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Abstract

Background: SCN/A is one of the most important epilepsy-related genes, with
pathogenic variants leading to a range of phenotypes with varying disease sever-
ity. Different modifying factors have been hypothesized to influence SCN/A-related
phenotypes. We investigate the presence of rare and more common variants in epi-
lepsy-related genes as potential modifiers of SCN/A-related disease severity.
Methods: 87 patients with SCNIA-related epilepsy were investigated. Whole-exome
sequencing was performed by the Beijing Genomics Institute (BGI). Functional vari-
ants in 422 genes associated with epilepsy and/or neuronal excitability were inves-
tigated. Differences in proportions of variants between the epilepsy genes and four
control gene sets were calculated, and compared to the proportions of variants in the
same genes in the EXAC database.

Results: Statistically significant excesses of variants in epilepsy genes were ob-
served in the complete cohort and in the combined group of mildly and severely
affected patients, particularly for variants with minor allele frequencies of <0.05.
Patients with extreme phenotypes showed much greater excesses of epilepsy gene
variants than patients with intermediate phenotypes.

Conclusion: Our results indicate that relatively common variants in epilepsy genes,
which would not necessarily be classified as pathogenic, may play a large role in
modulating SCNIA phenotypes. They may modify the phenotypes of both severely
and mildly affected patients. Our results may be a first step toward meaningful test-
ing of modifier gene variants in regular diagnostics for individual patients, to provide

a better estimation of disease severity for newly diagnosed patients.
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1 | INTRODUCTION

SCNIA (OMIM #182389) is one of the most important epilep-
sy-related genes, with pathogenic variants leading to a wide
range of phenotypes with varying disease severity (Claes et al.,
2003; Escayg & Goldin, 2010; Mulley et al., 2005; Sadleir et al.,
2017). One of the most severe associated diseases is Dravet syn-
drome, which is characterized by intractable epileptic seizures,
a diminishing psychomotor development that results in mild to
severe intellectual disability (ID), and often walking difficul-
ties and behavioral problems (Brunklaus, Ellis, Reavey, Forbes,
& Zuberi, 2012; Dravet, 1978; Rilstone, Coelho, Minassian, &
Andrade, 2012). Milder phenotypes include GEFS+ syndrome
and febrile seizures, in which seizures show a milder course and
a normal intellect is expected (Catterall, Kalume, & Oakley,
2010; Escayg & Goldin, 2010).

SCNIA encodes for the a-subunit of a neuronal sodium
channel, Nav1.1. Different pathogenic variants in SCNIA can
have different effects on channel function, which partly ex-
plains why the gene is associated with multiple phenotypes.
Variants leading to a complete loss of function (LoF) of the
channel are virtually always associated with severe phe-
notypes, whereas milder disturbances in channel function
usually cause milder clinical pictures (Meng et al., 2015).
However, a large part of the phenotypic variability of patients
remains unexplained: there are several reports of families in
which multiple members carry the exact same pathogenic
SCNIA variant, but nevertheless show an intra-familial vari-
ability in phenotype severity (Depienne et al., 2010; Guerrini
et al., 2010; Mahoney et al., 2009; Passamonti et al., 2015;
Pineda-Trujillo et al., 2005; Suls et al., 2010). Furthermore,
Dravet syndrome patients with similar loss of function vari-
ants may show important phenotypic differences, ranging
from severely disabled individuals to patients that live much
more independent lives (Akiyama, Kobayashi, Yoshinaga, &
Ohtsuka, 2010; Harkin et al., 2007; Jansen et al., 2006). This
variability makes it difficult to accurately predict clinical
outcomes in newly diagnosed young patients, which is very
important to parents.

Several factors have been suggested to modify the clini-
cal outcome of SCNIA-related epilepsy and to explain these
phenotypic differences. Mosaicism for a pathogenic SCNIA
variant can have a major ameliorating impact on disease se-
verity (Depienne et al., 2010; Gennaro et al., 2006; de Lange,
Koudijs, et al., 2018; Marini, Mei, Helen Cross, & Guerrini,
2006). Furthermore, variants in regulatory regions of SCN/A
may modulate disease severity (Long et al., 2008; Zeng et
al., 2014). Additionally, clinical management and especially
the use of contra-indicated medication can affect clinical out-
comes (Ceulemans, 2011; Guerrini et al., 1998; de Lange,
Gunning, et al., 2018).

Moreover, variants in modifier genes may influence
SCNIA-related phenotypes. An important effect of modifier

genes has already been described for several other genetic
disorders (Emond et al., 2013; Guo et al., 2015; Vélez et
al., 2016), and there are strong indications that genetic
background can modulate the clinical effects of pathogenic
SCNI1A-related phenotypes too, in human patients as well as
in Scnla knock-out mice (Catterall et al., 2010; Depienne et
al., 2010; Guerrini et al., 2010; Hawkins & Kearney, 2016;
Miller, Hawkins, McCollom, & Kearney, 2014; Pineda-
Trujillo et al., 2005; Scheffer, Zhang, Jansen, & Dibbens,
2009; Singh, Scheffer, Crossland, & Berkovic, 1999; Suls et
al., 2010; Yu et al., 2006). Several potential modifier genes
have already been identified: variants in SCN9A, SCNSA,
SCN2A, HLF, POLG, KCNQ2, CACNB4, CACNAIG, and
CACNAIA might aggravate or partially rescue clinical out-
comes (Calhoun, Hawkins, Zachwieja, & Kearney, 2017;
Gaily et al., 2013; Hammer et al., 2017; Hawkins & Kearney,
2012, 2016; NA, Martin, Frankel, Kearney, & Escayg, 2011;
Martin et al., 2007; Ohmori et al., 2013, 2008; Singh et al.,
2009). Potential modifier loci, identified in Scnla knock-
out mice with different disease severities, also contain sev-
eral candidate modifier genes, including GABA receptor
subunit genes, ion channel genes and genes associated with
seizures or neuronal hyperexcitability (Miller et al., 2014).
Furthermore, an enrichment of rare variants in neuronal ex-
citability genes in general has been identified in severely af-
fected Dravet syndrome patients, compared to mildly affected
Dravet syndrome patients (Hammer et al., 2017). However,
these potential modifiers each account for only a small por-
tion of the clinical variability of SCN/A-related phenotypes.
Many only show an effect when studied in large groups of
patients and different patients might be affected by different
modifiers or by multiple modifiers simultaneously. Currently,
no clinically relevant modifier genes have been identified for
which diagnostic testing can be offered, and thus more re-
search is needed to understand clinical variability and to im-
prove the counselling of patients.

Here, we investigate the presence of rare and more com-
mon variants in epilepsy-related genes that could poten-
tially modify disease severity, in a cohort of 87 patients with
SCNIA-related epilepsy. We provide a descriptive overview
of variants present in patients with phenotypes on the most
extreme ends of the spectrum, and furthermore investigate
variants in six families with multiple affected members that
show varying disease severities.

2 | MATERIALS AND METHODS
2.1 | Editorial policies and ethical
considerations

The study was approved by the Ethical Committee of the
University Medical Center Utrecht. Informed consent was
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obtained from participants or their legal caretakers, accord-
ing to the Declaration of Helsinki.

2.2 | Cohort and clinical data

2.2.1 | Participants

A cohort of 87 participants with pathogenic SCNIA variants
was evaluated, most of whom have been described previ-
ously (de Lange, Gunning, et al., 2018; de Lange, Koudijs, et
al., 2018). Only participants with pathogenic variants (class
V) or likely pathogenic variants (class IV) in SCNIA were
included, according to the American College of Medical
Genetics and Genomics criteria (Richards et al., 2015). All
variants had been detected and classified in diagnostic labo-
ratories. Patients that had previously been shown to be mo-
saic for their pathogenic SCNIA variant were excluded (de
Lange, Koudijs, et al., 2018).

2.2.2 | Disease severity classification

For all participants detailed clinical data were collected from
medical records and semi-structured telephone interviews.
Patients were either part of families with multiple SCNI/A
variants carriers, or the only affected member in their family.
In all patients absolute disease severity was defined as cogni-
tive functioning at the age of 6 years. We assessed cognitive
functioning retrospectively at the age of 6 years old as previ-
ously described (de Lange, Gunning, et al., 2018). This was
done to limit the influence of an older age on cognitive out-
comes, since average cognition declines with age in Dravet
syndrome patients. [Q- and developmental assessment scores,
established at different ages, were interpolated by linear re-
gression, to obtain approximate scores at the age of 6 years.
This age was chosen since cognitive decline is generally most
severe in the first years following disease onset (Brunklaus
et al., 2012; Nabbout et al., 2013). Patients with an IQ or
developmental quotient (DQ) of >70 (no or borderline ID) at
age 6 were classified as “mild”, while patients with an IQ or
DQ of <50 (moderate or severe to profound ID) were clas-
sified as “severe”. Patients with an 1Q/DQ score of 50-70
were classified as “intermediate”. Participants under the age
of 6 years old were not classified, unless they already showed
an 1Q/DQ of <50. Participants for whom a classification at
age 6 could not be reliably obtained were also not classified.
Furthermore, if clearly varying phenotypes were present in
families with multiple variant carrying family members (dif-
ferent syndromes, or large differences in seizure frequen-
cies or cognitive outcomes), disease severity was defined as
“mild” or “severe” relative to other affected family members
(e.g., a participant with Dravet syndrome and an unaffected
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father, both carrying the same pathogenic SCN/A variant,
would be classified as “relatively severe” and ‘relatively
mild” respectively).

To compare subgroups, we then excluded “mild” patients
that did not carry an SCNIA variant that was predicted to
cause a loss of function (LoF), or a variant that has been de-
scribed before in Dravet syndrome patients. This limits the
influence of the different pathogenic SCNIA variants itself
on the phenotypes and creates a group of patients for which
we can be relatively certain that ameliorating modifiers play
a role. The “severe” and “intermediate” groups included pa-
tients with all mutation types.

2.3 | Molecular analyses

2.3.1 | Exome sequencing

Whole-exome sequencing was performed on DNA from
lymphocytes in all patients by the Beijing Genomics Institute
(BGI), using the Agilent V5 50M exome kit enrichment, fol-
lowed by paired-end sequencing on an Illumina Hiseq. The
resulting data was processed using an in-house developed
pipeline (Ernst et al., 2017), according to the best practices
guidelines (Auwera et al., 2013). Briefly, sequencing reads
were mapped using BWA-MEM v0.7.5a (Li & Durbin,
2009), duplicates were marked and lanes were merged. Next,
using GATK IndelRealigner (v3.4—46) (McKenna et al.,
2010) indels were realigned and the GATK HaplotypeCaller
tool was used to create a GVCF per patient containing SNPs
and indels. These GVCFs were jointly genotyped using
GATK GenotypeGVCFs for the described cohort. Variants
were flagged using GATK VariantFiltration if they did
not meet the certain criteria. For SNPs the criteria were:
QD <2.0, MQ <40.0, FS >60.0, HaplotypeScore >13.0,
MQRankSum <—12.5, ReadPosRankSum <—8.0, snpclus-
ters >3 in 35 bp. The criteria for indels were as follows:
QD <2.0, FS >200.0, ReadPosRankSum <—20.0. Finally,
variants were annotated using SnpSift (v4.3t) and dbNSFP
(v3.5).

2.3.2 | Filtering of variants

We investigated variants in 422 genes that are all either
associated with epilepsy, are implicated to modify epilepsy
phenotypes, are associated with neuronal excitability, or
function in the same pathway as SCNIA, based on epi-
lepsy gene panels used in the University Medical Center
Utrecht (EPIOOV18.1), previous literature and the KEGG
pathway database (https://www.kegg.jp/kegg-bin/show_
pathway?ko04728, accessed June 2016) (further referred
to as “epilepsy genes”; see Data S1 for the complete list,
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and Data S2 for characteristics). A distinction was made
between established monogenic epilepsy genes (when pre-
sent in the diagnostic epilepsy gene panel of the University
Medical Center Utrecht) (EPI00v18.1) and candidate genes
(all other genes). We filtered for PASS-variants that were
predicted to alter protein function (frameshift, stop-gain,
stop-loss, start-loss, in-frame deletion, in-frame insertion,
splice donor, splice acceptor, and nonsynonymous mis-
sense variants). Five categories of variants were established
(type A-E), based on different minor allele frequencies
(MAF) of the variants (in both exomes and genomes in the
gnomAD database, 2.0 (Exome Aggregation Consortium
et al., 2015), all populations) and on their deleteriousness
as predicted by CADD scores (Combined Annotation-
Dependent Depletion, v1.3) (Kircher et al., 2014): Type
A variants have a MAF of <0.01 and a (PHRED-scaled)
CADD-score of >20 (representing the top 1% deleterious
substitutions in the human genome); type B variants have a
MAF of <0.01 and a CADD-score of >10 (representing the
top 10% deleterious substitutions in the human genome),
type C variants have a MAF of <0.01 and any CADD score;
type D variants have a MAF of <0.05; and type E variants
have a MAF of <0.1. The known pathogenic SCNIA vari-
ant of each patient was excluded.

The same categories of variants were established for
variants in four sets of control genes (control 1: immuno-
deficiency-related genes, n = 360; control 2: genes related
to cardiovascular disease [excluding genes related to con-
duction abnormalities], n = 109; control 3: genes related
to kidney disease, n = 223; control 4: genes related to
either hemostasis, erythroid cell membrane defects, con-
genital diarrhea, neonatal erythroderma, or angioedema,
n =297), and in genes associated with ID (excluding genes
also present in the epilepsy gene-list, n = 659), based on
genes included in diagnostic gene panels of the University
Medical Center Utrecht (version 9, http://www.umcutrecht.
nl/NGS) (see Data S1 for the complete lists, and Data S2
for characteristics).

2.4 | Data analyses

2.4.1 | Proportions of variants in epilepsy
genes and control genes compared to the
ExAC database

We investigated whether groups of patients carry an excess
of variants in our selection of epilepsy genes, as compared to
the number of variants in the different sets of control genes
(1-4). Since these control sets contain different numbers of
genes than the set of epilepsy genes, with different lengths
and mutation rates, we first investigated a healthy control
population to establish the normal ratios of variants between

the epilepsy genes and the different control sets. For this, we
extracted variants in the same genes from the ExAC data-
base (Exome Aggregation Consortium et al., 2015), using the
same filters as applied in our cohort (frameshift, stop-gain,
stop-loss, start-loss, in-frame deletion, in-frame insertion,
splice donor, splice acceptor and non-synonymous missense
variants, with MAFs of either <0.01, <0.05 or <0.1). Only
variants present in non-Finnish Europeans were analyzed, as
this population resembles the ethnicity of 97% of our own
cohort. Directly comparing numbers of variants found in the
ExXAC database to other data can lead to incorrect results,
as differences in sequencing methods, coverage and variant
calling may lead to biases (Barrett et al., 2017). However,
we expect the ratios of variants in epilepsy genes and con-
trol sets of genes to be roughly similar in both EXAC data
and in our own sequencing data, as within each cohort the
same protocols are used to analyse the various gene sets. We
therefore compare these ratios, rather than absolute numbers
of variants, in both cohorts. The ratio of variants in epilepsy
genes and in the different sets of control genes in the EXAC
database (=numbers of epilepsy gene variants divided by the
number of control gene variants) was used to calculate the
expected number of variants in epilepsy genes in our cohort
(the established ExAC ratio times the number of variants in
control genes in our cohort). We compared this expected
number of variants in epilepsy genes to the actual number
of variants found in our cohort, to obtain the percentage of
over- or underrepresentation. Fishers' exact test was used
to determine whether this over- or underrepresentation of
epilepsy gene variants was statistically significant (p-value
threshold for significance: <.05 divided by the number of
tests to the corrected for multiple testing). These analyses
were performed for the ratio between epilepsy gene variants
and variants in all four sets of control genes, for all three
frequency thresholds (<0.01, <0.05 or <0.1; type C, D and
E variants) and for different groups of patients (the complete
cohort, only patients on the extreme ends of the disease spec-
trum, and only intermediate patients). We hypothesized that
patients with a phenotype on both the severe and mild ends
of the disease spectrum would carry more variants in epilepsy
genes than intermediate patients, as both groups are likely to
have a modified phenotype.

2.4.2 | Differences between mild and
severe patients

We then assessed the distribution of epilepsy gene variants
present in our cohort in the different categories of patients
(mild, severe and intermediate). The total number of alleles
per group was calculated (=the number of genes in which
at least one variant was found in at least one of the patient
groups, multiplied by two alleles, multiplied by the number
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of patients in the group, minus one for each X-linked gene
for each male in the group). The number of found variants
per group was then divided by the total number of alleles per
group, to obtain a percentage of variants corrected for group
size and for male/female ratio (since also variants in X-linked
genes are present). Differences between groups were calcu-
lated using Fishers' exact test. Analyses were performed 5
times, once for each category of variants (type A-E). For
each of these categories, we furthermore identified in which
genes severe patients carried most variants compared to mild
patients, and vice versa (Fishers' exact test, based on the
numbers of variants and total alleles per gene in each group).

2.4.3 | Variants found in families with
variable phenotypes and in patients with the
most extreme phenotypes

In families with multiple affected family members with dif-
ferent disease severities, we report variants that were pre-
sent in only severe patients and not in their milder family
member(s) (=possible negative modifiers that could aggra-
vate the phenotype) and variants that were present in mild
patients but not in their severe family member(s) (=possi-
ble positive modifiers that could ameliorate the phenotype).
Only the most predicted deleterious variants are described
(type A), as it is difficult to prove the influence of more com-
mon and milder variants.

We furthermore report the most predicted deleterious
variants in the patients with the most extreme phenotypes
from the mild and severe groups (IQ at the age of six <30 and
all the mild patients [IQ >70]). For each patient, the predicted
most deleterious variant in an established epilepsy gene and
the predicted most deleterious variant in a candidate gene is
reported, based on the highest CADD score. When the vari-
ant with the highest CADD score was present in a recessive
gene, the highest CADD score in a dominant gene was re-
ported, if these were present.

3 | RESULTS
For 87 participants whole-exome data were obtained (see
Table S1 for information on SCNI/A pathogenic variants and
clinical data). Coverage values of the analyzed gene sets
differed between cohorts (EXAC and the described cohort),
but was similar for sets within the same cohort (Data S3 and
S4). In all patients, their known SCNIA pathogenic variants
could be identified, except for large structural variants (e.g.,
deletions of the complete SCNI/A gene), meaning no samples
swaps had occurred.

Varying phenotypes were observed in six families
(Data S5). For 69 participants an estimation of cognitive
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functioning at the age of 6 years old could be made: 22 par-
ticipants were severely affected, 29 were mildly affected,
and 18 patients were categorized as intermediate. For 18
patients no estimation could be made, because they were
either under the age of 6 and still mildly affected, or they
were severely affected but no official IQ/DQ assessments
were available close to the age of 6, meaning we cannot be
sure when the exact decline happened. Ten of the mildly
affected patients carried a LoF variant or a variant that was
previously associated with a severe phenotype, and were
included in the “mild” group. The mild group included
both brothers from family 3; although one brother is sig-
nificantly more severely affected than the other, both broth-
ers were still categorized as mild at the age of 6 years old.
The “mild” and “severe” patients combined are referred to
as “extreme” patients.

3.1 | Proportion of variants in epilepsy
genes and control genes as compared to the
ExAC database

Table 1 depicts the numbers of variants found in epilepsy
genes, ID genes and different sets of control genes, for each
groups of patients, in this cohort and in the EXAC database.
We observed a significant excess of variants in epilepsy genes
in the complete cohort, most strongly for type D variants but
also for type E variants, when compared to ratios of variants
in the EXAC database (111%—-126%, p < .0003). A statistically
significant overrepresentation of type D epilepsy gene variants
was furthermore observed for extreme patients in relation to
the control gene sets combined (118%, p < .0003). Overall, ex-
treme patients showed a two- to fourfold (type E) and five- to
sevenfold (type D) greater excess of epilepsy gene variants than
intermediate patients (Table 2; Figure 1a). This pattern was ob-
served in relation to all sets of control genes except for set 2. No
significant excess of variants in intellectual disability genes was
observed (Table 2; Figure 1b). There was no significant excess
of variants in control set 1 in relation to variants in control set
3 and 4, conform expectation and suggesting validity of these
analyses (Table 2; Figure 1c).

3.2 | Differences between mild and
severe patients

When assessing the distribution of variants present in epilepsy
genes in our cohort between the different groups of patients
(mild, severe and intermediate), no statistically significant dif-
ferences were observed (Table 3; Figure 2). This is likely due
to smaller sample sizes. We performed a power calculation
for type D variants of intermediate patients versus mild and
severe patients (the category in which the largest differences
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FIGURE 1

Overrepresentation of variants in epilepsy genes in the cohort. Bars represent the percentage of over- or underrepresentation of

variants in the different patient groups, based on the ratio of variants found in epilepsy genes and different control groups (ctrl 1, 2, 3, 4 and 1-4),

compared to ratios in the ExAC database. (a) Variants in epilepsy genes compared to different control groups; (b) variants in intellectual disability

genes compared to different control groups; (c) variants in control group 1 genes compared to control group 3 and 4 (negative control). Results are
presented for categories of variants with different allele frequency cut-offs (<0.01, <0.05, <0.1). Significant values are depicted by asterisks

3.5 | Comparison of current data and
previous literature

A list of all previously implicated modifier genes for SCN/A-
related epilepsy is shown in Data S6. The number of vari-
ants found in these genes in the current cohort is depicted for
two different categories of variants: type A, representing the
most deleterious variants with large effect size, and type D,
as this is the category in which the largest overrepresenta-
tion of variants in epilepsy genes was found in patients with
extreme phenotypes.

4 | DISCUSSION

Despite many efforts, we are still not able to fully explain
variable phenotypes caused by similar pathogenic SCNIA
mutations. More insight in modifying factors is essential for
understanding genotype—phenotype relations and for accurate
counselling of patients. Besides factors such as mosaicism,
variants in regulatory regions, and clinical management,
variants in modifier genes are suggested to modify pheno-
types. We hypothesized that phenotypes of both severely and

mildly affected patients are influenced by modifier genes, as
both are on the most extreme ends of the disease spectrum.
However, different hypotheses are possible as to which kinds
of variants can modify these phenotypes: rare variants with
large effects, or multiple more common variants with smaller
effects. Previously, rare and/or pathogenic variants in genes
involved in neuronal excitability and other known epilepsy
genes were suggested to be modifiers (Calhoun et al., 2017;
Gaily et al., 2013; Hammer et al., 2017; Hawkins & Kearney,
2012, 2016; Hawkins et al., 2011; Martin et al., 2007; Miller
et al., 2014; Ohmori et al., 2008, 2013; Singh et al., 2009).
Although such variants may have large effects on phenotypes
(a second hit in severely affected patients, or a compensating
variant in mildly affected patients), they are unlikely to be
present in all patients with extreme phenotypes: none of these
single modifier genes has been shown to be clinically rel-
evant in a large patient group (Hammer et al., 2017), Another
possibility is the presence of (multiple) more common vari-
ants in modifier genes, that each have a smaller effect, but
may simultaneously tip the balance over to a milder or more
severe phenotype. Especially protective variants in mildly af-
fected patients may not be rare, as they are not necessarily
subject to negative selection.
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TABLE 3 Distribution of variants in the epilepsy genes between groups of patients, for different categories of genes

Type D Type E
Type A variants  Type B variants  Type C variants  variants variants
(CADD? >20/ (CADD >10/ (all CADD/ (all CADD/ (all CADD/
Group of patients MAF” <0.01) MAF <0.01) MAF <0.01) MAF <0.05) MAF <0.10)
% of variant alleles Mild (n = 10) 1.79 2.33 2.76 4.38 5.70
(based on total Severe (1 = 22) 2.04 233 2.76 452 5.81
f allel
number of alleles 4 | severe 1.96 2.33 2.76 447 5.78
per group)
(n=32)
Intermediate 1.95 2.06 2.35 4.03 5.57
(n=18)
p-values Fishers' Mild versus severe 456 1 997 73 812
el e Mild versus 663 379 .195 334 765
intermediate
Severe versus 783 294 112 .109 491
intermediate
Mild + severe 998 259 .089 113 127

versus
intermediate

“PHRED-scaled CADD (combined annotation dependent depletion). A score of >20 represents the top 1% deleterious substitutions in the human genome.

Minor allele frequency; only variants with a frequency below this threshold in both the exomes and genomes in the gnomAD database are included.

To investigate both of the above described mechanisms,
we explored in which categories of variants the largest excess
was present in patients with extreme phenotypes, using vari-
ant data from the ExAC database. Although exact frequen-
cies of variants may differ between the EXAC cohort and our
own, we expected the ratios of variants in epilepsy genes ver-
sus unrelated genes to remain similar, which was confirmed
when assessing the ratios observed in the different control
genes (Figure 1c). We observed the largest overrepresenta-
tion of epilepsy gene variants in the MAF <0.05 category

(type D variants; Figure 1). This indicates that relatively
common variants in epilepsy genes, which would not neces-
sarily be classified as pathogenic, may have a large influence
on phenotypes. These results are in line with recent findings
(Niemi et al., 2018). Although we defined phenotype sever-
ity by cognitive capacities, no significant overrepresentation
of variants in ID genes was observed, indicating that their
role as modifier genes is limited. This implies that much of
the cognitive phenotypic variability is driven by differences
in seizure susceptibility, which argues for classifying Dravet

TABLE 4 Top 5 genes with an overrepresentation of variants in mild or severe patients, per category of variants

Type A variants Type B variants
(CADD? >20/ (CADD >10/
MAF” <0.01) MAF <0.01)
Genes with an excess SCN10A (.027) SLC6AS (.013)
of variants inmild 47768 (.094) SCN10A (.03)
tients
patients (gene name -, 2/ ( oou) RAII (.087)
[p-value])
DEPDC5 (.094) ACTL6B (.094)
KPNA7 (.094) COL3AI (.094)
Genes with an excess GPR98 (.049) GPR98 (.201)
of variants in severe RYR2 (419) CcUX1 (314)
tient
patients (gene name -y 564y RYR2 (417)
[p-value])
SIK1 (.564)
TSCI (.564)

Type C variants Type E variants
(all CADD/ Type D variants (all  (all CADD/
MAF <0.01) CADD/MAF <0.05) MAF <0.10)
EFHCI (.002) MOCS?2 (.003) MOCS?2 (.003)
SCNI0A (.01) KCNHI1 (.008) KCNHI1 (.008)
SLC6AS (.013) EFHCI (.01) DRDA4 (.009)
DSC2 (.027) SLC6A8 (.013) SLC6AS (.013)
RAII (.087) MYT1 (.027) CTSD (.026)
GPR98 (.193) RYR2 (.025) RYR2 (.013)
ANKRDI1 (.3) CUXI (.049) CUXI (.049)
ANK2 (.314) KCNBI (.088) KCNBI (.088)
CUXI (314) ANK?2 (.094) AKAP9 (.094)
RYR2 (.417) AKAP9 (.094) ANK2 (.094)

“PHRED-scaled CADD (combined annotation dependent depletion). A score of >20 represents the top 1% deleterious substitutions in the human genome.

®Minor allele frequency; only variants with a frequency below this threshold in both the exomes and genomes in the gnomAD database are included.

p-values are based on Fishers' exact test.
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TABLE 5 Rare and predicted deleterious variants present in only relatively mildly or severely affected members of families with varying
SCNIA-related phenotyes

Relatively
severely
affected
family
members

Relatively
mildly
affected
family
members

Family®

B W W W W W N = =

5

6 (proband and
father)

6 (proband and
father)

6 (proband and
father)

6 (proband and
father)

6 (only
proband)

6 (only
proband)

6 (only
proband)

1

1
1

2 (father and
brother of
proband)

A~ B~ W W

Established
epilepsy
Gene gene”
PRKACA
ITPRI
GPR98
DRD4
DEPDCS5 Yes
DEPDC5 Yes
CREBS
DSG2
ATF2
GNAS
OGDHL
CREB3
SNTA1
GJA9
LGI2
TSC2 Yes
RAII Yes
GABRA3 Yes
KCNBI1 Yes
PKP2
GPR98
SHANK3 Yes
SYNGAPI Yes
DNM3
GABRAG6
RYR2
PRRT2 Yes
CHDS5
SLCI9A3 Yes
SZT2 Yes

Variant

c.452T > Clp.Ile151Thr (missense)
¢.1435G > Alp.Val4791le (missense)
¢.3151G > Tlp.Asp1051Tyr (missense)
¢.1016G > Alp.Gly339Asp (missense)
¢.3551T > Alp.Leul184GIn (missense)
¢.3434C > Tlp.Ser1145Phe (missense)
¢.685C > Alp.His229Asn (missense)
¢.166G > Alp.Val56Met (missense)

¢.977C > Tlp.Pro326Leu (missense & splice
region)

¢.1648G > Alp.Ala550Thr (missense)
¢.2201T > Clp.Phe734Ser (missense)
¢.359T > Clp.Leul20Pro (missense)

¢.566C > Tlp.Ser189Leu (missense)

¢.22G > Alp.Gly8Arg (missense)

¢.194C > Tlp.Ser65Phe (missense)

¢.275A > Tlp.Glu92Val (missense)

¢.725C > Tlp.Pro242Leu (missense)

¢.766C > Tlp.Arg256Trp (missense)

¢.2266A > Clp.lle756Leu (missense)

¢.76G > Alp.Asp26Asn (missense)
¢.9650C > Tlp.Ala3217Val (missense)
c.1379_1382delGAATIp.Arg460fs (frameshift)

¢.3982_3983insCCCCCCCGlp.Arg1328fs
(frameshift)

¢.2171G > Alp.Arg724His (missense)
¢.805G > Alp.Val269lle (missens)
c.4451A > Glp.Tyr1484Cys (missense)

¢.647C > Alp.Pro216His (missense)
¢.5074G > Tlp.Gly1692Trp (missense)
¢.388G > Alp.Vall30Met (missense)
¢.8384C > Glp.Thr2795Arg (missense)

MAF*¢

0

0.0047
0.0021
0.0015

0
0.00007785
0.0003
0.0019
0.0007

0.00002394
0.0073
0.0003

0.0002

0.0017

0.000005

0.001

0.003

0.0084
0.0091
0.0021

0.0059
0.0025
0.000008183

0.0005
0.0002
0.000004062
0.000008129

CADD-

phred

scored

26.1
22.2
26
25
32
21.6
25.5
27
23.5

24.3
32
23.6

23.6

29.3

28.4

25.9

24.3

29.3

23.3

33
23.6
25.4
34

233
28
25.5

26.2
34
21
275

(Continues)
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TABLE 5 Continued

Established
epilepsy
Family® Gene gene”
6 JUP
6 GOSR2 Yes
6 DOCK3
6 SLC6A1 Yes

Variant

c.1165C > Tlp.Arg389* (stop)

¢.509A > Glp.Asn170Ser (missense)
¢.5446G > Alp.Vall816Met (missense) 0 22.5
¢.1243C > Alp.Leu415Ile (missense)

Open Access,

CADD-
phred

MAF* scored

0.00003253 37
0.0003 233

0.0025 20.1

* indicates a stop mutation, as per the HGVS nomenclature guidelines that Molecular Genetics & Genomic Medicine requires to be used.

“Members from families 1-6, as described in Data S2. The upper part of the table represents the patients who are relatively severely affected, compared to their other

family members; the lower part of the table represents the participants who are relatively mildly affected, compared to their other family members.

Genes were considered established epilepsy genes when present in the diagnostic epilepsy gene panel of the University Medical Center Utrecht.

“Highest frequency of the variant observed in both exomes and genomes in the gnomAD database (Exome Aggregation Consortium et al., 2015).

dCombined annotation dependent depletion (Kircher et al., 2014): numbers represent PHRED-scaled CADD scores. CADD scores of >20 represent the top 1%

deleterious substitutions in the human genome.

syndrome as an epileptic encephalopathy: a syndrome in
which epileptiform activities contribute to a progressive cog-
nitive dysfunction. However, genes that are associated with
both epilepsy and ID were excluded from the ID gene set. We
cannot exclude the possibility that variants in these genes are
the most important modifiers of cognitive outcomes. These
modifying effects may be caused by either changes in seizure
susceptibility, or by a direct effect of these gene variants on
cognitive functioning. Unfortunately, we did not have data on
seizure severity at the age of six years old. Future prospective
studies should include such data to further elucidate this re-
lation. Similar outcomes were observed for comparisons to
each control set, except for set 2; this may be due to the much
smaller number of genes in this control set.

A surplus of variants in epilepsy genes was observed in
patients with extreme phenotypes, but not for intermediate
patients, indicating that indeed both the phenotypes of severe
as well as mild patients may be under the influence of modi-
fier genes. It is worth noting that our main outcome was cog-
nition at the age of six years old, so a rapid or slow decline
in cognition in the first years of disease. This measure may
not necessarily completely correspond to long term cognitive
outcomes.

The findings above suggest that it is difficult to draw con-
clusions from testing individual patients for variants in mod-
ifier genes: it is hard to prove whether a relatively common
variant will have a substantial effect, and if so, what this ef-
fect will be, since variants are found in both mild and severely
affected patients. For rare, pathogenic variants this may be
easier. Although no significant excess of these variants was
observed in mild or severe patients, they may still be present
in several patients: only one extra variant with a large effect
size may be necessary to drastically change outcomes, which
is difficult to statistically detect. We therefore also report the
type A variants (CADD >20, MAF <0.01) that were detected
in the most extremely mild and severe patients, and those that
were only present in either the mild or the severe members of

affected families, in a descriptive way. Studying families in
which the same SCNIA variant leads to variable phenotypes
has several advantages: not only is the primary influence of
different SCNIA variants themselves removed from analyses,
it also means that variants that are shared between both se-
vere and mild family members can be excluded to have sig-
nificant effects.

Statistically proving the modifying effects of single
genes or even specific variants remains difficult; there are
only small numbers of patients with extreme phenotypes and
SCNIA mutations of which the effect can reliably be pre-
dicted, which consequently leads to low detection power. Our
study may suffer from this. Furthermore, the variety of dif-
ferent possible modifier genes that may act simultaneously
makes it difficult to attribute effects to specific variants. In
addition, since some genes can carry both LoF and gain of
function (GoF) variants, and also variants that cause no rele-
vant effect at all, they may be incorrectly dismissed as modi-
fier genes when variants are present in both severe, mild, and
intermediate patients. Functional testing is required to con-
clusively prove or disprove any modifying effects of single
variants, which is not feasible for all variants detected in this
study. However, by presenting the most significant genes in
each category of variants (Table 4) and variants that are likely
to have the largest effects (Tables 5 and 6), we provide data
for future reference. Combined with data from future studies
similar to ours, trends in the cumulative data may be detected
and groups of patients with similar genotype-phenotype cor-
relations may be assembled for further research.

Despite a lack of statistical significance, some interesting
results were observed in our study in relation to previous lit-
erature: a predicted deleterious SCNSA variant was detected
in an extremely mild patient. SCNSA has previously been im-
plicated to ameliorate SCNIA phenotypes by restoring nor-
mal seizure thresholds (Hawkins et al., 2011; Martin et al.,
2007). Furthermore, several severe patients carried variants in
genes that were previously described to worsen phenotypes
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FIGURE 2 Distribution of variants in epilepsy genes among different groups of patients. Distribution of variants in epilepsy genes among
different groups of patients, depicted for different types of variants (A-E). 1: (type A variants) CADD >20/MAF <0.01; 2: (type B variants) CADD
>10/MAF <0.01; 3: (type C variants) all CADD/MAF <0.01; 4: (type D variants) all CADD/MAF <0.05; 5: (type E variants) all CADD/MAF
<0.10. Percentages of variants relative to the total number of alleles per group are shown

(POLG, SCN2A, CACNAIA, and CACNAIG), strengthening
those associations (Calhoun et al., 2017; Gaily et al., 2013;
Hawkins et al., 2011; Ohmori et al., 2013). GPR9S8, a gene
implicated in myoclonic epilepsy (Myers et al., 2018), showed
the highest overrepresentation of variants in severe patients
in three categories of variants, and SCN/0A, another sodium
channel alpha-subunit gene, was most often implicated in
mild patients. One relatively severe patient carried a GABRA3
variant (family 6); several GABA receptor genes have already
been suggested as potential SCNIA modifiers (Miller et al.,
2014). Inhibition of DOCK3, in which a variant was found
in a relatively mild patient (family 6), was previously shown
to decrease epileptic activity (Li et al., 2016). Interestingly,
frameshift variants in SHANK3 and SYNGAPI were detected
in a relatively mild patient (family 1). Both genes are associ-
ated with severe neurodevelopmental disorders (Carvill et al.,
2013; Durand et al., 2007). The presence of these variants in
a mildly affected patient may be explained by their location
in the genes: the SHANK3 variant resides in exon 11, which
has previously been implicated to be absent from most or all
SHANKS3 transcripts (Kolevzon et al., 2011). The SYNGAP1
variant is at the 3' end of the gene, which may lead to less se-
vere effects. Nevertheless, it remains a possibility that some of
the presented variants are sequencing or calling errors, since it
was not feasible to confirm all variants by Sanger sequencing.
We however do not expect such variants to influence our main
results, since similar error rates are to be expected between
different groups of patients and categories of variants.

In conclusion, our results indicate that relatively common
variants in epilepsy genes, which would not necessarily be
classified as pathogenic by themselves, play a large role in
modulating phenotypes, in both severely and mildly affected
patients. Studies in larger cohorts, combined with functional

assessments, will be necessary to confirm or disprove the
modifying effects of the genes implicated in this study. Our
results may be a first step towards meaningful testing of mod-
ifier gene variants in regular diagnostics for individual pa-
tients, to provide a better estimation of disease severity for
newly diagnosed patients.
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