variant in sporadic AD patients is
apolipoprotein E (APOE), which not only increases the se-
verity of FAD but also increases the susceptibility to sporadic
AD (172). ApoE is a lipid-binding protein that modulates
triglyceride and cholesterol transportation in the liver, brain,
and other tissues. The APOE type 4 allele (APOE4) is the
main genetic risk factor for sporadic AD (64), whereas the
APOE2 genotype has been identified as a protective factor
for late-onset sporadic AD (63). Mechanically, ApoE has an
Ab-binding motif and serves as a clearance protein to induce
toxic Ab degradation in lysosomes.

According to genome-wide association studies, other rare
genetic variants accounting for late-onset AD have been
identified, including genes encoding triggering receptor ex-
pressed on myeloid cells 2 (TREM2), complement C3b/C4b
receptor 1 (CR1), bridging integrator 1 (BIN1), phosphati-
dylinositol binding clathrin assembly protein (PICALM),
clusterin (CLU), adenosine triphosphate (ATP) binding cas-
sette subfamily A member 7 (ABCA7), and CD33 molecule

(CD33) (113, 138, 152, 160, 213). These genetic variants are
all related to Ab deposition; for example, TREM2 and CR1
play a key role in the removal of cell debris and Ab clearance
(138).

Although preclinic and clinical studies show that Ab
pathology is the major characteristic of AD, many clinical
trials focusing on clearing Ab and decreasing Ab production
have failed (8, 162, 209, 234, 405), indicating that track-Ab-
only is insufficient for AD treatment and that additional
mechanisms are essential for the pathogenesis of AD.

Notably, some genetic variants of AD are involved in not
only classic Ab pathology but also cellular metabolism (e.g.,
ABCA7, APOE4, CLU) and inflammation (e.g., CLU, CD33).
Although there is no consistent evidence of mitochondrial
DNA (mtDNA) variants in AD (171, 312), mitochondria-
related variants were identified in AD. For example, the ge-
netic variant in mitochondrial uncoupling protein 4 (UCP4),
which encodes the mitochondrial inner membrane trans-
porter uncoupling protein and is responsible for mitochon-
drial energy metabolism, markedly affects the susceptibility
to AD (274). Variants in intron 6 of translocase of outer
mitochondrial membrane 40 (TOMM40), which encodes the
central pore of the translocase of the mitochondrial outer
membrane and controls protein entry into the mitochondria,
are associated with the risk of AD (456). With the advanced
technologies for genetics and omics studies, an increasing
number of genetic variants can be identified to uncover the
mechanisms and new treatments for AD.

1. Ab and mitochondria. Several studies have suggested
that Ab can directly affect mitochondrial function (6, 10, 36,
84, 248, 303). The amino terminus of APP enters mito-
chondria depending on the mitochondrial outer membrane
translocase TOM40 and inner membrane translocases TIM23
and TIM44, whereas the carboxy terminus of APP cannot,
resulting in blockage of the mitochondrial protein import
channel (10). This blockage hinders other proteins from en-
tering the mitochondria, causing decreased cytochrome oxi-
dase activity, increased production of reactive oxygen
species (ROS), and mitochondrial dysfunction (10). Ab itself
can bind to alcohol dehydrogenase (ADH) in mitochondria to
form Ab-binding alcohol dehydrogenase (ABAD), promote
ROS production, and damage mitochondrial function (248).
Ab also regulates Ca2+ homeostasis, leading to opening of
the mitochondrial permeability transition pore (mPTP) to
decrease the mitochondrial membrane potential, matrix swell-
ing, and respiratory damage, which can be reversed by sev-
eral compounds, such as the mitochondrial osmotic transfer
channel inhibitor cyclosporine A (CsA), adenosine diphos-
phate (ADP), and oligomycin. Notably, ADP together with
oligomycin works better in brain mitochondria than CsA
(6, 36, 303). Mitochondria are the core producers of ROS in
the cell, and Ab is partially targeted to mitochondria to
promote ROS and mitochondrial dysfunction (84, 248).

B. Hyperphosphorylation of the Tau protein and NFTs

Another significant pathological hallmark of AD is NFTs,
which indicates the severity of AD (134, 177). Although
NFTs exist in many diseases, such as AD, ischemia, and
stroke, their pathology is distinct among each disease. Tau
is the primary component of NFTs in AD and contains

METABOLIC CONTRIBUTION TO ALZHEIMER’S DISEASE 1191



microtubule-binding domains, projection domains, and proline-
rich regions with multiple phosphorylation sites (29, 217).

The Tau protein is an unfolded and soluble protein that
assembles and stabilizes microtubules to maintain neuronal
function. In the brains of AD patients, Tau undergoes mul-
tiple post-translational modifications, such as hyperphospho-
rylation and glycosylation (134, 413). The most prominent
post-translational modification of Tau in AD is hyperpho-
sphorylation. Thus far, numerous phosphorylation sites have
been identified, including Ser199, Ser202, Ser262, Ser422,
Ser396, Thr205, and Thr231 (18, 351). Several kinases,
including cyclin-dependent kinase 5 (CDK5), mitogen-
activated protein kinase (MAPK), and GSK-3b, have been
demonstrated to regulate Tau phosphorylation (62, 277).
Hyperphosphorylated Tau forms Tau dimers, which then
form Tau oligomers. The aggregated and misfolded Tau
oligomers form paired helical filaments, which eventually
form abundant NFTs. The hyperphosphorylated Tau is toxic
to synapses and neurons and impairs cognitive function (62).
The N-glycosylation of Tau inhibits its binding with microtu-
bules (413). Another type of glycosylation, O-GlcNAcylation,
is negatively correlated with Tau phosphorylation, indicating
an effect opposite that of N-glycosylation (230).

Ab also promotes Tau accumulation. Crossing transgenic
APP mice with Tau mice induces neurotoxicity, indicating
that tauopathy is also required for Ab toxicity (334). In ad-
dition, the Ab42 oligomer induces progressive tauopathy in
neurons (369). The prolyl isomerase Pin1 is downregulated
by oxidation in AD. The deficiency of Pin1 promotes gly-
cogen synthesis kinase 3 (GSK3) to hyperphosphorylate Tau,
leading to tangle formation and neuronal cell death (305). On
the other hand, Pin1 also binds to the p-Thr668 motif in APP
to increase Ab production (305). Apart from Ab, tauopathy
may lead to cognitive dysfunction through gray matter loss
in AD (27). Although the mechanistic relationship between
mitochondria and tauopathy is elusive, the hyperphospho-
rylation of Tau is known to be associated with altered mito-
chondrial distribution, increased abnormal mitochondrial
trafficking, and impaired mitochondrial dynamics and func-
tions (190, 204, 260).

C. Oxidative stress and inflammation

Systemic inflammatory responses and oxidative stress have
been recognized as two other moderators and biomarkers of
AD. Oxidative stress and inflammation are largely attributed
to mitochondrial dysfunction in the brain and periphery,
leading to energy metabolism failure and neurological dis-
orders (321). Oxidative stress and inflammation induced
by mitochondrial damage occur before AD pathological
features, such as Ab deposition, and accelerate AD progres-
sion (451). Although inflammation, oxidative stress, and re-
lated mitochondrial dysfunction are not specific to AD, they
overlap extensively with AD pathogenesis and contribute to
AD progression. On the one hand, mitochondria-associated
oxidative damage and the inflammatory response are early
key factors in the development of AD. On the other hand,
Ab, as the most typical pathological feature of AD, directly
dampens mitochondrial structure and function, which pro-
motes oxidative stress and inflammation in neurons, and
further facilitates the pathogenesis of AD.

D. Mitochondrial dysfunction

The ‘‘Mitochondrial cascade hypothesis’’ and ‘‘mito-
chondrial bottleneck hypothesis’’ suggest that mitochondrial
dysfunction is an essential early and primary event in AD
pathogenesis (73, 378, 380). Swerdlow and Khan proposed
the mitochondrial cascade hypothesis to show that mito-
chondrial dysfunction is a primary event that causes all AD
pathogenic changes, including Ab deposition, NFT forma-
tion, neuron death, and synaptic loss (379–381). In early
research, several groups observed different types of mito-
chondrial abnormalities in the brains or peripheral tissues of
patients with AD and animal models (22, 157, 248, 270, 354,
419). Using genetic AD animal models, many studies have
shown that mitochondrial bioenergetic deficits occur in these
models at very early ages, and mitochondrial dysfunction
precedes Alzheimer’s pathology (85, 448). Studies by us and
others have shown that targeting mitochondria to improve
mitochondrial biogenesis, remodeling mitochondrial fusion/
fission, or promoting mitochondrial respiration function with
pharmaceutics and nutrient approaches efficiently slow down
or reverse the pathogenesis of AD (233, 234, 356). Taken
together, these studies indicate that mitochondrial dysfunc-
tion plays a key role in the pathogenesis of AD.

Two major biological functions that occur in mitochondria
are the tricarboxylic acid cycle (TCA cycle, also known as
the Krebs cycle) and oxidative phosphorylation (OXPHOS)
(266). Although the three major nutrients, glucose, lipids, and
proteins, have different metabolic pathways in vivo, they
all share the common intermediate metabolite acetyl-CoA,
which is further utilized by the TCA cycle to produce NADH
(313). NADH is further used as a substrate for OXPHOS to
produce ATP. The high-order assembly of respiratory chain
complexes in the inner mitochondrial membrane allows mi-
tochondria to respond to energy conversion to promote effi-
cient electron transfer (141). The process of electron transfer
in the respiratory chain is coupled to ADP phosphorylation
to generate ATP. The ATP-synthase activity is also signifi-
cantly lower in AD patients in the stage that is characterized
by entorhinal and transentorhinal tauopathy with no clinical
symptoms than in age-matched controls. Targeted for oxi-
dative stress, the mitochondrial ATP-synthase a subunit is
lipoxidized distinctly in the entorhinal cortex in the AD cases.
This study specifies that the energy production system in
mitochondria may be one pathway that is impaired in the very
early stages of AD (390). A reduced cytochrome c oxidase
(COX) subunit 4 in mitochondrial electron transport chain
links amyloid deposition and mitochondria dysfunction in the
dystrophic neurites of senile plaques. However, a preserved
COX subunit 4 in neurons is associated with NFTs (310).

Epidemiological studies indicate that hyperglycemia and
hyperlipidemia are major risk factors for neurodegenerative
diseases, especially AD (69, 201, 226). The 2019 World
Health Organization (WHO) guidelines for the reduction of
cognitive decline and dementia risks recommended the
management of diabetes in adults and the management of
dyslipidemia at midlife to reduce the risk of cognitive decline
and/or dementia (425). Indeed, we and others have recently
shown that deficits in glucose and lipid metabolism occur
early and before significant cognitive decline (412).

Apart from their key role in bioenergy metabolism,
mitochondria represent the ‘‘integration’’ center of signal
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transduction and regulate epigenetics, stem cells, and the
differentiation, initiation, and execution of apoptosis. Mi-
tochondria are capable of sensing cellular stress and helping
cells adapt to challenging microenvironment conditions,
giving cells a high degree of plasticity to promote their
growth and survival. These abilities suggest that mitochon-
dria are uniquely significant in age-related diseases, espe-
cially in AD progression (378).

Each suggested hypothesis functions in the AD patho-
genesis feedback loop, and they coparticipate with each other
at multiple levels during AD progression. Further, mito-
chondria serve as the bridge among glucose metabolism, lipid
metabolism, oxidative stress, inflammation, and AD patho-
genesis. Mitochondrial dysfunction and mitochondrial re-
modeling may provoke AD pathogenesis and lead to AD
progression. A potential role of mitochondria at the core of
metabolism during AD progression deserves more attention
(Fig. 2).

II. Glucose Metabolism in AD

Glucose is the only energy source that can cross the BBB,
and it provides energy for normal neuronal functions. Nu-

merous studies have identified impairments in glucose utili-
zation and metabolism in the brain and peripheral tissues of
AD patients and animal models. Alterations in glucose me-
tabolism occur with the accumulation of oxidative damage
before AD pathology in the brains of AD patients and animal
models (89, 227, 272, 279).

A. Glucose uptake deficit

Glucose cannot be synthesized or stored in the brain.
Dr. Magistretti discovered that glycogen in the brain is en-
riched in astrocytes, indicating that glucose from the blood
first enters and is stored in astrocytes (41, 253). This finding
has led to the initial discovery of glucose transport, storage,
and transformation pathways in the brain. Thus, subsequent
series of studies showed that when neurons are activated, they
release glutamate signals, stimulate astrocytes to break down
glycogen, and convert glucose into pyruvate and, finally,
lactic acid, which is released extracellularly by a monocar-
boxylic acid transporter and taken up by neighboring neurons
to produce ATP (254).

Glucose uptake is markedly reduced in early-stage AD
patients, suggesting that decreased glucose metabolism and

FIG. 2. Mitochondria act as the key organelle for glucose and lipid metabolism. Mitochondria are energy generators
of cells with two biological functions, the TCA cycle and respiration. The TCA cycle is a circulatory system for the
enzymatic reaction of oxidizing acetyl-CoA to CO2 and is simultaneously coupled with OXPHOS to provide energy. The
respiration chain is coupled to the production of ATP from ADP while transferring electrons to oxygen, which is reduced to
H2O after the reaction. NADH and FADH2 are products of the TCA cycle and substrates for respiration. Glucose and lipids
are the major energy substances in the periphery. The brain mainly uses glucose as the sole energy substrate under normal
conditions. Glucose is decomposed to pyruvate to produce acetyl-CoA, which initiates the TCA cycle. A vicious cycle of
hyperglycemia and mitochondrial dysfunction exists in the CNS and the periphery. Although lipids cannot be energy
substrates in the brain, the adult brain is highly enriched in lipids, which not only constitute the structure of membrane
system but also participate in signal transduction. Acetyl-CoA is also the subunit for fatty acid synthesis, which is an
important process of lipogenesis. The lipogenic pathway can be inactivated by inflammatory factors, whereas insulin
signaling stimulates lipogenesis and reduces lipolysis. Under energy-demanding conditions, lipolysis is triggered to release
fatty acids and the mitochondrial beta-oxidation ensues for Acetyl-CoA generation, which is enrolled in ketogenesis
stimulated by inflammatory factors in the early stage of AD. Ketone bodies, such as acetoacetate and b-HB, are used as
neuronal alternative energy fuels. b-HB, b-hydroxybutyrate; ADP, adenosine diphosphate; ATP, adenosine triphosphate;
OXPHOS, oxidative phosphorylation. Color images are available online.
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increased steady-state concentrations of glucose are early
signs of AD (69, 178, 368, 370). The age and sex-adjusted
hazard ratios of AD in diabetic individuals were reported to
be 1.94 times higher than those in the control group, indi-
cating that diabetes itself is an independent risk factor for
AD (298).

Using fluoro-2-deoxy-d-glucose positron emission to-
mography (FDG-PET) scanning, the cerebral metabolic rate
of glucose utilization was demonstrated to progressively
decline in patients with AD (280). Previous studies have
shown that the cerebral metabolic rate of glucose utilization
in the AD patient brain is 17%–24% lower than that in the
normal brain (75). The decline in the cerebral glucose met-
abolic rate correlates with reduced cognitive scores and AD
pathological processes. Moreover, individuals with declined
cerebral metabolic rates of glucose utilization are at a higher
risk for AD than those with normal rates (75).

The polar, hydrophilic glucose molecules require specific
transporters to cross the cellular membrane. Glucose uptake
functions via glucose transporters (GLUTs) at the BBB to
transport glucose between the brain and periphery. The BBB
is mainly formed by endothelial cells, astrocytes, and the
basement membrane (195). Glucose transporters GLUT1 and
GLUT3 are major GLUTs required for neuronal and glial
glucose transport via the BBB (401, 402). GLUT1 is encoded
by the Slc2a1 gene, and GLUT1 at the BBB mediates glucose
transport to the brain. Decreased GLUT1 levels were found in
the AD brain, and overexpression of GLUT1 was shown to
ameliorate neuronal activity and metabolism, alleviate cog-
nitive dysfunction, and increase lifespans in an AD mouse
model and a Drosophila model (294, 427). Crossing trans-
genic AD mice with GLUT1-deficient mice worsens BBB
function and cognitive function (427). Two isoforms of
GLUT1 exist: a 55 kD isoform in brain endothelial cells that
make up the BBB and a 45 kD isoform in astrocytic endfeet.
The capacity of GLUT1 in microvascular membranes of the
BBB is dramatically higher than that in astrocytes (364).
Astrocytes are the key cellular support for BBB integrity,
and GLUT1 deficiency in endothelia, but not in astrocytes,
promotes BBB breakdown (427). GLUT3, mainly expressed
in axons and dendrites, is expressed at lower levels in AD
patients than in nonaffected individuals and is associated
with AD pathology (365). Activation of the cysteine protease
Calpain I induces GLUT3 proteolysis and inhibits glucose
uptake and O-GlcNAcylation in the AD brain (135).

We and others have shown that fluctuations in glucose
disturb metabolic sensors, such as adenosine monophosphate-
activated protein kinase (AMPK)-mediated energy metabo-
lism and protein kinase B (Akt, also known as PKB)-mediated
insulin signaling in both neurons and peripheral organs,
which has been identified to trigger GLUTs to increase glu-
cose metabolism and reduce mTOR to increase autophagy,
leading to energy metabolic impairment, cognitive decline,
and AD pathology (9, 60, 203, 308). Glucose metabolic
dysfunction leads to advanced glycation end-product (AGE)
production. AGEs represent glycated proteins or lipids that
play key roles in aging, diabetes, and AD. In patients with
AD, AGEs are mostly present in intracellular NFTs. AGEs
also affect neurons via the receptor for advanced glycation
end products (RAGE), which is an important mediator of Ab
translocation and Tau hyperphosphorylation via Akt inhi-
bition and subsequent GSK-3b activation (224). Glucose

homeostasis can be regulated by the peroxisome proliferator–
activated receptor c (PPAR-c) coactivator 1a (PGC-1a), a key
molecule for mitochondrial biogenesis, activating gluconeo-
genic metabolic pathways to attenuate high glucose-induced
amyloidogenic processing and promote nonamyloidogenic
processing by a-secretase through the transcription factor
forkhead box O3a (FoxO3a) to influence Ab pathology in AD
(318). The intracerebroventricular injection of Ab oligo-
mers was shown to trigger peripheral glucose intolerance in
transgenic AD mice, whereas the systemic injection of Ab
oligomers failed, indicating that Ab oligomers in the brain
control peripheral glucose homeostasis (61).

The apolipoprotein E4 (ApoE4) genotype is associated
with defective glucose utilization in the brains of AD patients
(329). A reduced cerebral metabolic rate of glucose utiliza-
tion is observed in carriers of ApoE4 with AD. Accordingly,
high glucose levels were found to be a risk factor for de-
mentia in individuals with the ApoE4 genotype, even among
individuals without diabetes (69). In the AD pathological
condition, ApoE4 protein fragments escape the normal se-
cretory pathway and enter the mitochondria to bind to the
F1-ATPase subunit, thereby reducing energy production.
Further, carriers of PS1 gene mutations with FAD have a
significantly reduced cerebral glucose metabolic rate, which
is associated with a high risk of AD (281).

This evidence detailed earlier indicates that a decrease in
glucose metabolism is an early event in the pathological
process of AD. Thus, therapy to improve glucose utilization
and metabolism may be a promising approach for the treat-
ment of AD.

B. Insulin resistance

Insulin is the systematic hormone regulator that partici-
pates in metabolic regulation in many tissues. Rising glucose
levels throughout the body trigger insulin release to regulate
glucose levels in normal homeostasis. The pathological ac-
cumulation of glucose in the blood disturbs insulin actions.
Insulin in the brain predominantly crosses the BBB from the
periphery, and it functions through the tyrosine kinase path-
way in neurons and the periphery. Under normal conditions,
insulin binds to insulin receptor (IR), followed by the phos-
phatidylinositol 3-kinase (PI3K)-mediated phosphorylation
and activation of Akt, leading to the phosphorylation and
inactivation of GSK3 (43).

Insulin in the brain plays a vital role in learning, memory,
neurite growth, and development; facilitates glucose metab-
olism; and affects tau protein and Ab processing (58, 67,
328). An in vivo magnetic resonance imaging study showed
that insulin could improve neuronal activity and that in-
creased peripheral insulin levels were associated with brain
atrophy and cognition in AD (38). For example, impaired
insulin signaling leads to a decrease in PI3K activity, thereby
reducing Akt activity, which is required for neuronal sur-
vival, plasticity, and metabolism, and further increasing
GSK3a/b activity promotes Tau phosphorylation and Ab
accumulation (372). In patients with AD, the brain levels of
insulin, insulin-like growth factor I (IGF-I), IGF-II, and IGF-I
receptor are reduced by nearly 80% compared with those in
age-matched controls (372). In the APP/PS transgenic AD
mouse model, the disturbed vessel homeostasis may be due to
an imbalance in IGF-I and AMPK angiogenic crosstalk,
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which is reflected by the high IGF-I receptor and p-AMPK
levels, impinging cognitive performance in turn (243). Some
evidence exists demonstrating that IGF-I modulates the de-
velopment of AD in two steps. The first step is the reduction
of clearance through IGF-I-modulated carrier proteins,
leading to Ab accumulation. The second step is that IGF-I
dysfunction by amyloidosis disturbs the MAPK and PI3K/
Akt signaling pathways, leading to reduced Ab trafficking,
reduced glucose uptake, increased cell death, and increased
Tau hyperphosphorylation. The evidence was not strong
enough to support the therapeutic significance of IGF-I for
AD (45). Brain resistance to insulin or IGF-I accounts for
neuronal tangle formation and amyloidosis in AD. Insulin
and IGF-I are potent neuroprotective factors. AD patients
show resistance to IGF-I at the BBB. Insulin/IGF-I, on the
one hand, stimulates neuronal Ab release. On the other hand,
insulin competes with IDE to contribute to extraneuronal Ab
accumulation (46). Abnormal insulin levels in AD patients
repress protein phospholipase 2A (PP2A), which is the
phosphatase responsible for Tau dephosphorylation. The in-
traneuronal accumulation of insulin depends on the hyper-
phosphorylation of Tau, which induces insulin resistance to
progress to tauopathy in AD (338). Intranasal insulin therapy
improves memory and cognition and is associated with Ab42

and Tau/Ab42 levels in the cerebrospinal fluid (CSF) of AD,
especially in early AD patients, supporting the pharmaco-
logic enrichment of insulin signaling for AD therapy (67).

Insulin resistance is characterized by glucose intolerance
and disturbed insulin signaling. Insulin resistance has been
confirmed in not only the peripheral tissues of AD patients
but also in their brains (385), suggesting that intracerebral
insulin signaling impairment may lead to cognitive impair-
ment and that intracerebral insulin resistance may also serve
as a biomarker for the risk of neurodegenerative diseases.
Insulin resistance appears to be the shared feature of type 2
diabetes and AD, and AD is also known as type 3 diabetes (2).
Peripheral insulin resistance is associated with decreased
glucose metabolism in the brain, which, in turn, impairs
cognitive function (426). The IDE degrades not only insulin
but also Ab. Intracerebral insulin resistance affects the bal-
ance of Ab production and degradation by decreasing IDE
(104). Genetic studies in Goto-Kakizaki (GK) rats have
shown that IDE mutations impair the degradation of Ab and
induce diabetes (105). IDE expression is much lower in the
hippocampi of AD patients carrying APOE4 than in non-
carriers (95). ApoE4 is implicated in the pathways of insulin
signaling by their shared mechanism. However, how ApoE4
elicits insulin resistance has not been determined. Possible
mechanisms by which ApoE4 elicits insulin resistance in-
clude mediating cerebral blood volume and postprandial re-
sponses (185), trapping IR in the endosomes (468), and
altering DNA hydroxymethylation and metabolic pathways
of purine metabolism, glutamate metabolism, and the pentose
phosphate pathway (184). Taken together, these studies sug-
gest that IDE and ApoE4 may be the possible link between
type 2 diabetes and AD.

As the insulin signaling pathway plays an important reg-
ulatory role in both diabetes and AD, insulin resistance may
be the key bridge to maintaining crosstalk between peripheral
tissues and the brain and may be the first step in the associ-
ation between AD and diabetes (112). Notably, the antidia-
betic drugs rosiglitazone and pioglitazone have been shown

to reverse cognitive decline in patients with early AD by
exerting their protective effects on insulin signaling (333,
424). Another antidiabetic drug, exendin-4, which is a stim-
ulator of glucagon-like peptide 1 (GLP-1) receptors, reverses
the insulin resistance induced by Ab oligomers in the hip-
pocampi of AD patients and improves behavioral cognition
(33). Therefore, understanding the connection and underly-
ing mechanism linking diabetes and AD may implicate novel
and effective therapeutic targets for AD.

C. Glycosylation

Impaired glucose metabolism between neurons leads to a
disturbance in glycosylation. Glucose metabolism is also
involved in the post-translational modification of proteins
in the hexosamine synthesis pathway to produce O-N-
acetylglucosamine (O-GlcNAc). Two highly conserved en-
zymes mediate glycosylation, O-GlcNAc transferase (OGT)
and O-GlcNAcase (OGA). OGT mediates the addition of
O-GlcNAc to serine and/or threonine residues, whereas OGA
antagonizes this process and mediates the cleavage of O-
GlcNAc. Our studies suggest that enhanced O-GlcNAcylation
protects against oxidative stress and promotes mitochondrial
homeostasis in aging mice, which provides a possible link
between mitochondrial metabolism and AD (466, 467).

Both APP and Tau could be modified by O-GlcNAc
modification. Genetic loss of OGT in the mouse forebrain
leads to progressive neurodegeneration (408). In AD, defi-
ciencies in GLUT1, GLUT3, and other possible molecules
impair glucose metabolism, decrease hexosamine biosyn-
thesis flux, and, subsequently, reduce the production of UDP-
GlcNAc. The declined UDP-GlcNAc production decreases
the O-GlcNAcylation of Tau. The O-GlcNAcylation of Tau
inhibits the binding between Tau and microtubules to pro-
mote Tau misfolding, which is most likely mediated by
CDK5 and GSK-3b (228). The inhibition of OGA increases
the O-GlcNAcylation of Tau and decreases NFT formation in
the brains and CSF of AD mice, consequently reducing
neuron loss (153, 454). O-GlcNAcylation and phosphoryla-
tion antagonize each other to modify Tau, and reduced levels
of O-GlcNAcylation on Tau lead to further hyperpho-
sphorylation, promoting NFTs formation (229, 230). More-
over, reduced post-translational modification of O-GlcNAc
regulates mitochondrial function, motility, and distribution,
suggesting a link between mitochondrial dysfunction and AD
(314). Another type of Tau glycosylation, N-glycosylation,
in the AD brain stabilizes the modified Tau structure by fa-
cilitating the hyperphosphorylation of Tau by kinases and
promoting the suppression of Tau dephosphorylation via
phosphatases (413).

Protein kinase A (PKA), a cyclic AMP-dependent kinase,
plays a pivotal role in cell metabolism, learning, and memory
by activating CREB through phosphorylation in AD. In ad-
dition to phosphorylation, the PKA catalytic subunits could
also be post-translationally modified by O-GlcNAc. The
downregulation of O-GlcNAc thereby regulates PKA-CREB
signaling, which, in turn, leads to learning and memory defi-
cits in AD (441).

The studies described earlier, including those reporting
glucose uptake deficiency, insulin resistance, and glycosyl-
ation, indicate that impaired glucose metabolism might be the
cause rather than the consequence of AD (Fig. 3).
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III. Lipid Metabolism in AD

The adult brain is highly enriched in lipids, which account
for *20%–25% of the dry weight. These lipids not only
constitute the structure of membranes but also provide the
infrastructure and function for the membrane system (428).
Basically, lipids participate in cell membrane formation,
cellular transportation, energy storage, and signal transduc-
tion (428). In the liver, insulin signaling controls lipid met-
abolic events, including stimulating lipogenesis and reducing
lipolysis.

Alois Alzheimer first recorded remarkable lipid granule
accumulation in the glia of his patient Auguste Deter (108).
Altered lipid composition in the cell membranes leads to
redistribution of proteins linked to the b-amyloidogenic
pathway of lipid rafts in AD (80). The cleavage of APP by the
b-secretase protein BACE1 and c-secretase proteins, in-
cluding PSEN1, PSEN2, aph-1, pen-2, and nicastrin, occurs
in lipid rafts and affects lipid metabolic enzymes, thereby
altering subcellular trafficking. Frontal cortex lipid rafts are
greatly altered in AD brains from the initial neuropathologic

stages of AD, but the underlying mechanism is unknown.
However, the changes in lipid rafts were shown to affect both
lipid classes and fatty acids, increase the membrane order and
viscosity, providing a favorable lipid raft microenvironment
for the APP/BACE1 interaction and the amyloidogenic path-
way and strengthening AD as a result (100). An age-dependent
modification was found in the lipid raft microdomains,
thereby affecting signal transduction and protein–protein
interactions. The alterations were more dramatic and oc-
curred earlier in APP/PS1 mice (101). Lipid metabolism
imbalance also plays a critical role in AD pathogenesis.
Oxidative damage to lipids by ROS under pathological AD
conditions also leads to lipid peroxidation, and lipid perox-
idation products and Ab plaques are colocalized in the brain.
Taken together, these data suggest that lipid dysregulation is
a major risk factor for AD (99, 201, 226, 412) (Fig. 4).

A. Lipid dysregulation as an early signal in AD

Lipid peroxidation occurs as an early event in the pro-
gression of AD (265), suggesting that the early prevention of

FIG. 3. Periphery and central glucose metabolic disorders contribute to AD pathology. Glucose metabolism is
impaired in the early stage before plaque deposition and progresses along with cognitive decline, further affecting AD
pathology. (i) Glucose uptake deficit. The ApoE4 genotype and PS1 gene mutant are associated with defective glucose
utilization in the brains of AD patients. GLUT1 and GLUT3 are major glucose transporters that control the function of the
BBB and mitochondrial functions, including glycolysis, respiration, and the TCA cycle. Fluctuation in glucose disturbs the
metabolic sensor AMPK, which further affects AKT-mediated insulin signaling. Further, PGC-1a, which can be inhibited
by mitochondrial dysfunction, diminishes a-secretase through FoxO3a to influence Ab pathology in AD. AGE interacts with
its receptor RAGE to mediate Ab translocation and enhance Tau hyperphosphorylation via AKT inhibition and subsequent
GSK-3b activation. (ii) Insulin resistance. Rising glucose levels throughout the body trigger insulin release to regulate
glucose levels and achieve normal homeostasis. Impaired insulin signaling decreases PI3K activity, thereby reducing AKT
activity (which can also be decreased by AMPK), and further increases the activity of GSK-3a/b, which then phosphorylates
Tau and promotes Ab deposition. IGF induces insulin resistance, which affects the balance of Ab production and degra-
dation by decreasing IDE. (iii) Glycosylation. O-GlcNAcylation and phosphorylation inversely modify the Tau protein,
whereas N-glycosylation stabilizes the modified Tau structure. AGEs, advanced glycation end-products; AKT, protein
kinase B (also known as PKB); AMPK, adenosine monophosphate-activated protein kinase; ApoE4, apolipoprotein E4;
BBB, blood-brain barrier; FoxO3a, forkhead box O3a; IDE, insulin degrading enzyme; IGF, insulin-like growth factor;
PGC-1a, peroxisome proliferator–activated receptor c coactivator 1a; PI3K, phosphatidylinositol 3-kinase; RAGE, receptor
for advanced glycation end products. Color images are available online.
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lipid peroxidation products in the presymptomatic phase of
AD or before mild cognitive impairment (MCI) could be an
effective way to prevent AD. Indicators of lipid peroxidation
include thiobarbituric acid reactive substances, Notably, 4-
hydroxynonenal and acrolein are elevated in the AD brain
(244). Ten lipid metabolites derived from lipidomic ap-
proaches have been validated as biomarkers of preclinical
AD in blood that could distinguish cognitively normal indi-
viduals from cognitively impaired individuals with an accu-
racy above 90% (264). The biomarkers for AD will be
summarized in part V, titled ‘‘Mitochondria-centered Meta-
bolic Markers in the Early Diagnosis of AD.’’

Lipid-based supplementation has the potential to reduce
the risk of AD. Docosahexaenoic acid (DHA), which is a
prominent polyunsaturated x-3 fatty acid efficiently trans-
ported across the BBB for the formation of a neuronal
membrane structure, could increase the a-secretase cleavage
of nonamyloidogenic processes and decrease the amyloido-
genic processing activities of b-secretase and c-secretase. An
increased DHA level was found in the early stage of AD by

the neurolipidomic study in human AD cases and the DHA
levels are progressively manifested as the trilogy of
adaptation-overload-failure, leading cells to neurodegenera-
tion (289). DHA serves as an endogenous ligand for retinoic
acid receptor and retinoid x receptor, which are responsible
for memory function and neurogenesis. DHA activates Ca2+/
calmodulin-dependent protein kinase II (CaMKII), which
maintains long-term potentiation in the hippocampus,
thereby mediating learning and memory functions. DHA
increases brain-derived neurotrophic factor (BDNF) in the
hippocampus by activating PI3K/Akt signaling to protect
synaptic plasticity and nerve cell survival (5). Inflammatory
markers contributing to AD can also be reduced by DHA
supplementation. A deficiency of DHA in neurons leads to
neurodegeneration and cognitive dysfunction. Dietary sup-
plementation with DHA in early stage reverses Ab oligo-
merization in the animal model (389); however, this strategy
has failed in several clinical trials (109, 322).

DHA intervention has beneficial effects only in the early
stage of AD. DHA was shown to enhance the binding

FIG. 4. Peripheral and central lipid dysmetabolism contributes to AD pathology. Lipid dysregulation is a major risk
factor for AD. (i) Lipogenesis. LRP2 clears Ab across the BBB by ApoE- and ApoJ-mediated Ab crosstalk. Peripheral Ab
clearance might be mediated by ApoE, ApoJ, and LRP1. Early inflammation in AD inactivates the lipogenic pathway to
initiate the substrate flux for glucose production, leading to severe hyperglycemia and insulin resistance. ApoE4 increases
the number of lipid droplet and enhances fatty acids oxidation. (ii) Lipolysis. Ab stimulates lipolysis via the PKA and
ERK1/2 pathways, phosphorylating HSL and stimulating leptin and IL-6 secretion, resulting in fatty acid release to trigger
lipid deposition and insulin resistance. (iii) Ketogenesis. Acetyl-CoA is the substrate of acetoacetate, which finally produces
b-HB. IL-6-induced p38/NF-jB activation also induces b-HB production. b-HB crosses the BBB to serve as brain bioe-
nergy instead of glucose under hypometabolic conditions in AD. The brain bioenergy deficit induced by insulin resistance
and hyperglycemia aggravate AD pathology. ERK1/2, extracellular signal-regulated kinase 1/2; HSL, hormone sensitive
lipase; NF-jB, nuclear factor-kB; PKA, protein kinase A. Color images are available online.
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between Ab42 and lipid rafts to promote Ab degradation. IDE
secretion and activity can be increased by DHA, thereby
ameliorating AD pathology by increasing Ab turnover (132).

ApoE4 is a major risk factor for AD and is associated with
a high cholesterol level, as ApoE4 delivers cholesterol from
astrocytes to neurons, indicating disrupted lipid metabolism
in AD (330). ApoE and cholesterol colocalize with Ab in the
brains of transgenic AD mice and AD patients, and choles-
terol is reportedly an early risk factor for AD (215, 302).
ApoE binds to Ab in a lipid-dependent manner, and Ab de-
position increases in ApoE mice (212). The lipid-binding
region on ApoE4 mediates the neuro-mitochondrial toxicity
of ApoE4 (50). The ApoE4 genotype is established in carriers
*20–39 years of age, and these carriers have functional brain
abnormalities as relatively young adults, several decades
before the onset of dementia (330). Before the onset of AD,
ApoE4 carriers supplemented with high-dose DHA showed a
reduced risk of developing AD symptoms (450). Recent ev-
idence suggests that single nucleotide polymorphisms in the
genes St-AT-related lipid transfer domain 6 (STARD6) and
near enoyl CoA-hydratase domain containing 3 (ECHDC3)
are responsible for the lipid level and metabolism in AD, and
variants in or near the STARD6 and ECHDC3 genes, espe-
cially ApoE4 carriers, are risk factors associated with AD
(452). The role of ApoE4 in lipid metabolism and AD indi-
cates a lipid-driven mechanism of AD pathogenesis.

B. Lipogenesis in AD

Lipogenesis is the biochemical process that converts acetyl
CoA into fatty acids, which primarily occurs in the liver. The
increased lipoprotein secretion in the periphery aggravates
the Ab burden in the AD brain. Lipoprotein receptor–related
protein 2 (LRP2) clears Ab40 rapidly across the BBB. Other
lipid proteins, such as ApoE and ApoJ, mediate Ab crosstalk
between the brain and periphery. High ApoE-Ab binding
activity decreases Ab brain efflux, whereas ApoJ-Ab binding
increases LRP2-mediated efflux. The poorly lipidated ApoE
increases the Ab deposition. Alternatively, the lipidation
status of peripheral Ab may also affect its clearance, which,
in turn, might also be mediated by ApoE, ApoJ, and LRP1
(66). The ApoE4-driven disruption in fatty acid metabolism
is proposed to be factor underlying why ApoE4 carriers are at
a high risk for developing AD. ApoE4 in astrocyte exhibits an
increase in the number of lipid droplet, which serves to se-
quester fatty acids depending on the saturation status of the
fatty acid. The expression of the lipid droplet marker PLIN2
and the oxygen consumption rate from endogenous fatty acid
oxidation are also enhanced in E4 astrocytes (102). Proteins
involved in mitochondrial fatty acid oxidation, including
PTEN-induced putative kinase 1 (PINK1) and PGC-1a, were
shown to be cooperatively downregulated in AD and diabetic
patient brains, indicating a role of mitochondria in linking
AD and diabetes (57).

A high-fat diet (HFD) increases the risk of AD, a phe-
nomenon that is related to dysfunctional lipid metabolism.
Abnormal lipid accumulation leads to insulin resistance and
vice versa. Depleting the negative insulin signaling regulator
PTEN results in a fatty liver and induces lipogenesis (421).
Our previous study compared C57 mice with APP/PS1
transgenic AD mice, showing that the HFD induced more
severe body weight gain, hyperglycemia, and hepatic insulin

resistance in AD mice than in C57 mice, potentially because
an inactivated lipogenic pathway by inflammatory factors
initiates the substrate flux for glucose production, leading to
more severe hyperglycemia in AD mice (273, 387). Hepatic
insulin resistance in diabetic db/db mice was intensified by
hybridization with AD mice (384). Early inflammation induced
by an HFD in APP/PS1 mice resulted in less hepatic steatosis
than that in C57 mice that were also fed an HFD (387).

C. Lipolysis in AD

Under energy-demanding conditions, adipose tissue be-
gins to undergo lipolysis, which activates the PKA and ex-
tracellular signal-regulated kinase 1/2 (ERK1/2) signaling
pathways that phosphorylate hormone-sensitive lipase, re-
sulting in free fatty acid release (96). The activity of lipolytic
enzymes, including monoacylglycerol and diacylglycerol, is
stimulated in plasma membrane and synaptosomal plasma
membrane fractions obtained from various regions of normal
and AD brains (103).

APP can be processed to produce the Ab peptide in adipose
tissue, wherein the Ab peptide stimulates lipolysis and adi-
pokine secretion via PKA and ERK1/2-dependent pathways
and stimulates the secretion of leptin and IL-6, resulting in
the release of free fatty acids and proinflammatory adipo-
kines (407). Elevated fatty acid levels trigger lipid deposition
and insulin resistance, demonstrating a close relationship
between energy metabolism and AD.

D. Ketogenesis in AD

In the ketogenesis pathway, acetoacetyl-CoA is gener-
ated by acetyl-CoA, which is mediated by thiolase, and
b-hydroxy-b-methylglutaryl-CoA (HMG-CoA) is then gener-
ated by another acetyl-CoA that is mediated by HMG-CoA-
synthase. HMG-CoA generates acetyl-CoA, and acetoacetate
is mediated by HMG-CoA lyase. The final product D-b-
hydroxybutyrate (b-HB) derives from the reaction be-
tween acetoacetate and NADH, which is mediated by
b-hydroxybutyrate dehydrogenase 1 (BHD1) (317). There-
fore, acetoacetate and b-HB are two main ketone bodies.
Ketone bodies are produced by the liver from fatty acids.
Fatty acids, responsible for providing cellular energy to pe-
ripheral tissues, are oxidized in the liver, producing large
amounts of acetyl-CoA, surpassing the ability of TCA to
synthesize ketone bodies in liver mitochondria. Then, ketone
bodies are transported to extrahepatic tissue through the
blood for oxidation and the subsequent release of acetyl-
CoA, which enters the TCA cycle, thereby generating energy
(119, 205). Ketone bodies decrease the need for glycolysis
and the mitochondrial NAD+/NADH ratio. Using label-free
quantitative proteomics, SIRT3 was found to target each
complex in the TCA cycle, as does every enzymatic step from
fatty acids to ketone body b-HB. The mitochondrial deace-
tylase SIRT3 regulates acetylation via ketogenesis during
trafficking to the mitochondrial matrix, maintaining the bal-
ance of energy homeostasis (323).

Although the brain mainly uses glucose as the sole energy
substrate under normal conditions, under hypometabolic con-
ditions in AD, ketone bodies, such as acetoacetate or b-HB,
may be used as an alternative energy substrate for glucose.
b-HB is the most abundant ketone, constituting *70% of
ketone bodies primarily formed in liver mitochondria and
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then transported by blood to other tissues. b-HB-enriched
ketogenic diets could be helpful for AD intervention, which
will be discussed in part VI, titled ‘‘Mitochondrial Metabolic
Dysfunction as Target for AD Prevention.’’

In the AD mouse model (APP/PS1/Tau, 3 · Tg), the
enzymes responsible for ketone body metabolism were sig-
nificantly increased (447). In early AD, Ab invades the mi-
tochondria, initiating their production of superoxide radicals
and the conversion of these molecules into hydrogen perox-
ide. These events lead to oxidative stress and activation of
the C-Jun NH2-terminal kinase ( JNK)-MAPK pathway
and nuclear factor-kB (NF-jB), resulting in the release of
proinflammatory interleukins and cytokines (8, 321). We
recently reported that the hepatic proinflammatory cytokine
IL-6 activates 3-hydroxy-3-methylglutaryl-CoA synthase 2,
which then functions as a critical regulator via p38/NF-jB
p65 signaling in inflammation-induced ketogenesis in the
early stage of AD (359). This finding implies that as a self-
adaptation mechanism, cerebral glucose metabolic dys-
function in early AD increases the ketone body supply from
the liver to the brain, resulting in a shift to ketone body uti-
lization (359). During the early stage of AD, the constant
activation of ketogenesis could maintain mitochondrial func-
tion to prevent and/or delay further development of the dis-
ease. Enriched ketogenesis in the liver and ketogenic diets
may help prevent or delay a bioenergetic decline in the
early AD brain (449). It remains unclear which event in
AD triggers a hepatic inflammatory response, such as IL-6
accumulation.

IV. Mitochondria at the Metabolic Core in AD

A. Mitochondrial dysfunction precedes metabolic
disorder in AD

Mitochondria are crucial organelles for energy metabolism
and signal cascade control. Metabolism of glucose, lipo-
genesis, and ketogenesis occurs in mitochondria, and mito-
chondrial dysfunction tends to be the cause or effect of
metabolic dysfunction. The abnormalities in AD, includ-
ing defective glucose metabolism and energy metabolism,
suggest that mitochondrial dysfunction is involved in AD
pathology and is an early prominent feature. Studies by
ourselves and others have demonstrated reduced activities of
enzymes mediating mitochondrial respiration and the TCA
cycle in the AD brain and periphery, including succinate
dehydrogenase (SDH) or complex II, COX or complex IV,
pyruvate dehydrogenase complex (PDC), and a-ketoglutarate
dehydrogenase complex (KGDH), confirming the link be-
tween energy metabolism dysfunction and mitochondrial
dysfunction in AD (242, 377). Genetic mutations have been
identified in mitochondrial-encoded cytochrome c oxidase
subunits I, II, and III (COX-1, 2, and 3) in AD.

Mitochondria are very sensitive to extracellular glucose
changes in both the brain and periphery, and changes in mi-
tochondrial function precede AMPK/Akt signal fluctuations.
In addition, studies by ourselves and others have also dem-
onstrated that AMPK inactivation leads to PI3K-mediated
insulin resistance and PGC-1a-mediated mitochondrial loss
in both peripheral organs and the brain, resulting in disorders
of glucose metabolism and neuronal damage that are ame-
liorated by normal glucose metabolism and mitochondrial
activity, providing new insights into the interrelationship

between hyperglycemia and cognitive impairment (140,
308). Embryonic neurons derived from the AD mouse hip-
pocampus exhibited a significant decrease in mitochondrial
respiration and an increase in glycolysis (448).

In addition, mitochondrial dysfunction is greater in ApoE4
carriers than in AD patients who do not carry ApoE4 (123).
ApoE4 is also associated with decreased cerebral glucose
metabolism in AD, indicating that a combination of cerebral
metabolic rates and genetic risk factors offers a strategy for
preclinical AD diagnoses (368). The level of a-ketoglutarate
dehydrogenase, a mitochondrial enzyme in the TCA cycle, is
decreased in the AD patient brain, particularly in those of
ApoE4 carriers (123). The truncated ApoE4 elicits mitochon-
drial function and integrity, indicating that blockage of the
interaction between mitochondria and ApoE4 is a potential
treatment strategy (50).

As mitochondria are the site of the TCA cycle and respi-
ration, mitochondrial dysfunction is a major intracellular
event that contributes to AD pathology. This event occurs
early in AD progression, even before the onset of Ab pa-
thology, making it critical to develop strategies aimed at
mitochondrial function (257, 259, 327).

B. Mitochondria mediate pathological impairment
during AD progression

Decreases in respiratory capacity, increases in mitochon-
drial fragmentation, and fractures in the mitochondrial cristae
structure occurs in the AD brain, and the abnormalities in
mitochondria appear before pathological Ab plaque deposi-
tion (371, 438). Ab accumulates exclusively in mitochondria.
The mitochondrial membrane 40 import channel and mito-
chondrial membrane 23 channel were shown to bind to Ab
and cause mitochondrial dysfunction in the human AD brain
but not in the age-matched controls (78). Ab binds exclu-
sively to ADH. The Ab and ABAD complex promotes free-
radical generation and mitochondrial dysfunction, interacts
with mitochondrial components, impairs ATP production,
and induces oxidative stress in AD, which could be the un-
derlying mechanism of Ab toxicity in mitochondria (248).

Cyclophilin D (CypD), an integral part of the mPTP, di-
rectly interacts with Ab in mitochondria, promotes ROS
generation, and mediates mPTP formation, resulting in mi-
tochondrial stress-induced neuronal cell death in AD mice
and patients (258). Moreover, the deficiency of CypD im-
proves learning and memory in AD mice (84, 258). As the
direct site of Ab accumulation in AD neurons, mitochondria
are responsible for ROS generation and oxidative damage.
The Ab peptide produced by APP splicing binds to ferro-
heme, resulting in the decreased activity of complex IV.
Using the complex IV inhibitor NaN3, the accumulation of
APP and the production of amyloid C-terminal fragments are
greatly enhanced. In addition, the Ab peptide stimulates
GSK3b activity, phosphorylates pyruvate dehydrogenase, and
finally inhibits energy metabolism. Hydrogen peroxide is in-
creased and cytochrome oxidase activity is decreased before
the appearance of Ab plaques, suggesting that early
mitochondria-targeted therapeutic interventions might be an
effective strategy in delaying AD progression and treatment
(257). Mitochondrial dysfunction also induces synaptic
damage, impairs neurotransmission, and causes AD-related
cognitive decline (225, 326, 348).
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C. Mitochondrial remodeling in AD

Mitochondria are highly dynamic organelles that continu-
ously, morphologically, and functionally undergo two oppos-
ing processes, namely, fission and fusion (15). Mitochondrial
fission is controlled by the GTPase protein dynamin-related
protein 1 (Drp1). Drp1 interacts with its receptors mito-
chondrial fission 1 (Fis1) and mitochondrial fission factor
to stimulate mitochondrial fission (49). On the other hand,
mitochondrial fusion is controlled by other GTPase proteins,
optic dominant atrophy 1 (OPA1), mitofusin 1 (Mfn1) and
mitofusin 2 (Mfn2) (48). It has been shown that excessive
fission leads to mitochondrial fragmentation and the im-
balance between fission and fusion compromises mitochon-
drial respiration function and ATP production (433). Besides,
impaired mitophagy disturbs the clearance of defective mi-
tochondria, which leads to the production of ROS and causes
oxidative stress (198).

The levels of proteins governing mitochondrial fission, in-
cluding Drp1 and Fis1, and mitochondrial fusion, including
OPA1, Mfn1, and Mfn2, are significantly altered in AD mice
and patients (258, 419). Besides the change in mitochondrial
morphology, the distribution of mitochondria in neuron and
axis is altered in AD patients (419). The distribution of mi-
tochondria in neuron is a very complex topic. Inhibition of
Drp1 in AD mouse neurons prevents cognitive decline, mito-
chondrial fragmentation, lipid peroxidation, BACE1 expres-
sion, and Ab deposition (19). In addition to Ab-related AD
pathology, Drp1 reduction also protects against hyperpho-
sphorylated Tau and phosphorylated Tau-induced mitochon-
drial dysfunction in AD (189). The S-nitrosylation of Drp1 at
Cys644 causes Ab-related mitochondrial fission and neuronal
injury, leading to mitochondrial fragmentation in human AD
neurons (56). Treatment of mitochondrial division inhibitor 1
(mdivi-1), a mitochondrial fission inhibitor, markedly im-
proves mitochondrial dynamics and cognitive function in AD
mouse model CRND8 early before the accumulation of amy-
loid pathology (417).

Similarly, manipulation of mitochondrial fusion also plays
a role in AD. For example, OPA1 overexpression alleviates
mitochondrial ROS overproduction in the AD brain (419).
PS2 mutation in FAD promotes mitochondria and endo-
plasmic reticulum (ER) coupling in the presence of Mfn2.
The PS2-Mfn2 binding is more efficient in mitochondria-
associated membranes (107). Further, the activity of PS2 is
affected by Mfn2 knockdown-increased mitochondria-ER
coupling, leading to the decrease of Ab accumulation (216).

Mitochondrial metabolic homeostasis is maintained by the
balance between mitochondrial biogenesis and degradation.
PGC-1a is a transcriptional coactivator that regulates mito-
chondrial biogenesis through the downstream factors per-
oxisome proliferator-activated receptors (PPARs), nuclear
respiratory factor 1 (NRF1), and nuclear respiratory factor 2
(NRF2), which govern the nuclear genes encoding mito-
chondrial proteins, and mitochondrial transcription factor A
(TFAM), which initiates mtDNA transcription and replica-
tion (434). The evolutionarily conserved form of degradation
is autophagy, which is responsible for the degradation of
accumulated and cytotoxic proteins. Autophagy facilitated in
mitochondria is called mitophagy, and energy deficits initiate
autophagic pathways. The molecular interaction between
autophagy and AD pathology remains controversial. For

example, the triggered autophagy pathway increases the
degradation of the Tau protein and excessive Ab accumula-
tion in early AD. However, autophagosome accumulation
exacerbates AD pathogenesis (140). More in-depth studies
are needed to clarify the mechanisms by which molecules
participate in autophagy pathway functions through AD
progression, and the function of different molecules may be
stage dependent in AD progression.

FOXO transcription factors are essential for memory and
neurodegeneration, for the manipulation of glucose and lipid
metabolism, and for autophagy in response to energy depriva-
tion, providing a potential link between AD and energy deficits.
FoxO3a, which induces LC3b, Beclin1, and Bnip3 for autop-
hagy and PINK1 for mitophagy, is an important transcription
factor for mitochondrial gene expression and ROS production.
We found that AMPK, as an energy sensor, directly phosphor-
ylates FoxO3 under energy deficient conditions (238). The de-
creases in FoxOs expression in the brain insulin resistance state
are related to toxic Ab formation and Tau hyperphosphorylation
in diabetic transgenic mice and monkeys (340). However, other
studies have demonstrated that the consecutive activation of
FoxO proteins induces neuronal loss, Ab deposition, and Tau
hyperphosphorylation (263). In addition, in patients with AD,
impaired glucose metabolism decreases PGC-1a levels and then
increases FoxO3a levels, inhibiting a-secretase in the non-
amyloidogenic processing of APP, thereby promoting amyloi-
dogenic processing to produce excessive Ab (318, 354).

Although more investigations are needed to determine the
mechanism by which the dynamic state of mitochondria
eliminates or aggravates AD, the current findings suggest that
the steady state of mitochondrial remodeling in AD supports
its early and fundamental role in AD-related pathological and
cognitive impairments, suggesting abnormal mitochondrial
remodeling as a possible therapeutic target for halting AD
(Fig. 5). Nutrients targeting mitochondria-related signals
may be a new strategy for AD prevention and treatment and
will be discussed in part VI-A.

D. Mitochondria-induced inflammation and oxidative
stress during the pathogenesis of AD

The brain is especially vulnerable to oxidative stress be-
cause of its high oxygen needs. Oxidative stress arises from
excess ROS, most of which are generated from mitochondria
by electron leakage from the OXPHOS and TCA cycle and are
also generated from pathological AD conditions (110, 404,
420). Mitochondrial dysfunction in neurons leads to insuffi-
cient energy supply and the release of a large amount of ROS,
which induces oxidative stress and the imbalance of calcium
regulation, ultimately triggering neuronal apoptosis. Brain
oxidative stress linked to mitochondrial dysfunction arises in
early AD and contributes to AD pathogenesis, and the extent of
oxidative damage is much higher in mtDNA than in nuclear
DNA (276). In 3-month-old transgenic APP mice, mitochon-
dria in the brain have shown decreased membrane potential,
COX activity, and ATP levels. At this time, the Ab levels in
neurons are increased, whereas extracellular Ab deposition
does not yet occur, suggesting that mitochondrial dysfunction
occurs earlier than Ab pathological deposition. ROS-mediated
Akt1 oxidative modification causes synaptic dysfunction,
which occurs very early in the AD process (4).

1200 PENG ET AL.



Mitochondria are the hub of the redox system. The overall
mitochondrial redox status can be elucidated by fluorescence
imaging or HPLC. Free radical oxidation of polyunsaturated
fatty acids, cholesterol, and glucose causes overload of toxic
products, leading to the destruction of cellular redox ho-
meostasis (55). Nrf2, a redox-sensitive transcriptional factor,
is regulated by Keap1 and controls the expression of anti-
oxidant genes through interactions with antioxidant response
element (ARE) to balance the endogenous antioxidant stress
defense system. Basically, Nrf2 binds to Keap1 with the E3
ubiquitin ligase Cullin 3-RING box1 for ubiquitination, re-
sulting in proteasomal degradation. Without Keap1’s target,
Nrf2 binds to ARE to activate the transcription of the phase 2
response. Nrf2 and ARE levels decrease on increased Ab
plaque deposition in APP/PS1 transgenic mice. The Ab
toxicity could be decreased by enhancing Nrf2-ARE activity.

In addition, the activation of Nrf2 reduces Tau phosphor-
ylation, suggesting that the activation of an Nrf2-ARE anti-
oxidant defense has a neuroprotective effect and may prevent
or delay the pathological changes in AD. A study in another
AD mouse model confirmed that oxidative damage precedes
Ab and further demonstrated that oxidative damage increases
the deposition of Ab in the mouse brain. A mitochondrial
superoxide dismutase (MnSOD) deletion in APP mice sig-
nificantly increased Ab levels and amyloid deposits in the
brain (39, 247, 282). These findings suggest that oxidative
stress exists before the characteristic features of AD pathol-

ogy, such as Ab deposition, and promotes Ab deposition
during AD progression.

Oxidative stress triggers the JNK-MAPK signaling path-
way, leading to an inflammatory response and inflammasome
activation (307). Ab increases the production of the inflam-
matory cytokine TNF-a, causing insulin resistance by JNK in
the AD mouse hippocampus (33). Activated JNK was found
in the AD brain and periphery (33). Oxidative stress promotes
the transcriptional activity of FoxO, which induces JNK ac-
tivation. As JNK signaling pathways affect mitochondrial
function and mitochondrial bioenergetics, it is reasonable to
link mitochondria, ROS, and inflammation together with
AD. In AD, excessive ROS contributes to insulin resistance
and inflammasome activation mostly through mitochondria
(360, 474). Oxidative stress and inflammation in early AD
damage the neuronal membrane potential, mtDNA, TCA
cycle, and electron transport chain in mitochondria, thereby
reducing ATP generation and exacerbating oxidative damage
(343, 448).

In AD, increased peripheral inflammation occurs early in the
MCI phase and decreases as a function of the severity of AD.
The release of inflammatory cytokines and chemokines im-
proves the generation of fatty acids, lipid peroxidation prod-
ucts, and ROS. Our studies identified higher hepatic and serum
TNF-a and IL-6 contents in the early stage of AD in trans-
genic mice before the activation of these inflammatory mole-
cules in the brain (359, 387). Inflammatory-related genes are

FIG. 5. Mitochondrial remodeling in AD. Metabolic dysfunction in AD precedes PI3K/AKT signal fluctuation, which
then functions through PGC-1a or FoxO signaling. PGC-1a regulates mitochondrial biogenesis though the downstream
factors PPARs and NRF1s, which govern the OXPHOS genes encoding mitochondrial proteins and TFAM, thus initiating
mtDNA transcription and replication. FoxOs manipulate autophagy and mitophagy in response to energy deprivation.
Mitochondria are highly dynamic organs undergoing fission and fusion continuously, morphologically, and functionally to
balance mitochondrial fragmentation. The balance between mitochondrial biogenesis and degradation maintains mito-
chondrial metabolic remodeling. More investigations are needed to determine the underlying mechanism of how mito-
chondrial dynamic regulates AD. mtDNA, mitochondrial DNA; NRF1, nuclear respiratory factor 1; PPARs, peroxisome
proliferator-activated receptors; TFAM, mitochondrial transcription factor A. Color images are available online.
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increasingly featured in AD genetic studies, and inflammatory
cytokines even play a role as peripheral biomarkers to some
extent. Thus, there appears to be an early response to abnormal
protein deposition that develops into immune adaptation in
chronic diseases, resulting in immune hyporesponsiveness.
Accordingly, the early treatment of AD with anti-inflammatory
drugs at the MCI stage may be beneficial (429).

The antidiabetic drug rosiglitazone, which also has a
neuroprotective effect, has been demonstrated to exert anti-
inflammatory effects by decreasing NF-jB levels in neurons
(231). Blunting autophagy/mitophagy leads to the generation
of ROS in mitochondria, which, in turn, activates the NLRP3
inflammasome (474). Inflammasome activation contributes
to the onset and progression of AD. The NLRP3 inflamma-
some was first identified in AD by studying the IL-1b ex-
pression induced by Ab (148). In addition, studies crossing
NLRP-/- mice with APP/PS1 mice demonstrated the role of
the NLRP3 inflammasome in the pathogenesis of AD (155).
Peripheral insulin resistance exacerbates brain inflammation,
accelerating the Alzheimer-like pathology in APP+-ob/ob
mice obtained from a cross of Alzheimer transgenic APP23
mice and diabetic ob/ob mice (384). Activating GSK3b, a
Tau phosphorylation kinase, could also induce inflammation
via NF-jB and lead to apoptosis (62, 277).

The RAGE acts as an inflammatory mediator as well as an
oxidative stress inducer in AD. RAGE belongs to the im-
munoglobulin superfamily and drives AD progression by
mediating Ab clearance, formation, and accumulation; NFT
accumulation and neuronal degeneration. RAGE transports
Ab from the periphery to the brain, and transportation at
the BBB disrupts BBB function (412). The RAGE-Ab in-
teraction inhibits the nuclear translocation of NF-jB and
stimulates the release of proinflammatory cytokines, such as
TNF-a and IL-6 and ROS. The interaction between RAGE
and Ab maintains the balance of Ab via the regulation of b-
and c-secretase activities. Changes in fatty acid composition
were present in AD human cases, with an increase in RAGE
leading to a lipid peroxidation-derived protein modification
in AD pathogenesis (300).

Mitochondrial uncoupling proteins (UCPs) located on the
inner mitochondrial membrane function as regulators of
mitochondrial membrane potential and ROS, thus protecting
neurons. Studies have indicated that UCP2 is a novel mast
cell function regulator with potential for the treatment of mast
cell-mediated allergic and inflammation responses in neuro-
degenerative diseases (197).

Indeed, mitochondrial dysfunction induces inflammation
and oxidative stress; in contrast, inflammation and oxidative
stress induce mitochondrial dysfunction. Either way, in-
flammation, oxidative stress, and mitochondrial dysfunction
coexist and exacerbate each other; therefore, approaches
targeting mitochondrial dysfunction, inflammation, oxidative
stress, or any two or all of these events could be beneficial for
AD prevention and treatment.

E. Mitochondrial metabolic disorder links nutritional
imbalance to neural DNA epigenetic remodeling

The phenomenon of epigenetics has shown a new link be-
tween metabolic dysfunction and AD. Epigenetic changes,
such as DNA methylation, have been observed in both meta-
bolic disorders and AD. Metabolic disorders alter genome-wide

DNA hydroxymethylation in two ways in association with
mitochondrial dysfunction: (i) decreasing the stability of the
TET2 protein by impeding AMPK phosphorylation and (ii)
inhibiting ten-eleven translocation (TET) activity by increasing
KGDH to competitively inhibit fumarate and succinate.

5-Hydroxymethylcytosine (5hmC) is a major and stable
epigenetic marker generated from 5-methylcytosine (5mC)
by the TET family of dioxygenases that is involved in a wide
range of biological processes from development to various
diseases (53). The epigenetic modulation that mtDNA
methylation 5mC was found in the D-loop region of mtDNA
in the entorhinal cortex in the human AD brain supported
the epigenetic mtDNA regulation in AD human cases (30).
5hmC is regulated by multiple factors, and TETs play a
central role in the generation and maintenance of 5hmC
(208). TET-mediated oxidation reactions require oxygen and
KGDH as substrates and Fe (II) as a cofactor to generate CO2

and succinate. As a result, 5hmC is directly affected by the
availability of the substrates and cofactors (115).

Mitochondria are the regulatory centers of iron. The iron
that is not used inside the cell is stored within the ferritin
macromolecule to avoid the exertion of free iron toxicity in
the cytosol (35). Multiple studies have shown that vitamin C
can improve TET activity by improving the Fe (II) level
(200). Therefore, iron homeostasis disorder induced by mi-
tochondrial dysfunction can directly affect the 5hmC level in
the genome. KGDH, as an intermediate in the TCA cycle
for energy metabolism, is generated from isocitratevia iso-
citrate dehydrogenases, including IDH1, IDH2, and IDH3.
Mutations in IDH1/IDH2 result in the simultaneous loss and
gain of activities in the production of KGDH and 2-
hydroxyglutarate (2-HG), respectively (208). These findings
provide a biochemical basis for the hypermethylation ob-
served in human glioma with IDH mutations and the mutu-
ally exclusive manner of IDH1/IDH2 and TET2 gene
mutations in acute myeloid leukemia. In addition to IDH, two
other TCA cycle genes, fumarate hydratase and SDH, are
mutated in numerous human cancers, leading to the accu-
mulation of fumarate and succinate. More importantly,
2-HG, fumarate, and succinate, which act as antagonists of
KGDH, competitively inhibit the activity of TETs and the
consequent alterations in genome-wide DNA hydro-
xymethylation (13, 143, 176, 436).

In addition to gene mutations, AMPK is impeded by high
glucose levels, which results in the destabilization of TET2,
followed by the dysregulation of 5hmC (135). Our recent
work shows that the dysregulation of 5hmC in the CNS of
mice with metabolic disorders induced by an HFD is closely
related to the decreased stability of the TET2 protein and that
the increased contents of TET enzyme inhibitors (fumarate
and succinate) are induced by an HFD. Notably, knockdown
of the TET2 gene leads to mitochondrial dysfunction and
inflammation (unpublished) (Fig. 6).

V. Mitochondria-Centered Metabolic Markers in Early AD

There is an urgent need to identify alternative disease
mechanisms and associated biomarkers that can help to di-
agnose AD in the preclinical and early clinical stages.
Given that central and peripheral metabolism are remodeled
in the early stage of AD and that mitochondria play a cen-
tral role in the pathogenesis of AD, mitochondrial biomarkers
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in the CNS and periphery could be targeted for the early
diagnosis of AD.

A. Biomarkers in the brain and CSF

Another characteristic feature of AD is a reduced rate of
brain metabolism, occurring before the development of sig-
nificant amyloid plaques and NFTs (31, 166). The mito-
chondrial proteome in AD was analyzed by quantitative
comparative proteomic profiling (59). Studies of transgenic
AD mice have demonstrated that a wide variety of metabolic

deficits, including the citric acid cycle, OXPHOS, pyruvate
metabolism, glycolysis, oxidative stress, fatty acid oxidation,
ketone body metabolism, ion transport, apoptosis, and mi-
tochondrial protein synthesis, occur early in AD (99). COX
(complex IV) of the electron transport chain shows decreased
activity in both AD brains and platelets (124), as does the
activity of the PDC, which connects glycolysis to the citric
acid cycle in AD cortices (59, 250). Further, numerous mi-
tochondrial proteins are reduced in AD cortices, including the
subunits of complex I and complex IV in OXPHOS (59).
Alternatively, other mitochondrial proteins, including malate
dehydrogenase and SDH, show increased activity in AD
cortices (447).

Moreover, some mitochondrial enzymes involved in en-
ergy production, such as acetyl-CoA dehydrogenase and
enoyl-CoA hydratase (ECHS1), were upregulated in AD
cortices (59). Increased levels of ketone body-producing
enzymes have been previously observed in AD mouse
models. The expression of 3-oxoacid-CoA transferase 1,
which catabolizes ketone bodies to produce acetyl-CoA and
thus generate ATP, was increased in 3 · TgAD mice (447).
Protein-methionine sulfoxide oxidase is the enzymatic source
of ROS production in neurons, and it could act as an increased
biomarker in the AD brain (34). The removal of cholesterol
from the brain is controlled by cytochrome P450 and was
found to be genetically enhanced in 5 · FAD mice (126, 268).
These alterations in the mitochondrial proteome of AD
mouse cerebral cortices indicate that central mitochondrial
protein alterations might be possible biomarkers for the early
diagnosis of AD.

Metabolomics is a powerful tool for studying perturbations
in the metabolome, reflecting alterations in multiple networks
affected in AD. Previous studies have shown that many ca-
nonical pathways are significantly disturbed in MCI and AD
patients. These pathways include energy metabolism, the
Krebs cycle, mitochondrial function, neurotransmitters,
amino acid metabolism, and lipid biosynthesis. Krebs cycle
markers in the CSF and liver were significantly affected in
patients with MCI compared with unaffected people. Succi-
nic anhydride, citraconic acid, 2-furoic acid, threo-isocitric
acid, citraconic acid, and pyruvic acid were increased in
the CSF of MCI patients; however, acetoacetic acid and fu-
maric acid levels were decreased. Interestingly, most of the
mitochondria-related metabolites affected early in MCI
continue to be altered in AD, including succinic anhydride,
citraconic acid, pyruvic acid, and acetoacetic acid (87).
Moreover, F2-isoprostanes, which are stable products of lipid
peroxidation, accumulate in the CSF of AD patients (126,
127). In addition, a new study reported reduced levels of
cell-free mtDNA in the CSF, representing a possible novel
biomarker of preclinical AD (83).

In 2018, the National Institute of Aging and Alzheimer’s
Association proposed a diagnostic standard for AD that is
abbreviated as the ATN system (177), where A stands for b
amyloid deposition, T stands for pathologic tau including
total tau and phosphorylated tau, and N stands for neurode-
generation. Based on long-term clinical studies, this ATN
classification system clusters different biomarkers through
neuroimaging techniques, such as PET, thus providing stan-
dardized indicators for basic and clinical researchers to dis-
tinguish the cognitive impairment caused by AD pathology,
even at an early stage (30–50 years old), thereby achieving

FIG. 6. Circulating cfDNA epigenetic modifications
from brain metabolic disorder and mitochondrial dys-
function. Metabolic disorders induce 5hmC dysregulation
in two ways. Metabolic disorders in the TCA cycle may
accumulate fumarate and succinate, the competitive inhibi-
tors of a-ketoglutarate-dependent dioxygenases, leading to
enzymatic inhibition of TETs and consequent alterations of
genome-wide DNA epigenetic modifications. Metabolic
disorders inhibit AMPK phosphorylation, resulting in the
destabilization of TET2, followed by the dysregulation of
5hmC, which could activate neuronal injury. cfDNA is re-
leased from cells undergoing apoptosis, necrosis, and se-
cretion, and it can be shed from the brain to the bloodstream.
Therefore, we hypothesize that the proportion of the
cfDNA in plasma originating from the synapses and neurons
will indicate the AD pathogenesis, which provides us with
a greater opportunity to identify a novel 5hmC marker in
cfDNA during AD pathological progression. 5hmC, 5-
hydroxymethylcytosine; cfDNA, cell-free DNA; TET, ten-
eleven translocation. Color images are available online.
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early intervention. Many new mitochondria-related changes
have been found in the CSF of transgenic AD mice and pa-
tients and are thus indicated as potential biomarkers. These
mitochondria-related biomarkers should be further verified
for their specificity in AD.

PET testing is expensive, as it requires demanding equip-
ment and strict radioisotope operation. Further, the collection
of CSF samples requires lumbar puncture, which is highly
invasive. In addition, the contents of recent standard AD
biomarkers found in the CSF are very low in the blood.
Therefore, it is necessary to use peripheral body fluids, es-
pecially blood, to detect new biomarkers for the early diag-
nosis of AD.

B. Biomarkers in peripheral tissues and circulating
body fluids

AD is a multifactorial disease that affects both the CNS
and the periphery (127). Intriguingly, several recent studies
investigating metabolites have reported significant metabolic
changes in the liver and other peripheral organs (23, 325).
b-oxidation, in liver mitochondria or peroxisomes (325), is
the principal pathway for fatty acid metabolism. AD-related
increases in long-chain specific acyl-CoA dehydrogenase,
3-keto-CoA thiolase, and acyl-CoA thioesterase 10 have
been observed, suggesting elevated fatty acid b-oxidation
and increased acetyl-CoA production (129). The increased
fatty acid metabolism in the AD mouse liver may increase
ketone body formation in blood, supported by the augmented
ketone body production in AD mice (136). Pyruvate is an
essential metabolite that fuels TCA and drives other bio-
synthetic pathways (87).

Other studies have shown that the levels of hydroxymethyl
transferase and NADP-dependent malic enzyme are increased
in the AD liver, while serine-pyruvate amino transferase levels
are decreased, suggesting elevated pyruvate concentrations
(129). Further, the decreased expression of glycogen synthase
and glycogen breakdown proteins in the AD liver suggests
reduced glucose storage (83). The observed proteomic chan-
ges suggest dysregulated glucose in the AD mouse liver (129).
The enzymes involved in the electron transport chain can
generate ROS by forming superoxide anions from molecular
oxygen (396). COX-2 and sulfite oxidase were observed in the
AD liver and thus potentially increase OXPHOS (129). Al-
terations in antioxidant regeneration rely on a continuous
supply of NADH and NADPH and have been reported in the
AD liver (136). The redox state in mitochondria depends on
the ratios of the reduced and oxidized forms of several systems
such as NADH/NAD+ (401). The changes observed in the
liver proteome of AD mice provide further evidence that AD
is a metabolic disorder and that the metabolites produced in
mitochondrial metabolism might be liver biomarkers for early
diagnosis and prevention.

Mitochondrial dysfunction has been demonstrated in the
neurons of AD patients (396) and further shown to be linked
to alterations in ROS production (462). These changes were
observed in the brains of AD patients as well as in the pe-
riphery, that is, fibroblasts in humans and in mouse models
(396, 462), and other tissues, including platelets and lympho-
cytes. Several studies showed that lipid oxidation and su-
peroxide dismutase (SOD) activity were increased; whereas
the activities of complex IV, complex III, mitochondrial

membrane potential, and ATP were reduced in the platelets of
AD patients compared with age-matched controls (167, 256,
275, 287).

Further, increased levels of oxidative DNA damage,
Mn-superoxide-dismutase (SOD2) mRNA, 4-HNE, and 3-
nitrotyrosine are observed in the lymphocytes of AD patients
(358, 397), and ROS levels are higher in the lymphocytes of
both AD patients and transgenic AD animals (74, 375). More-
over, apoptosis levels are elevated in lymphocytes from AD
patients and transgenic mice as indicated by enhanced DNA
fragmentation, SOD mRNA expression, Bax/Bcl2 ratios and
caspase-3, caspase-6, and caspase-8 activity (93, 120, 220, 382).

In addition, Scott et al. reported that basal mitochondrial
oxygen consumption, proton leakage, and AP endonuclease 1
(APE1) activity were reduced in peripheral blood mononu-
clear cells; whereas dATP levels were enhanced. MtDNA
depletion is believed to be a typical pathophysiological factor
of neurodegeneration in AD. A low cell-free mtDNA content
in CSF may be a novel biomarker for the early detection of
preclinical AD in both patients and transgenic mice. Further
studies are needed to determine whether the CSF mtDNA
concentration can be altered by disease-modifying treatments
(315). Our laboratory recently identified cell-free DNA 5hmC
as a potential biomarker in AD (unpublished). These studies
highlight the relevance of mitochondrial function in blood
cells as an early peripheral marker for the detection of AD.

Alterations in several types of mitochondrial enzymes and
metabolites have recently been reported; however, selecting
reliable and usable biomarkers from a large number of
mitochondrial-related proteins is still a major challenge for
the diagnosis, prevention, and control of AD. Detecting bio-
markers in blood is the better method for diagnosing AD, but
this has not yet been achieved. The identification of sensitive
and easily detectable biomarkers should be a major goal in
AD diagnosis, and the development of early diagnostic tech-
niques has also advanced the study of early AD intervention
programs (Fig. 7).

VI. Targeting Mitochondrial Metabolic Dysfunction
for AD Prevention

There are currently more than 2000 registered clinical
trials worldwide investigating anti-AD drugs that can be
classified by their main mechanisms, including (i) targeting
neurotransmission, (ii) preventing the accumulation of am-
yloid plaques or NFTs, and (iii) restoring mitochondrial
function or energy metabolism; and other therapeutic ap-
proaches, such as anti-inflammation or rescuing nerve growth
factor (ClinicalTrials.gov). Currently, the main therapeutic
strategies and corresponding drug research and development
include the following: (i) drugs that interfere with the for-
mation and deposition of Ab and amyloid cascade reaction;
(ii) drugs that affect aggregated hyperphosphorylated Tau
proteins; and (iii) drugs that regulate the CNS, including
different types of neuronal receptors involved in neuronal
plasticity and signal transduction.

The clinically approved drugs for AD treatment include (i)
donepezil, an acetylcholinesterase inhibitor for all stages of
AD; (ii) rivastigmine, an acetylcholinesterase inhibitor and
butyryl cholinesterase inhibitor for mild to moderate AD; (iii)
galantamine, a nicotinic receptor modulator for mild to mod-
erate AD; (iv) memantine, an N-methyl d-aspartate (NMDA)
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receptor antagonist for moderate to severe AD; and (v) hu-
perzine A, an acetylcholinesterase inhibitor approved in
China for mild to moderate AD that could also be used as an
antioxidant to protect mitochondria. These drugs ameliorate
AD-related symptoms in the short term; however, there are
no drugs currently available for inhibiting AD progression
(261). The unique bioenergetics alterations show promise as
a method for preventing or delaying (or both) the onset of
AD. Nutraceutical interventions that improve metabolic ac-
tivity and mitochondrial function could be a candidate ap-
proach to preventing AD.

A. Mitochondrial nutrients

‘‘Mitochondrial nutrients’’ refer to a group of micro-
nutrients that, either directly or through metabolites, influ-
ence the structure and function of mitochondria (234, 239).
These nutrients may also have other functions that are not
necessarily related to mitochondria. The nutrients benefit
mitochondria in four ways: by (i) ameliorating oxidative
stress, for example, lipoic acid and hydoxytyrosol (234, 307);
(ii) activating phase II enzymes that improve antioxidant
defenses, for example, tocopherol and sulforaphane (106,
116); (iii) enhancing mitochondrial remodeling, including

mitochondrial degradation, biogenesis, fission, and fusion,
for example, acetyl-l-carnitine (ALCAR) and hydroxytyro-
sol acetate (HT-ac) (237, 418); and (iv) protecting mito-
chondrial enzymes and/or stimulating mitochondrial enzyme
activities, for example, enzyme cofactors, such as B vitamins
and coenzyme Q (234, 237). In addition to using mitochon-
drial nutrients individually, the combined use of mitochon-
drial nutrients may provide a better strategy for mitochondrial
protection (149, 237) (Fig. 8). A table is compiled based on
the clinical data registered on the ClinicalTrials.gov data-
base, which is maintained by NLM at the NIH, to do a proper
analysis for mitochondrial nutrients in AD (Table 1). The
detailed information of the trial can be referred to the Iden-
tifier listed in the table.

1. Lipoic acid. a-Lipoic acid (LA), the in vivo cofactor
for the PDC and KGDH in the TCA cycle, inhibits the for-
mation of ROS, increases the levels of reduced glutathione,
and scavenges lipid peroxidation products, such as hydro-
xynonenal and acrolein. LA crosses the BBB into nerve cells
and protects against cell damage induced by Ab or hydrogen
peroxide (77, 235, 442). It also induces Akt expression,
suggesting that the neuroprotective effect of the antioxidant

FIG. 7. Mitochondria-centered biomarkers in the AD brain, liver, CSF, and blood. As mitochondria play a central
role in AD pathogenesis, mitochondria-centered biomarkers in the CNS and periphery could be new candidates for the early
diagnosis of AD. Alterations in several types of mitochondrial enzymes and metabolites in the brain, liver, CSF, and blood
are shown. Detecting biomarkers in blood is the better method for diagnosing AD, but this has not yet been achieved. The
identification of sensitive and easily detectable biomarkers should be a major goal in AD diagnosis, and the development of
early diagnostic techniques has also advanced the study of early AD intervention programs. The up arrows indicate the
biomarkers that are upregulated in AD, whereas the down arrows indicate the biomarkers that are downregulated in AD.
CSF, cerebrospinal fluid; ECHS1, enoyl-CoA hydratase; MMP, mitochondrial membrane potential; PDC, pyruvate dehy-
drogenase complex; ROS, reactive oxygen species; SOD2, Mn-superoxide-dismutase. Color images are available online.
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LA is partially transmitted through PKB/Akt signaling. LA also
exerts protective effects by activating phase 2 enzymes specif-
ically by inducing the expression of Nrf2, which binds to ARE,
in turn increasing the activity of the phase 2 enzyme system to
reduce cellular oxidative stress, enhancing the intracellular an-
tioxidant defense system, and alleviating mitochondrial oxida-
tive stress. On the other hand, LA targets PGC-1a, which binds
to FOXO or NRF1 to increase mitochondrial biogenesis, thereby
improving cognitive function in AD (145, 374). A supplemen-
tation of LA and N-acetyl cysteine decreased mitochondrial-
related oxidative damage in AD patient fibroblasts (275). A
48-month follow-up study in AD patients showed that treatment
with LA might be a neuroprotective therapeutic option for AD.
However, the phase II trial is needed (145).

2. Acetyl-l-carnitine. ALCAR is a natural product of the
reaction of carnitine with acetyl-CoA. ALCAR is used to
transport and activate fatty acids into the mitochondria,
which is a rate-limiting regulator of fatty acid oxidation.
ALCAR protects nerve cells from apoptosis and targets PGC-
1a/FOXO or PGC-1a/NRF1signaling to improve mitochon-
drial biogenesis. ALCAR is especially enriched in muscle

and brain tissues and can efficiently travel across the BBB to
promote nerve cell regeneration, protect nerve cells from
mitochondrial uncouplers and inhibitors, and enhance mito-
chondrial enzyme activity and mitochondrial function,
thereby reducing brain damage in AD (144, 235, 341). After
6 months of the double-blind parallel design pilot study of
ALCAR, the ALCAR group demonstrated significantly slo-
wed deterioration in some cognitive areas among patients
with AD (341). The perfusion of the precuneus was amplified
in AD patients after ALCAR administration and their cog-
nitive and neuropsychiatric symptoms were not worsened
(180). Further clinical studies are warranted to determine the
role of ALCAR treatment in AD.

3. Coenzyme Q10 and MitoQ. Coenzyme Q10 (CoQ10) is
an integral part of the electron transport chain that acts as an
electron acceptor that promotes ATP production and as an
antioxidant in the mitochondrial matrix and its inner mem-
brane. Several studies have identified CoQ10 as a potential
target for AD, as stabilized mitochondria impaired by neu-
rotoxins and oxidative stress and improved memory and
behavioral performance in Tg19959 and APP/PS1 mouse

FIG. 8. Functions of LA, ALCAR, CoQ10, vitamins B, C, and E, EGCG, and EGb761 for AD. LA is the cofactor for
PDC and KGDH in the TCA cycle and inhibits the formation of ROS. Other protective mechanisms for LA include
inhibiting apoptosis. In addition, LA targets PGC-1a, which binds to FOXO or NRF1 to increase mitochondrial biogenesis.
ALCAR transports and activates fatty acids into the mitochondria, protects nerve cells from apoptosis, and target, PGC-1a/
FOXO or PGC-1a/NRF1 signaling to improve mitochondrial biogenesis. CoQ10 is an integral part of the electron transport
chain. The role of CoQ10 in AD is to stabilize mitochondria. MitoQ is a modified CoQ10 molecule that is more easily
absorbed and attracted to mitochondria, thereby improving electron transport chain function. B vitamins are components or
precursors of corresponding mitochondrial coenzymes. The active form of vitamin B1 is TPP. Vitamin B2 participates in
the transformation of FADH2-FAD, and vitamin B3 participates in the transformation of NADH-NAD+. Vitamins C and E
scavenge free radicals through oxidative stress pathways. EGb761 reverses the decrease in ATP production, thereby
ameliorating mitochondrial dysfunction. EGCG intervention effectively protects against mitochondrial dysfunction
through increasing MMP and protects against apoptosis. ALCAR, acetyl-l-carnitine; CoQ10, coenzyme Q10; EGCG,
epigallocatechin-3-gallate; KGDH, a-ketoglutarate dehydrogenase complex; LA, a-lipoic acid; TPP, thiamine pyrophos-
phate. Color images are available online.
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models of AD (88, 286). The levels of the reduced and oxi-
dized forms of CoQ10 in the CSF of AD patients and age-
matched controls measured using HPLC showed that the
oxidized/total CoQ10 level in AD was significantly higher
than those in the controls, indicating that mitochondrial ox-
idative damage plays an important role in early AD patho-
genesis (175). The mitochondria-targeting antioxidant MitoQ
is a modified CoQ10 molecule. Compared with CoQ10, MitoQ
is a much smaller molecule that is more easily absorbed by
cells and is attracted to negatively charged mitochondria.
MitoQ treatment was shown to prevent cognitive decline
and oxidative stress in 3 · TgAD mice (269, 453) and to
extend the lifespan, improve electron transport chain func-
tion, and protect the mitochondrial cardiolipin content in a
Caenorhabditis elegans model of AD (292).

4. B vitamins. B vitamins have been found to reduce
brain atrophy and slow the onset or progression of AD (82). B
vitamins are components or precursors of corresponding
mitochondrial coenzymes and participate in one-carbon
metabolism (86, 395). Thiamine pyrophosphate is an active
form of vitamin B1 that is responsible for glucose metabolism
and the eventual production of acetyl-CoA. Vitamin B2 (ri-
boflavin) is the precursor of FAD that participates in the
transformation of FADH2-FAD in energy production and
cellular respiration. Vitamin B3 is the precursor for NAD and
NADP, which are responsible for DNA repair and mito-
chondrial respiration. However, vitamin B supplementation
for AD remains controversial, because some trials failed to
show its protective effect.

5. Hydroxytyrosol. Hydroxytyrosol (HT) is a phenyl eth-
anol with antioxidant activities. HT could supply a hydrogen
atom from the phenolic hydroxyl group to free radicals. The
second hydroxyl group in the ortho-position enhances anti-
oxidation by generating the catechol ring, thereby increasing

the rate of hydrogen transfer to the superoxide radical. The
catechol ring is partially converted into o-benzoquinone and
plays a direct role as an antioxidant.

There are two main sources of HT: (i) exogenous HT
(oleuropein undergoes a double hydrolysis reaction to form
HT, which is mainly found in olives, olive leaves, olive pulp,
and olive oil in the Mediterranean diet); (ii) endogenous HT,
the dopamine oxidation metabolite in the body. HT has now
been identified by the Scientific Committee of the European
Food Safety Authority as a polyphenol in olive oil that can
help to protect lipids from oxidation. The pharmacokinetics
of HT have been extensively studied, and one 14C-labeled
HT distribution study showed that HT could exert its
neuroprotective effect across the BBB (206). The cardio-
protective, antitumor, antimicrobial, antidiabetic, and neu-
roprotective effects of HT have been investigated, due to its
high antioxidant activity (337). Two major mechanisms in-
volved in the regulation of HT antioxidant activity are: (i) the
direct removal of ROS generated by oxidative stress and (ii)
the activation of certain molecular targets to resist oxidative
stress (Fig. 9).

Adherence to the Mediterranean diet could reduce the risk
of neurodegenerative diseases, such as MCI and AD, while
helping to improve cognitive function (316, 335, 346, 366).
The 2019 WHO guidelines for reducing the risk of cognitive
decline and dementia recommended a Mediterranean-like
diet to adults with normal cognition and MCI to reduce the
risk of cognitive decline and/or dementia (425). One possible
reason for the beneficial effects of the Mediterranean diet
might be the functional ingredients, such as HT, which is
the beneficial component of olive products. However, there
are very few studies on the neuroprotective effect of HT.
Oleuropein supplementation in TgCRND8 mice and aged
mice resulted in a significant improvement in cognitive
function; in addition, Ab levels and plaque deposition in
the brain were significantly reduced. These changes may be

FIG. 9. Functions of HT in
AD. HT removes mitochondrial
ROS and activates certain mo-
lecular targets. For example, HT
activates JNK/p38-NF-jB signal-
ing to release proinflammatory
interleukins and cytokines; im-
proves the JAK2/STAT3, ERK/
RSK2, and AMPK/AKT signal-
ing pathway for neuronal surviv-
al; repairs the phase 2 enzyme
system by activating Nrf2/Keap1
signaling; and activates AMPK/
PGC-1a to trigger mitochondrial
biogenesis. HT, hydroxytyrosol;
JNK, C-Jun NH2-terminal kinase.
Color images are available online.
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achieved through the mTOR pathway and, subsequently,
activate neuronal autophagy (133). Another study showed
that 14 days of 10 mg/kg HT treatment significantly enhanced
the spatial cognitive abilities of C57BL/6 mice. The animals
were injected with oligomeric Ab1–42 plus isonicotinic acid
and the improved spatial ability may have been due to the
HT-induced improvements in the ERK-MAPK/RSK2, PI3K/
Akt1, and JAK2/STAT3 signaling pathways in hippocampal
neurons (16).

We identified mitochondrial dysfunction in AD and found
that HT successfully reversed the mitochondrial respiratory
chain enzyme activities in the brains of AD mice (307). A
GSH reduction induces redox dysregulation and loss of mi-
tochondrial membrane potential, and HT increases GSH
levels via activating Nrf2. We also showed that HT signifi-
cantly reduces mitochondrial protein carbonylation and
repairs the phase 2 enzyme system by activating the Nrf2-
Keap1 pathway and AMPK to constitute the energy-sensing
protein network and trigger mitochondrial biogenesis (469,
476). Some vitagenes respond to the phase 2 enzyme system
to protect against electrophiles and oxidants, and the Keap1-
Nrf2/ARE pathway is critical for the phase 2 response. Vi-
tagenes are protective genes that control stress and protein
homeostasis with the health (40). Regulation of endogenous
cellular defense mechanisms such as the vitagene network
may open up new treatments for diseases related to tissue
damage and cell death in AD.

Recent studies have reported that mitochondria may be a
key target of HT in the amelioration of oxidative stress in AD.
The oral administration of HT significantly improved the
electroencephalogram activity of APP/PS1 mice as well as
the learning and memory abilities and decreased mitochon-
drial oxidative stress, inflammation, and apoptosis in APP/
PS1 mice. Our group recently identified an HT derivative

HT-ac that has better bioavailability than HT and could re-
markably improve cognitive function in APP/PS1 mice
(unpublished). These findings suggest that HT may be a
major functional factor in the Mediterranean diet to prevent
and ameliorate AD (307) (Fig. 9).

6. b-hydroxybutyrate. Neuroprotective effects are ob-
served with the appropriate concentrations of b-HB, as it pro-
vides mitochondrial protection (461). b-HB reduces ROS
levels by targeting complex I in the mitochondrial respiration
chain and induces ATP production in brain mitochondria (252,
393). Medium-chain triglycerides, such as b-HB, might im-
prove memory in AD, which correlates positively with the
plasma levels of b-HB. b-HB blocks Ab entry and improves
cognition in AD mice (72). Ketone bodies also have anti-
apoptotic activity by blocking ROS-activated PP2A, alleviating
the inactivation of the antiapoptotic factor Bcl2 and thereby
inhibiting apoptosis (251). In addition, b-HB may relieve
rotenone-induced caspase 3 and caspase 9 activation (173). A
recent study found that b-HB inhibited histone deacetylases
(HDACs), releasing HDACs from closing the forkhead box
O3a and metallothionein 2 genes and triggering cellular anti-
oxidant responses accordingly (291). The activated ketone
body b-HB in the liver activates Bdnf promoters via HDAC2
and HDAC3, leading to neurotransmitter release (367).

b-HB has also been found to protect hippocampal neurons
against Ab toxicity in Ab-induced AD cell models by cor-
recting defects in mitochondrial energy generation (193).
These studies reveal that ketones, as an alternative energy
source in the absence of glucose, may protect neurons by
improving mitochondrial function, thereby relieving oxida-
tive stress and inhibiting apoptosis. The detailed mechanisms
by which b-HB and ketogenesis function in AD pathology are
limited and worthy of further investigation (Fig. 10).

FIG. 10. Functions of b-HB in
AD. Ketogenesis, representative
product as b-HB, is supposed to be
stimulated by AD pathology-
involved factor, and it is transferred
across BBB as an alternative brain
energy source. Memory improve-
ment in AD correlates positively
with the levels of b-HB. In addition,
b-HB reduces ROS by targeting
complexes in the mitochondrial
respiration chain and induces ATP
production to improve mitochon-
drial biogenesis. b-HB has anti-
apoptotic activity by inhibiting
ROS-activated PP2A to alleviate the
inactivation of Bcl2 and caspases. b-
HB also inhibits HDACs, which
regulate FOXOs for metabolic stress
and BDNF for neuron growth.
BDNF, brain-derived neurotrophic
factor; HDACs, histone deacety-
lases; PP2A, protein phospholipase
2A. Color images are available on-
line.
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b-HB-enriched ketogenic diets, which account for 80% to
90% of high fat, are low in protein and low in carbohydrate
diets that meet growth needs (399). Studies by ourselves and
others have shown that unlike the HFD, which has certain
negative effects (such as the risk of cardiovascular disease
and cognitive impairment) despite the fact that the induced
body weight gain improved bone health in healthy women
and female AD mice (183, 309), ketogenic diets show po-
tential for AD intervention based on the neuroprotective ef-
fect of ketone bodies. A ketogenic diet has been used for
80 years to cure epilepsy. The therapeutic effect might be
related to mitochondrial bioenergy improvement, because the
ketogenic diet enhances the genes and activities of enzymes
in mitochondrial respiration, the TCA cycle, and mitochon-
drial biogenesis (267).

Microglia metabolize acetoacetate and b-HB produced by
the ketogenic diet, and they respond to these ketones as
metabolic signals (122). Studies have shown that the keto-
genic diet has protective effects on neurodegenerative dis-
eases, such as AD (461, 475). Low-carbohydrate diets were
given to older adults with MCI, and the results showed that
patient memory was improved and that the improvement was
positively correlated with ketone body levels (72).

The increased risk of AD is associated with dietary habits
of high levels of saturated fat and simple carbohydrates. A
recent study modified a ketogenic diet with a Mediterranean
diet, which makes up for the lack of higher carbohydrates in
the ketogenic diet and adds intake of vegetables and fruits,
while increasing fats and proteins derived from healthy
sources such as olive oil and fish, and the resulting diet
showed the potential to ameliorate AD (288).

Fasting leads to the conversion of glucose from glycogen
reserve to ketone from fatty acids. It has been reported that in
an AD mouse model, intermittent fasting (IF) protects against
GABAergic synaptic adaptations and cognitive deficits, which
is mediated by the mitochondrial protein deacetylase SIRT3
(240). SIRT3 has been reported to regulate ketogenesis
through activation of mitochondrial HMGCS2 in the fasting
state (361). IF also protected against disturbances in energy,
glucose, lipid, and bone metabolism in ovariectomized AD rats
(362). However, IF could not ameliorate amyloid peptide de-
position in 3 · AD mice (147). Further clinical trials of IF in
the early stages of human AD are necessary.

7. Hydrogen. Hydrogen (H2) reacts with specific bio-
molecules at body temperature. Its high diffusivity allows it
not only to rapidly penetrate the BBB but also to enter the
cytoplasm, mitochondria, nucleus, ER, and other subcellular
structures through the cell membrane structure to interact
with target molecules.

The mild reducibility of H2 contributes to its selective
reduction of hydroxyl radicals ($OH) and its low disturbance
of redox balance in vivo (194, 299). Clinical trials have also
observed no obvious side effects or H2 toxicity. H2-rich
water, H2-rich saline, and H2 inhalation have antioxidant
activities similar to those of molecular H2 (262). Our previ-
ous study applied coral calcium hydride (CCH), a new solid
molecular H2 carrier made of coral calcium, to HFD-induced
fatty liver rats and found that CCH could prevent glucose
metabolic disorder via PI3K/Akt signaling and lipid meta-
bolic disorder through ACC/FAS signaling and activate
phase 2 enzymes and improve mitochondrial function (164).

In addition to antioxidant activity, the neuroprotective
effects of H2 have been studied in recent years. Highly dif-
fusible H2 gas inhalation protects against ischemia-
reperfusion and stroke-induced oxidative stress by targeting
intracellular sources of ROS (299). We found that small
amounts of H2 inhalation ameliorated survival and neuro-
logical outcomes, including consciousness, cranial nerve
reflexes, and sensory function, in the asphyxia rat model of
cardiac arrest, and the beneficial effect was superior to that
of mild hypothermia (414).

H2-enriched saline was found to ameliorate memory im-
pairment in Ab-induced AD mice (223) and to exert anti-
inflammatory and antioxidant effects on the mouse brain
(409). In the injured rat brain, H2-rich saline was found to
reverse brain health by suppressing the inflammatory re-
sponse involving the NF-jB pathway and NLRP3 in-
flammasome (352). This finding suggests that molecular H2

may play a beneficial role in protecting against the pathology
of AD. Based on a previous H2 study, we speculated that H2

may ameliorate AD via the mitochondrial metabolic pathway
and the anti-inflammatory response. Our recent study found
that H2-enriched water significantly improved cognitive dys-
function in female mice via the estrogen-ERb-BDNF signaling
pathway and that H2-enriched water also exerted antioxidant
and anti-inflammatory effects in APP/PS1 mice (163). As a
newly identified small molecule playing a key role, the po-
tential mechanism by which molecular hydrogen regulates the
AD-related pathway needs to be elucidated (Fig. 11).

8. Other mitochondrial nutrients for AD. The nutrients
administered to AD patients are typically antioxidants. The
antioxidant vitamins A, C, and E reduced the risk of AD
(455). The publications regarding the effects of vitamins on

FIG. 11. Functions of hydrogen in AD. The high diffu-
sivity of H2 allows it to not only rapidly penetrate the BBB
but also enter the cytoplasm, mitochondria, and other sub-
cellular membrane compartments to interact with target
molecules. Besides the ROS scavenging, H2 prevents glu-
cose metabolic disorder via PI3K/AKT signaling, prevents
lipid metabolic disorder through ACC/FAS signaling, pre-
vents inflammation through JNK/p38-NF-jB signaling, ac-
tivates phase 2 enzymes, and activates BDNF signaling to
improve neuron growth. H2, hydrogen. Color images are
available online.
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AD are mostly association studies in AD patients, whereas in-
depth studies on the mechanism are rare. One possible reason
underlying the effect of vitamins on AD is that they are in-
volved in multiple metabolic processes. The excessive intake
of vitamin A in the body causes poisoning, and b-carotene is a
safe source of vitamin A because it can be converted to vi-
tamin A after entering the body when needed. Studies have
shown that b-carotene significantly improves behavioral
abilities, learning, memory, and cognitive function in mice
and rats through its antioxidant effect by scavenging free
radicals (3, 457).

The first-line antioxidant vitamin C functions in reduction
and hydroxylation reactions. Vitamin C deficiency in the
brain accelerates amyloid pathogenesis and cognitive be-
havior in APP/PS1 mice, likely through oxidative stress
pathways (81). Vitamin E also has the effect of scavenging
free radicals, inhibiting lipid peroxidation, and maintaining
the integrity and stability of the membrane structure. Vitamin
E is especially abundant in the mitochondrial inner mem-
brane and reacts rapidly with oxidants. Studies have shown
that vitamin E significantly improves memory disorders and
increased SOD activity (234). However, the clinical roles of
vitamin A, C, and vitamin E in the prevention and treatment
of AD are still under debate.

The standardized ginkgo biloba extract EGb761 was found
to reverse the decrease in ATP production, thereby inhibiting
mitochondrial dysfunction and oxidative damage in PC12
cells overexpressing the Ab precursor protein (1, 92). Poly-
phenols could regulate the expression of antiapoptotic pro-
teins in the Bcl-2 family to some extent and reduce apoptosis.
Epigallocatechin-3-gallate (EGCG) has a certain protective
effect on AD cell models and patients. EGCG intervention
effectively reduces the decrease in mitochondrial membrane
potential and cell apoptosis induced by Ab (12, 464).

9. Combination of mitochondrial nutrients. The combi-
nation of mitochondrial nutrients ameliorates age-related
cognitive dysfunction. An optimal combination of mito-
chondrial nutrients might be more effective than the indi-
vidual nutrients in the prevention and treatment of AD.
Combinations of multiple mitochondrial nutrients have been
tested in different mitochondrial dysfunction-related disor-
ders. For example, we initially reported that the combination
of LA and ALCAR remarkably improved the cognition
of aged rats. The combination of nutrients synergistically
ameliorates mitochondrial enzyme activity and cerebral ox-
idative stress (235, 236). The efficiency of ApoE4 to transport
cholesterol in neurons decreases under stress conditions. LA
has anticholesterol activity, whereas ALCAR reduces cho-
lesterol levels in the brain and blood; therefore, the combi-
nation of LA and ALCAR significantly improves cognitive
behavior in transgenic ApoE4 mice (207, 356). The combi-
nation of ALCAR and donepezil or rivastigmine, cholines-
terase inhibitors used for clinical AD treatment, could exert
potent effects on the inhibitors of patients with mild AD who
are not sensitive to cholinesterase inhibitors, indicating that a
combination of anti-AD drugs and mitochondrial nutrients
could be an effective strategy for AD treatment (28).

We found that the combination of LA, ALCAR, HT, and
CoQ10 ameliorated skeletal muscle atrophy through the ac-
tivation of mitochondrial biogenesis and reduction of oxi-
dative stress (237). Previous studies have shown that the LA,

ALCAR, nicotinamide, and biotin combination ameliorated
the abnormal activities of mitochondrial complexes, mito-
chondrial biogenesis, oxidative stress, antioxidant defenses,
and apoptosis, leading to the reversal of spleen, thymus, liver,
and muscle dysfunctions in GK diabetic rats without causing
weight gain (149, 150, 353). A combination of LA and
ALCAR not only effectively protected cells against rotenone-
induced mitochondrial dysfunction, oxidative damage, and
the accumulation of a-synuclein and ubiquitin but also pre-
vented mitochondrial oxidative damage in a cell culture
model of Parkinson’s disease in primary cells from the brains
of aged rats.

ApoE-deficient mice fed a regimen that included vitamin E,
ginkgo biloba, pycnogenol, and ascorbyl palmitate had sig-
nificantly prolonged lifespans and reduced inclusion body
histopathology in the hippocampus (398). Meta-analysis in-
dicated that a dietary intake of b-carotene, vitamin C, and
vitamin E lowered the risk of AD (222). Although vitamins A,
C, and E are still controversial in the prevention and treatment
of AD, clinical studies have shown that supplementation with
vitamin E and vitamin C helps prevent vascular dementia,
improves cognitive ability, and reduces the risk of AD; sup-
plementation with vitamin E, vitamin C, and selenium con-
tributes to AD prevention due to the antioxidative functions of
these molecules (97). The findings from our studies and others
support the hypothesis that the combination of mitochondrial
nutrients or the combination of mitochondrial nutrients with
other drugs is an effective strategy to prevent or treat neuro-
degenerative diseases, such as AD (235, 236, 241, 458).

B. Exercise

Similar to mitochondria-targeted nutritional intervention
for AD, exercise advantageously has fewer side effects and
better dependability than drug treatment; the key point is that
exercise improves energy metabolism-centering mitochon-
dria. Several studies in patients with AD and AD transgenic
mice reported that exercise improved cognitive behaviors
and ameliorated AD pathology (54, 98, 159, 232). In middle-
aged healthy adults, exercise promotes cognitive function
and reduces the risk of dementia in later life (76). Exercise
targeting energy metabolism mimics the function of mito-
chondrial nutrients and vice versa. Consequently, exercise is
considered an effective strategy for the prevention and ad-
juvant treatment of AD.

1. Exercise improves the metabolic profile in AD. Ex-
ercise improves the whole-body metabolic profile and brain
health and, to some extent, decreases AD risk (290, 345), and
several potential mechanisms have been found. BDNF reg-
ulates nerve cell survival, differentiation, and plasticity, im-
proving cognitive function, learning, and memory, which are
beneficial for AD. The release of BDNF enhances not only
the function of nerve cells but also the cleavage of APP by
a-secretase and inhibits b-secretase, reducing the production
of toxic Ab peptides (146, 296). Exercise was demonstrated
to increase BDNF expression by activating the ketone body
b-HB in the liver, inducing the activities of Bdnf promoters
by HDAC2 and HDAC3 and leading to the neurotransmitter
release (367). Blocking BDNF signaling by its receptor TrkB
diminishes the positive effect of exercise, which confirms the
role of BDNF signaling in the neuroprotective function of
exercise (296, 367).
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In addition to evidence showing that exercise slows AD-
related pathological features in the brain, exercise could
further prevent and alleviate cognitive function in AD by
regulating blood pressure. Aerobic exercise induces
endothelium-dependent vasodilatation by upregulating NO
production and cardiovascular fitness, thereby promoting
neuronal structure and function, mitigating cognitive im-
pairment, and reducing brain atrophy in AD (37, 161).
Exercise-derived circulating exosomes elevate miR-342-5p
to afford cardioprotection against ischemia/reperfusion in-
jury and regulate neural stem cell proliferation and astrocyte
commitment (115, 165). Elevated miR-342-5p expression
also downregulates the ankyrin G-induced axon initial seg-
ment in transgenic AD mice (376). Exercise reverses AD-
related hippocampal decline through the induction of growth
factors such as BDNF, IGF-I, and vascular endothelial
growth factor (VEGF), in which IGF and VEGF from the
periphery could pass through the BBB to promote neuro-
genesis and angiogenesis (65, 174). Exercise also increases
glucose uptake in the hippocampus and enhances mitochon-
drial OXPHOS to produce ATP (400). PI3K/Akt signaling is
hyperactivated in AD and contributes to Tau pathology.
Treadmill exercise in AD mice increases PI3K/Akt phos-
phorylation, reduces downstream GSK-3b activity, reduces
Tau protein hyperphosphorylation, and increases neuronal
survival by elevating the Bcl-2/Bax ratio and inhibiting the
activities of caspase 3 and COX-2, which are induced by Ab
(192, 203).

2. Exercise improves mitochondrial remodeling in AD.
Exercise improves mitochondrial remodeling and induces
mitochondrial biogenesis through the hippocampal PGC-1a/
FNDC5/BDNF pathway to stimulate Bdnf gene expression
(431). Exercise enhances neurological health through SIRT1/
PGC-1a, increases citrate synthase, the rate-limiting enzyme
in the TCA cycle, and induces mtDNA production, leading
to mitochondrial biogenesis (373). Exercise also improves
electron transport chain function by increasing complex I
activity and improves mitochondrial dynamics by upregu-
lating Drp1 levels (142). Swim training regulates mitochon-
drial quality control by inhibiting LC-3b turnover-mediated
autophagy and PINK1/Parkin-mediated mitophagy in aged
mice (465). Regular maternal exercise during pregnancy has
long-lasting effects on metabolic programming in the brains
of offspring and increases BDNF levels, specifically in mi-
tochondrial function as indicated by increased mitochondrial
membrane potential and mass, activates a-ketoglutarate de-
hydrogenase and complex IV, and enhances Mfn1 and Drp1
levels, which then protect against Ab-induced neurotoxicity
and the cognitive impairment of the offspring in their lifetime
(202).

3. Exercise decreases inflammation in AD. Exercise
also systemically decreases inflammatory markers. The
proinflammatory mediators, COX-2 and iNOS and cytokines
TNF-a, IL-1b, and IL-6 are attenuated by exercise via the
MAPK (p-p38 and p-ERK1/2)-dependent NF-jB pathway in
transgenic AD mice with Tau abnormalities (219). The p38-
MAPK pathway, TNF-a, and IL-1a are activated by exercise
in PS1 transgenic mice (191) (Fig. 12).

Although several clues and experimental evidence indicate
that exercise reduces the pathological features associated

with AD, the current research on AD in the field of sports
science and medicine is still rare and not yet in-depth. Be-
cause exercise and mitochondrial nutrients have similar
benefits for AD, the study of mitochondrial nutrients may
provide some clue regarding the mechanism. The specific
molecular mechanism by which exercise regulates energy
metabolism and further prevents, delays, or slows AD may
help to fully understand the occurrence and development of
AD systemically.

C. Natural compounds from traditional Chinese
medicines

As AD is a multifactorial systemic disease with metabolic
disturbance in central and peripheral tissues involving insulin
resistance, inflammation, and oxidative stress, approaches
aiming at either single molecular targets, such as Ab and the
p-Tau protein, might not be effective in treating AD, and
numerous clinical trials have provided fruitless evidence of
this notion.

Traditional Chinese medicines (TCMs) undergo a trial-
error paradigm, and the effective compounds are active in
maintaining bioenergy and metabolic homeostasis and are
more likely to maintain mitochondrial energic metabolism
and function, for example, agents that may partially rescue
the entirety of the metabolic disorders may prevent the pro-
gression of AD pathogenesis. Therefore, the alternative
strategy for AD prevention and treatment may lie in TCMs.

Douglas Wallace proposed mitochondria as chi, which can
be translated as ‘‘vital force or energy,’’ and emphasized that
the Asian herbal medications that target the mitochondria could
be used to treat age-related and neurodegenerative diseases,
such as AD (406). Therefore, based on the mitochondria-chi
theory, we have associated ‘‘chi’’ with the mitochondrial
studies in our laboratory. In addition, according to the tradi-
tional concept, Yin and Yang represent the basic opposition of
everything. In TCM, all physical structures of the human body
can be divided into the corresponding parts of Yin/Yang.
Normal life activities are the result of the coordination between
Yin and Yang. Once existence Yin/Yang is abnormally strong
or weak, it will cause the occurrence of disease.

As shown in Figure 13, when mitochondria are damaged,
chi are diminished, resulting in a lack of energy supply to the
body; therefore, AD continually worsens. Using TCMs tar-
geting mitochondria as well as mitochondria-induced oxi-
dative stress, inflammation, insulin resistance, and apoptosis
constitute a new idea for slowing down or treating AD.

According to numerous scientific articles on Chinese med-
icine and a long history of clinical practice, several TCMs
have shown certain protective effects in treating metabolic
disorders and cognitive impairments. Some of these studies
have recently been verified, greatly facilitating the screening
of promising compounds for AD prevention. A list of TCM
nutraceuticals with mitochondria function-related readouts is
presented in this section (Table 2). We listed mitochondrial
dysfunction, oxidative stress, inflammatory disorder, insulin
resistance, and hepatic metabolic dysfunction as representa-
tive mitochondrial function-related readouts (Fig. 13).

1. TCMs ameliorate insulin resistance and hepatic meta-
bolic dysfunction. Ginseng is the most commonly men-
tioned TCM with broad beneficial effects on the CNS and the
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cardiovascular, endocrine, and immune systems (17, 199).
Ginsenoside Rg1, the major active component in ginseng, is
effective in recovering insulin sensitivity and reducing blood
glucose levels in diabetic db/db mice and ob/ob mice, and
the mechanism was also investigated in insulin-resistant cell
models in which ginsenoside Rg1 activates the AMPK
pathway (218, 439, 440). In addition, ginsenoside Rg1 also
increases insulin-degrading enzymes, decreases Ab levels,
and improves learning and memory in a rat model injected
with Ab1–42 (320). Curcuma longa L (turmeric) is another
TCM that is mainly used to treat abdominal pains (14).
Curcumin, a polyphenolic compound derived from turmeric,
ameliorates insulin resistance and glucose homeostasis in
diabetic db/db mice by activating glycolysis and inhibiting
gluconeogenic and lipid metabolic enzymes in the liver (350).
Further, curcumin effectively reduces the plaque burden and
insoluble Ab accumulation in Tg2576/APPsw mice and pro-
tects against Ab-induced mitochondrial dysfunction in neu-
rons by inhibiting GSK-3b (25, 169). These results suggest

that TCM nutraceuticals that ameliorate insulin resistance,
such as ginsenoside Rg1 and curcumin, have the potential to
prevent AD.

As reviewed earlier, compromised hepatic metabolic
function is an early event that plays a key role in the patho-
genesis of AD, and nutraceuticals/drugs that preserve nor-
mal hepatic function should be another type of candidate
for treating AD. Salvia miltiorrhiza Bunge in TCM pro-
motes blood circulation to remove blood stasis (301). Cryp-
totanshinone (CTS), a major constituent extracted from
S. miltiorrhiza Bunge, decreases apoptosis and inflammation
and ameliorates reduced liver failure (182). In addition, CTS
prevents cognitive decline in APP/PS1 mice (271).

2. TCMs ameliorate mitochondrial dysfunction and oxi-
dative stress. The TCM Huperziaserrata has been used for
more than 1000 years in China for the treatment of numerous
of ailments, including contusions, schizophrenia, swell-
ing, myasthenia gravis, and, most recently, organophosphate

FIG. 12. Functions of exercise in AD. Exercise improves energy metabolism by centering mitochondria to ameliorate
AD pathological progression. (i) Exercise improves the metabolic profile in AD. The induced IGF and VEGF in the
periphery pass through the BBB to promote neurogenesis and angiogenesis, respectively. The elevated miR-342-5p crosses
the BBB to regulate the axon initial segment. The increased glucose uptake hyperactivates PI3K/AKT signaling to con-
tribute to Tau pathology. Activated b-HB induces BDNF signaling by HDAC2 and HDAC3. BDNF signaling participates in
neuroprotective functions, including activating a-secretase, inhibiting b-secretase, promoting neuron survival, and pro-
tecting cognition. (ii) Exercise improves mitochondrial remodeling in AD. Exercise induces mitochondrial biogenesis
through PGC-1a/FUNDC5 to stimulate the BDNF pathway. Exercise also improves mitochondrial homeostasis by regu-
lating mitochondrial function, autophagy, and, to some extent, mitophagy. Drp-1 levels enhanced by exercise protect against
Ab-induced neurotoxicity and cognitive function. (iii) Exercise decreases inflammation in AD. Some proinflammatory
mediators (COX-2 and iNOS) and cytokines (TNF-a, IL-1b, and IL-6) are attenuated by exercise through the p38/MAPK-
dependent NF-jB pathway to systemically decrease inflammation. COX-2, cytochrome c oxidase subunit II; MAPK,
mitogen-activated protein kinase. Color images are available online.
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poisoning (422). Huperzine-A, a component derived from
Huperziaserrata, protects mitochondria from Ab-induced
damage, at least in part by preserving membrane integrity,
inhibiting oxidative stress and improving energy metabolism
(117, 118). Huperzine-A inhibits the neurotoxicity of Ab
and improves memory in patients with AD (437, 459, 460).

Gynostemma pentaphyllum has various pharmacological
effects, such as detoxification and heart palpitation clearance
abilities (324). Gypenoside, a main bioactive ingredient in
G. pentaphyllum, was reported to improve the cognitive
function of an Ab-induced AD rat model, probably by scav-
enging free radicals, inhibiting oxidative damage, and
maintaining normal mitochondrial ultrastructure (446, 470).
The TCM Moutan Cortex is typically used to treat diseases,
such as atherosclerosis, infection, and inflammation, among
many others (432). Paeonol, isolated from the bark of Moutan
Cortex, possesses anti-inflammatory and antioxidant prop-

erties and has been reported to increase COX-1 expres-
sion and improve the cognitive function of Ab-induced AD
rats (471).

3. TCMs ameliorate inflammation. Central and periph-
eral inflammatory activation is featured during the progres-
sion of AD. Some TCM nutraceuticals have demonstrated
robust anti-inflammatory activity. Forsythia suspensa (Thunb.)
Vahl is a climbing plant, the fruit of which is a famous TCM
commonly used in clinical treatments for gonorrhea, erysipelas,
inflammation, pyrexia, and ulcer (435). Forsythiaside, isolated
from F. suspensa, has been reported to improve cognition
and memory in accelerated aging mice and SAMP8 mice, by
suppressing oxidative stress and decreasing inflammatory cy-
tokines (411). The CTS mentioned earlier also has an anti-
inflammatory effect (293, 386). These studies imply that the
constituents with anti-inflammatory or antioxidant properties
may partially relieve symptoms of AD by improving oxidative
stress or decreasing inflammation.

4. A variety of TCMs with mitochondria-related functional
readouts may reveal a new therapeutic strategy in AD
treatment. Given that complex metabolic disorders interact
and progress from early to late stages of AD, the TCMs that
rescue more than one AD-related critical metabolic disorder
may be better candidates and be more helpful for AD treat-
ment (Fig. 12).

In addition to the TCMs mentioned earlier, other TCMs,
such as Coptis chinensis Franch, berberine, and Sophora
flavescens Ait, also show benefits in both metabolic dys-
function and AD treatment (71, 170). Berberine, a major
isoquinoline alkaloid in C. chinensis Franch, an important
TCM herb that has been widely used (444), has multiple
pharmacological functions, including anti-inflammatory,
antioxidant, antidiabetic, liver-protective, and neuroprotec-
tive activities. Berberine has been reported to efficiently re-
duce cerebral Ab levels and glial activation and significantly
ameliorate cognitive impairment in TgCRND8 mice (90).
Other recent studies have also found that berberine can ad-
ditionally treat senile dementia by improving antioxidative
stress, metabolism, and other multitarget pathways (170).

Matrine, the major active component of S. flavescens,
which is typically used to treat dementia and exerts multiple
pharmacological functions similar to berberine, has been
found to be efficient in improving cognitive deficits in APP/
PS1 mice by inhibiting Ab aggregation in vivo and blocking
the Ab/RAGE axis (71). These two components not only
recover the metabolic symptoms associated with AD but also
reduce Ab levels.

Although most of the studies described earlier were con-
ducted in cellular and animal AD models, a systemic survey of
TCMs using a variety of mitochondrial functional readouts
may reveal new therapeutic strategies (406) based on clues
accumulating from Chinese medicine practices. TCMs and
some other herbal medicines are occasionally challenged due
to a lack of rigorous scientific studies. It has been proposed that
TCMs may act through hormetic dose–response mechanisms
(410). Hormesis is a type of dose–response phenomenon that is
characterized by low-dose stimulation and high-dose inhibition
(40). As the right dose is critical for successful nutrient inter-
vention, further research attention should be paid to TCM doses
and more studies on the molecular mechanism are needed.

FIG. 13. An alternative strategy for AD prevention and
treatment may lie in TCMs. Yin and Yang represent the
basic opposition of everything in the Chinese traditional
concept; especially in the TCMs, all physical structures of
the human body can be divided into the corresponding parts
of Yin/Yang. Wellness is based on the coordination between
Yin and Yang. Once the existence of Yin/Yang is abnor-
mally strong or weak, it will cause the occurrence of dis-
ease. Mitochondrion, ‘‘chi’’ equivalent in Chinese
Medicine, is considered as ‘‘Yang’’ in maintaining the en-
ergy forces of the living cell, whereas ROS generation,
lowered respiration, apoptosis, etc. are regarded as ‘‘Yin.’’
Once mitochondria are impaired by the internal and external
stress, the ‘‘chi’’ is losing along; meanwhile, the peripheral/
central progressive oxidative stress, inflammation, insulin
resistance, and eventual neuronal apoptosis progressively
occur, leading to the imbalance of Yin and Yang, which
facilitates AD pathogenesis and progression. Using TCMs
that target mitochondria-related processes, including favor-
ing mitochondrial function, such as stimulating biogenesis
and degradation, respiration, or suppressing oxidative stress,
inflammation, and apoptosis, may be an alternative way to
slow down or treat AD progression. APOP, apoptosis; INF,
inflammation; MD, metabolic disease; MT, mitochondria;
OS, oxidative stress. Color images are available online.
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Table 2. Potential Nutraceuticals from Traditional Chinese Medicines for Alzheimer’s

Disease Prevention and Treatment

TCMs

Experiment involving AD The functional target
mitochondrial

dysfunction or AD ReferencesPurity Doses Administration

Ginsenoside Rg1 98% 10 mg/kg Intraperitoneal
injection

Insulin sensitivity; blood
glucose; IDE; Ab;
learning and memory

(218, 320,
439, 440)

Curcumin — 100–400 mg/kg Orally
administered
by gavage

IR; glucose homeostasis;
glycolysis; gluconeogenic
and lipid metabolic
enzymes; Ab

(25, 350, 415)

Cryptotanshinone ‡97% 1–10 mg/kg Intraperitoneal
injection

Apoptosis; inflammation (182, 255, 271)

Huperzine-A >99% 0.2 mg/kg Intraperitoneal
injection

Mitochondrial membrane
integrity; oxidative stress;
energy metabolism;
neurotoxicity of Ab

(117, 118,
437, 459, 460)

Gynostemma
pentaphyllum
makino

>98% 50–250 mg/kg Orally
administered
by gavage

Cognitive function; free
radicals; mitochondrial
ultrastructure

(445, 446, 470)

Paeonol >98% 5 mg/kg Intraperitoneal
injection

Inflammation; cognitive
function

(471)

Forsythiaside — 60–240 mg/kg Orally Cognition and memory
ability; oxidative stress;
inflammatory cytokines

(411)

Berberine Berberine
hydrochloride

98%

25–100 mg/kg Orally
administered
by gavage

Inflammation; neuroprotec-
tive; Ab; glial activation;
cognitive impairment;
neurotransmitter;
oxidative stress

(90, 91, 170)

Matrine — 50–100 mg/kg Intraperitoneal
injection

Ab; Ab/RAGE axis (71)

Ab, beta amyloid; AD, Alzheimer’s disease; IDE, insulin degrading enzyme; IR, insulin receptor; RAGE, receptor for advanced glycation
end products; TCM, traditional Chinese medicine.

FIG. 14. Early intervention might be more effective at slowing AD progression. Perturbations in glucose metabolism,
lipid metabolism, and mitochondrial dysfunction in AD occur even earlier than the preclinical phase of AD. Mitochondria
play an important role in manipulating glucose and lipid metabolism during the occurrence and development of AD.
Therefore, mitochondrial nutrients will be a possible means to delay the progression of AD at this stage. However, AD
cannot be cured by the current existing drugs. After the diagnosis of AD by its pathological features, such as Ab deposition,
NFTs, synaptic and neuronal loss, mitochondrial nutrients can also be combined with current drugs to improve the
efficiency, finally delaying AD progression. Color images are available online.
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VII. Concluding Remarks

AD and metabolic syndrome are persistent challenges to
morbidity, mortality, lifestyles, and human life expectancy.
AD is almost incurable at this stage, and there are almost no
effective interventions or treatments. The long-term use of
the existing drugs is often accompanied by serious adverse
side effects. Currently, treatment is aimed at improving cog-
nitive function, working ability, and quality of life. However,
the current treatment can hardly delay or reverse the course of
this disease, let alone cure it. AD is a complex disease in-
volving many signaling molecules, and overlapping genetic
and environmental factors are involved in the development of
diseases. Various factors have made the treatment of AD a
challenging and urgent research hotspot.

The pathogenesis of AD is still unclear. The association
between AD and metabolic syndrome from the evidence of
clinical, epidemiological genetic, and molecular discoveries has
inspired scientists to investigate the underlying mechanisms.
Increasing evidence implies that central and peripheral mito-
chondrial metabolic deficiency occurs even earlier than the
preclinical phase of AD (Fig. 14). The early diagnosis of AD,
indicated by biomarkers, and the early intervention may provide
a new strategy for AD treatment. As an important organelle for
regulating the ‘‘life’’ and ‘‘death’’ of cells, mitochondria play an
important role in the occurrence and development of AD.
Therefore, targeting mitochondria will become a new strategy
and an important means for the treatment of AD. Mitochondria
are susceptible to the earliest signs of AD pathogenesis; re-
modeled mitochondrial metabolites represent a potential group
of novel peripheral diagnostic markers of AD and are more
readily detected than CNS-oriented markers in bodily fluids.

Mitochondrial nutrients, as well as some compounds from
Chinese traditional medicine, ameliorate some metabolic
disorders, including mitochondrial metabolic dysfunction,
insulin resistance, and inflammatory provocation in AD.

Moreover, the crosstalk between the brain and periphery
links metabolic regulation and brain function, which implies
a new aspect for identifying therapeutic targets for AD.
Therefore, treating AD by targeting mitochondria provides a
promising approach to preventing and delaying AD pro-
gression (Fig. 15). Mitochondrial-targeted therapy is still at
the exploratory stage. Although many studies have shown
that this treatment has a certain therapeutic effect, significant
clinical improvement has not yet been confirmed. Thus, both
clinical experimental and basic research on the pathogenesis
of this disease is warranted.

Treatments aimed at a single target or single pathology of
AD are less efficient in AD medicine development. In contrast,
the combined therapy of mitochondrial nutrients or TCMs and
exercise synergistically ameliorates mitochondrial-induced
oxidative stress, metabolic dysfunction, and inflammation in
both the CNS and the periphery and could be more successful
than monotherapy.

To date, numerous publications have shown that dietary or
lifestyle interventions are associated with the risk of AD or
reduce the progression of AD; however, scientific evidence is
limited, and further studies and clinical trials are needed. The
mechanism of AD is still the most important issue to inves-
tigate and remains highly prioritized, and the exact treat-
ments needed to cure AD cannot be discovered until the
mechanism has been elucidated.

Acknowledgment

The authors thank Dr. Byron C. Jones, University of
Tennessee for the critical comments and editing.

Funding Information

This work was supported by the National Basic Research
Program of China [973 program nos. 2015CB856302 and

FIG. 15. Treating AD with
multiple targets focusing on mi-
tochondria. The idea implies a
promising strategy to prevent, de-
lay, or ameliorate AD progression
by the use of multiple targets cen-
tered on the balanced energy me-
tabolism of mitochondria, including
decreasing oxidative stress, insulin
resistance, and inflammation, and
increasing phase II enzymes of an-
tioxidant defenses, mitochondrial
homeostasis, and mitochondrial en-
zyme activities in the brain and
periphery. Ultimately, healthy mi-
tochondria help to reduce the risk of
AD, delay the onset of AD, and
ameliorate the progression of AD.
Color images are available online.

METABOLIC CONTRIBUTION TO ALZHEIMER’S DISEASE 1217



2015CB553602], the National Natural Science Foundation of
China [Nos. 81741110, 31770917, 31570777, 31870848, and
81802787], the China Postdoctoral Science Foundation [no.
2018M643673], and the opening foundation of the State Key
Laboratory of Space Medicine Fundamentals and Applica-
tion, Chinese Astronaut Research and Training Center [no.
SMFA15K01].

References

1. Abdel-Kader R, Hauptmann S, Keil U, Scherping I,
Leuner K, Eckert A, and Müller WE. Stabilization of
mitochondrial function by Ginkgo biloba extract (EGb
761). Pharmacol Res 56: 493–502, 2007.

2. Accardi G, Caruso C, Colonna-Romano G, Camarda C,
Monastero R, and Candore G. Can Alzheimer disease be a
form of type 3 diabetes? Rejuvenation Res 15: 217–221, 2012.

3. Ademowo OS, Dias HKI, Milic I, Devitt A, Moran R,
Mulcahy R, Howard AN, Nolan JM, and Griffiths HR.
Phospholipid oxidation and carotenoid supplementation in
Alzheimer’s disease patients. Free Radic Biol Med 108:
77–85, 2017.

4. Ahmad F, Singh K, Das D, Gowaikar R, Shaw E,
Ramachandran A, Rupanagudi KV, Kommaddi RP,
Bennett DA, and Ravindranath V. Reactive oxygen
species-mediated loss of synaptic Akt1 signaling leads to
deficient activity-dependent protein translation early in
Alzheimer’s disease. Antioxid Redox Signal 27: 1269–
1280, 2017.

5. Akbar M, Calderon F, Wen Z, and Kim HY. Doc-
osahexaenoic acid: a positive modulator of Akt signaling
in neuronal survival. Proc Natl Acad Sci U S A 102:
10858–10863, 2005.

6. Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA,
Licznerski P, Li H, Nabili P, Hockensmith K, Graham M,
Porter GA, Jr., and Jonas EA. An uncoupling channel
within the c-subunit ring of the F1FO ATP synthase is the
mitochondrial permeability transition pore. Proc Natl
Acad Sci U S A 111: 10580–10585, 2014.

7. Alzheimer A, Stelzmann RA, Schnitzlein HN, and
Murtagh FR. An English translation of Alzheimer’s 1907
paper, ‘‘Uber eine eigenartige Erkankung der Hirnrinde’’.
Clin Anat 8: 429–431, 1995.

8. Alzheimer’s-Association. 2018 Alzheimer’s disease facts
and figures. Alzheimers Dement 14: 367–429, 2018.

9. Amato S, Liu X, Zheng B, Cantley L, Rakic P, and Man
H-Y. AMP-activated protein kinase regulates neuronal
polarization by interfering with PI 3-kinase localization.
Science 332: 247–251, 2011.

10. Anandatheerthavarada HK, Biswas G, Robin MA, and
Avadhani NG. Mitochondrial targeting and a novel
transmembrane arrest of Alzheimer’s amyloid precursor
protein impairs mitochondrial function in neuronal cells.
J Cell Biol 161: 41–54, 2003.

11. Ancolio K, Dumanchin C, Barelli H, Warter J, Brice A,
Campion D, Frebourg T, and Checler F. Unusual pheno-
typic alteration of b amyloid precursor protein (bAPP)
maturation by a new Val-715/ Met bAPP-770 mutation
responsible for probable early-onset Alzheimer’s disease.
Proc Natl Acad Sci U S A 96: 4119–4124, 1999.
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Gómez-Ariza JL. High throughput multiorgan metabo-
lomics in the APP/PS1 mouse model of Alzheimer’s
disease. Electrophoresis 36: 2237–2249, 2015.

127. Gonzalez-Dominguez R, Garcı́a-Barrera T, Vitorica J, and
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Abbreviations Used

2-HG¼ 2-hydroxyglutarate
5hmC¼ 5-hydroxymethylcytosine

5mC¼ 5-methylcytosine
b-HB¼ b-hydroxybutyrate

Ab¼ beta amyloid
ABAD¼Ab-binding alcohol dehydrogenase

ABCA7¼ATP binding cassette subfamily A
member 7

AD¼Alzheimer’s disease
ADAS-cog¼Alzheimer’s Disease Assessment Scale-

Cognitive Subscale
ADH¼ alcohol dehydrogenase
ADL¼ activities of daily living
ADP¼ adenosine diphosphate
AGE¼ advanced glycation end-product

AKT¼ protein kinase B (also known as PKB)
ALCAR¼ acetyl-l-carnitine

AMPK¼ adenosine monophosphate-activated protein
kinase

APE1¼AP endonuclease 1
ApoE¼ apolipoprotein E
APOP¼ apoptosis

APP¼ amyloid beta precursor protein
ARE¼ antioxidant response element
ATP¼ adenosine triphosphate

BACE1¼ b-site APP cleaving enzyme 1
BBB¼ blood-brain barrier

BDNF¼ brain-derived neurotrophic factor
BHD1¼ b-hydroxybutyrate dehydrogenase 1
BIN1¼ bridging integrator 1

CaMKII¼Ca2+/calmodulin-dependent protein
kinase II

CCH¼ coral calcium hydride
CDK5¼ cyclin-dependent kinase 5

cfDNA¼ cell-free DNA
CLU¼ clusterin
CNS¼ central nervous system

CoQ10¼ coenzyme Q10
COX¼ cytochrome c oxidase
CR1¼ complement C3b/C4b receptor 1
CsA¼ cyclosporine A
CSF¼ cerebrospinal fluid
CTS¼ cryptotanshinone

CypD¼ cyclophilin D
DHA¼ docosahexaenoic acid
Drp1¼ dynamin-related protein 1

ECHDC3¼ enoyl CoA-hydratase domain containing 3
ECHS1¼ enoyl-CoA hydratase
EGCG¼ epigallocatechin-3-gallate

EPA¼ eicosapentaenoic acid
ER¼ endoplasmic reticulum

ERK1/2¼ extracellular signal regulated kinase 1/2
FAD¼ familial AD

FDG-PET¼ fluoro-2-deoxy-d-glucose positron emission
tomography

Fis1¼mitochondrial fission 1
FoxO3a¼ forkhead box O3a

GK¼Goto-Kakizaki
GLP-1¼ glucagon-like peptide 1

GLUTs¼ glucose transporters
GSK3¼ glycogen synthesis kinase 3

GWAS¼ genome-wide association studies
H2¼ hydrogen

HDACs¼ histone deacetylases
HFD¼ high-fat diet

HMG-CoA¼ b-hydroxy-b-methylglutaryl-CoA
HSL¼ hormone-sensitive lipase

HT¼ hydroxytyrosol
HT-ac¼ hydroxytyrosol acetate

IDE¼ insulin degrading enzyme
IF¼ intermittent fasting

IGF-I¼ insulin-like growth factor I
INF¼ inflammation

IR¼ insulin receptor
JNK¼C-Jun NH2-terminal kinase

KGDH¼ a-ketoglutarate dehydrogenase complex
LA¼ a-lipoic acid

LRP2¼ lipoprotein receptor–related protein 2
MAPK¼mitogen-activated protein kinase
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Abbreviations Used (Cont.)

MCI¼mild cognitive impairment
MD¼metabolic disease

mdivi-1¼mitochondrial division inhibitor 1
Mfn1¼mitofusin 1
Mfn2¼mitofusin 2
MMP¼mitochondrial membrane potential

MMSE¼mini-mental state examination
mPTP¼mitochondrial permeability transition pore

MRI¼magnetic resonance imaging
MT¼mitochondria

mtDNA¼mitochondrial DNA
NEP¼ neprilysin

NFTs¼ neurofibrillary tangles
NF-jB¼ nuclear factor-kB
NMDA¼N-methyl d-aspartate

NRF1¼ nuclear respiratory factor 1
NRF2¼ nuclear respiratory factor 2
OGA¼O-GlcNAcase

O-GlcNAc¼O-N-acetylglucosamine
OGT¼O-GlcNAc transferase

OPA1¼Optic dominant atrophy 1
OS¼ oxidative stress

OXPHOS¼ oxidative phosphorylation
PDC¼ pyruvate dehydrogenase complex

PGC-1a¼Peroxisome proliferator–activated receptor
c coactivator 1a

PI3K¼ phosphatidylinositol 3-kinase

PICALM¼ phosphatidylinositol binding clathrin
assembly protein

PINK1¼ PTEN-induced putative kinase 1
PKA¼ protein kinase A

PP2A¼ protein phospholipase 2A
PPARs¼ peroxisome proliferator-activated receptors

PPAR-c¼ peroxisome proliferator–activated receptor c
PSEN1¼ presenilin 1, also known as PS1
PSEN2¼ presenilin 2
RAGE¼ receptor for advanced glycation end

products
ROS¼ reactive oxygen species
SDH¼ succinate dehydrogenase
SOD¼ superoxide dismutase

SOD2¼Mn-superoxide-dismutase
STARD6¼ St-AT-related lipid transfer domain 6

TCA¼ tricarboxylic acid
TCM¼ traditional Chinese medicine
TET¼ ten-eleven translocation

TFAM¼mitochondrial transcription factor A
TOMM40¼ translocase of outer mitochondrial

membrane 40
TPP¼ thiamine pyrophosphate

TREM2¼ triggering receptor expressed on myeloid
cells 2

UCPs¼mitochondrial uncoupling proteins
VEGF¼ vascular endothelial growth factor
WHO¼World Health Organization
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