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In Brief
Phosphotyrosine (pY)-specific
phosphoproteome profiles have
been determined for 16 AML cell
lines through a pY immunopre-
cipitation-based protocol.
Kinase activity inference using
dedicated ranking analysis, com-
bining kinome-, activation loop-,
and substrate-based analyses,
identified potential drivers for all
cell lines and driver function was
confirmed through drug experi-
ments. Results for two patient
samples show potential of phos-
phoproteomics in a clinical
setting.
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• pY phosphoproteomes and dedicated ranking analyses for 16 AML cell lines.

• RTK drivers, 6 mutant cell lines confirmed, identification for 4 more cell lines.

• MAPK1/3 phosphorylation for cell lines without TK driver, indicating RAS mutation.

• Drug target space phosphorylation correlates with drug IC50s in specific cell lines.
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Phosphotyrosine-based Phosphoproteomics
for Target Identification and Drug Response
Prediction in AML Cell Lines*□S

Carolien van Alphen‡§¶, Jacqueline Cloos¶�, Robin Beekhof‡§, David G. J. Cucchi¶�,
Sander R. Piersma‡§, Jaco C. Knol‡§, Alex A. Henneman‡§, Thang V. Pham‡§,
Johan van Meerloo¶, Gert J. Ossenkoppele¶, Henk M. W. Verheul‡,
Jeroen J. W. M. Janssen¶‡‡, and Connie R. Jimenez‡§‡‡**

Acute myeloid leukemia (AML) is a clonal disorder arising
from hematopoietic myeloid progenitors. Aberrantly acti-
vated tyrosine kinases (TK) are involved in leukemogene-
sis and are associated with poor treatment outcome.
Kinase inhibitor (KI) treatment has shown promise in im-
proving patient outcome in AML. However, inhibitor se-
lection for patients is suboptimal.

In a preclinical effort to address KI selection, we ana-
lyzed a panel of 16 AML cell lines using phosphotyrosine
(pY) enrichment-based, label-free phosphoproteomics.
The Integrative Inferred Kinase Activity (INKA) algorithm
was used to identify hyperphosphorylated, active kinases
as candidates for KI treatment, and efficacy of selected
KIs was tested.

Heterogeneous signaling was observed with between
241 and 2764 phosphopeptides detected per cell line. Of
4853 identified phosphopeptides with 4229 phosphosites,
4459 phosphopeptides (4430 pY) were linked to 3605 class
I sites (3525 pY). INKA analysis in single cell lines suc-
cessfully pinpointed driver kinases (PDGFRA, JAK2, KIT
and FLT3) corresponding with activating mutations pres-
ent in these cell lines. Furthermore, potential receptor
tyrosine kinase (RTK) drivers, undetected by standard
molecular analyses, were identified in four cell lines
(FGFR1 in KG-1 and KG-1a, PDGFRA in Kasumi-3, and
FLT3 in MM6). These cell lines proved highly sensitive to
specific KIs. Six AML cell lines without a clear RTK driver
showed evidence of MAPK1/3 activation, indicative of the
presence of activating upstream RAS mutations. Impor-
tantly, FLT3 phosphorylation was demonstrated in two
clinical AML samples with a FLT3 internal tandem dupli-
cation (ITD) mutation.

Our data show the potential of pY-phosphoproteomics
and INKA analysis to provide insight in AML TK signaling
and identify hyperactive kinases as potential targets for
treatment in AML cell lines. These results warrant future

investigation of clinical samples to further our under-
standing of TK phosphorylation in relation to clinical
response in the individual patient. Molecular & Cellu-
lar Proteomics 19: 884–899, 2020. DOI: 10.1074/mcp.
RA119.001504.

Acute myeloid leukemia (AML)1 is a clonal hematopoietic
stem cell disorder, characterized by expansion of immature
leukemic blasts in the bone marrow, resulting in suppression
of normal hematopoiesis. In AML, protein kinase mutations
are associated with proliferative and survival advantages (1, 2)
and treatment of AML with kinase inhibitors is therefore gain-
ing much interest (3).

For example, the FMS-like receptor tyrosine kinase 3 (FLT3)
gene is frequently mutated in AML, either by internal tandem
duplication of the juxtamembrane domain (�20–30% of
cases) (4–8) or a point mutation of the tyrosine kinase domain
(TKD) (�7%) (5, 7, 8). These mutations lead to constitutive
FLT3 signaling and are associated with high peripheral blast
counts and a poor treatment outcome (4, 6, 8–10). Recently,
addition of the (rather non-selective) FLT3 inhibitor midostau-
rin to standard chemotherapy was shown to increase overall
survival compared with chemotherapy alone in FLT3-ITD/
TKD-positive AML patients (11). Clinical studies, using more
selective inhibitors, have also shown promising, but variable,
results and suggested that patient selection based solely on
mutational status is suboptimal for predicting patient re-
sponse and/or that additional activated pathways may be
missed by mutational analysis (12–15). Clearly there is a need
for predictive markers that reflect the functional state of the
cancer cells. In order to advance KI-based precision medicine
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for the individual patient, knowledge of individual AML kinase
activity profiles could improve treatment decisions.

The emergence of mass spectrometry-based phosphopro-
teomics has enabled dissection of cellular signaling in cancer
at a global scale. Previous global phosphoproteomic studies
of AML have focused on unraveling AML signaling pathways
(16–21) and assessing the effect of kinase inhibitors in the
context of therapeutic response (17, 20, 22–26). Global phos-
phopeptide patterns have been found to be discriminative
between AML cell lines on the one hand, and cell lines derived
from other hematological malignancies on the other (23). Het-
erogeneity was further found among different AML cell lines,
underlining the heterogeneous nature of the disease (22, 23).

Global phosphoproteomic analyses, involving all major
types of phosphorylation (serine, threonine, and tyrosine), are
heavily dominated by serine- and threonine-specific modifi-
cations that are much more prevalent than pY modifications.
In contrast, pY enrichment-based phosphoproteomics allows
for a thorough study of TK signaling that is frequently dis-
turbed in cancer and enables identification of driver kinases
(27). In the context of AML, pY-phosphoproteomics has con-
tributed to increased understanding of aberrant TK signaling
(16, 18, 19, 27), and identified JAK2 and FGFR1 as drivers in
AML cell lines (28, 29). Though limited in their depth and
sample size, these studies have shown the ability of phos-
phoproteomics to detect kinase hyperactivity in AML.

We have recently developed an analysis strategy (called
INKA) to infer kinase activity in a single biological sample,
combining knowledge on the phosphorylation of both kinases
and their substrates (30). To further evaluate the potential of
phosphoproteomics for identifying kinase hyperactivity as a
possible target in AML, we have performed pY enrichment-
based phosphoproteomics of a panel of 16 AML cell lines,
coupled to dedicated INKA analysis and functional testing.
Additionally, we were able to detect the phosphorylation pro-
file associated with activated FLT3 in two clinical samples.
Altogether, our study provides a comprehensive overview of
AML signaling and TK activity on an individual cell line basis
and shows potential for target selection for effective treatment
with kinase inhibitors.

EXPERIMENTAL PROCEDURES

Cell Culture—The HEL, HL-60, Kasumi-3, Kasumi-6, MV4–11, and
THP-1 cell lines were obtained from ATCC (Wesel, Germany) and the
EoL-1, KG-1, KG-1a, Kasumi-1, ME-1, ML-2, MOLM-13, MM-6, NB4,

and OCI-AML3 cell lines were purchased from DSMZ (Braunschweig,
Germany). Kasumi-1, Kasumi-3, Kasumi-6, KG-1a, MOLM-13, ML-2,
and ME-1 were grown in RPMI 1640 medium with L-glutamine (Life
Technologies, Paisley, UK) supplemented with 20% fetal calf serum
(FCS). MV4–11, NB4, EoL-1, HL-60, KG-1, MonoMac-6 (MM6),
THP-1, and HEL were grown in RPMI 1640 with L-glutamine supple-
mented with 10% FCS. OCI-AML3 was grown in MEM-�, no nucleo-
sides medium (Life Technologies) supplemented with 20% FCS. Cell
lines were cultured at concentrations between 0.3–0.5 � 106 cells/ml
and were harvested during the logarithmic growth phase. To obtain
�10–12 mg protein, 1–1.5 � 108 cells were centrifuged at room
temperature and washed twice with cold (4 °C) PBS (Invitrogen,
Carlsbad, CA) before further processing.

Clinical Samples—Periferal blood samples containing 93–97% of
blasts were obtained from two FLT3-ITD AML patients at the time of
diagnosis at Amsterdam UMC, location VUmc, Cancer Center Am-
sterdam. These patients were included in the HOVON 102 trial (Neth-
erlands Trial Register number NL2070). All study protocols were
performed in accordance with the Declaration of Helsinki and ap-
proved by the central medical ethical committee (METC-2009–293).
Written informed consent was obtained from each patient prior to
study entry.

The start of the isolation procedure was within 30–60 min after
sample collection. Mononuclear cells (MNC) were enriched using
Ficoll-Paque Plus (GE Healthcare, Chicago, IL). Erythrocytes were
lysed using lysis buffer (155 mM NH4Cl, 10 mM KHCO3, 0.1 mM

Na2EDTA). Cell pellets were snap frozen and stored at �80 °C. Iso-
lation was completed within �2.5–3 h after collection.

Sample Processing and pY Immunoprecipitation—Cell lines and
clinical samples were lysed in urea lysis buffer for phosphoproteom-
ics (8 M urea, 1 mM orthovanadate, 2.5 mM pyrophosphate, 1 mM

�-glycerophosphate in MilliQ water) followed by 1 min. of vortexing
and subsequent sonication. Sonicated lysates were cleared by spin-
ning at 5400 � g for 15 min. at 13 °C. Protein content was determined
using the DCTM Protein Assay (BioRad, Hercules, CA). Sample quality
was examined by SDS-PAGE and Coomassie Blue staining.

Ten miligrams protein input was used as starting material for each
cell line. Starting material for the two clinical samples consisted of two
5-mg workflow replicates. Lysates were brought to equal volumes at
a concentration of 2 mg/ml protein. Sample preparation and phos-
photyrosine immunoprecipitation (IP) procedures were performed as
previously reported (31, 32). IP was performed using PTMScan pTyr
antibody beads (p-Tyr-1000) (Cell Signaling Technology, Danvers, IL)
at a ratio of 4 �l bead slurry per mg protein. Lysate aliquots were
taken before the pTyr IP step, and were diluted to 0.1 �g/�l in 0.1%
TFA for proteomic analysis.

Phosphopeptide Identification and Quantification—Peptides were
separated by an Ultimate 3000 nanoLC system (Dionex LC-Packings,
Amsterdam, The Netherlands) coupled online to a Q Exactive mass
spectrometer (Thermo Fisher, Bremen, Germany) and equipped with
a 40 cm � 75 �m (ID) fused silica column custom packed with 2-�m,
120-Å-pore ReproSil Pur C18 aqua (Dr Maisch GMBH, Ammerbuch-
Entringen, Germany). After injection, peptides were trapped at 6
�l/min on a 10 mm � 100 �m (ID) trap column packed with 5-�m,
120-Å-pore ReproSil Pur C18 aqua at 2% buffer B (buffer A: 0.5%
acetic acid, buffer B: 80% ACN, 0.5% acetic acid) and separated at
300 nl/min in a 10–40% buffer B gradient in 90 min (120 min.
inject-to-inject). Eluting peptides were ionized at a potential of �2 kV
and introduced into the mass spectrometer. Intact masses were
measured at a resolution of 70,000 (at m/z 200) in the orbitrap using
an AGC target value of 3E6 charges. The top 10 peptide signals
(charge states 2� and higher) were submitted to the higher-energy
collision (HCD) cell for MS/MS (1.6 amu isolation width, 25% normal-
ized collision energy). MS/MS spectra were acquired at a resolution of

1 The abbreviations used are: AML, acute myeloid leukemia; TK,
tyrosine kinase; KI, kinase inhibitor; pY, phosphotyrosine; INKA, inte-
grative inferred kinase activity; ITD, internal tandem duplication; FLT3,
FMS-like receptor tyrosine kinase 3; TKD, tyrosine kinase domain;
PB, peripheral blood; MNC, mononuclear cell; IP, immunoaffinity
precipitation; PDGFRA, platelet-derived growth factor receptor alpha;
FIP1L1, pre-mRNA 3�-end-processing factor FIP1; KIT, Mast/Stem
cell growth factor receptor KIT; JAK2, janus kinase 2; FGFR1, fibro-
blast growth factor receptor-1; RTK, receptor tyrosine kinase; AR,
allelic ratio.
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17,500 (at m/z 200) in the orbitrap using an AGC target value of 2E5
charges, a maximum inject time of 80 ms, and an underfill ratio of
0.1%. Dynamic exclusion was applied with a repeat count of 1 and an
exclusion time of 30 s. MS/MS spectra for the cell line samples were
searched against a Uniprot human FASTA file (release January 2014,
no fragments; 42104 entries) using MaxQuant version 1.4.1.2 (33).
Clinical samples were searched against the Swissprot human FASTA
file (release September 2015, canonical and isoforms; 42122 entries)
using MaxQuant version 1.5.2.8. Enzyme specificity was set to tryp-
sin, and up to two missed cleavages were allowed. Cysteine carbox-
amidomethylation (�57.021464 Da) was treated as a fixed modifica-
tion, and serine, threonine and tyrosine phosphorylation (�79.966330
Da), methionine oxidation (�15.994915 Da), and N-terminal acetyla-
tion (�42.010565 Da) as variable modifications. Peptide precursor
ions were searched with a maximum mass deviation of 4.5 ppm, and
fragment ions with a maximum mass deviation of 20 ppm. Peptide,
protein and site identifications were filtered at a false discovery rate of
1% using the decoy database strategy. The minimal peptide length
was set at 7 amino acids, the minimum Andromeda score for modified
peptides was 40, and the corresponding minimum delta score was 17
for the cell lines, and 6 for clinical samples (default settings for the
respective MaxQuant software versions). Proteins that could not be
differentiated based on MS/MS spectra alone were clustered into
protein groups (default MaxQuant settings). For the clinical samples,
the “match between runs” option was selected in MaxQuant (not for
the cell line samples). Phosphopeptide intensities derived from the
integrated MS1 signal (isotope cluster) of the eluting peak for each
precursor mass were obtained from the modificationSpecificPep-
tides.txt table from MaxQuant. Intensities were normalized on the
summed intensity of all (phospho and non-phospho) peptides in a
profiling run of the corresponding tryptic lysate digest and multiplied
by the mean intensity across profiled cell line lysates. Phosphopep-
tide MS/MS spectral counts (34) were calculated from the MaxQuant
evidence.txt file using R (http://www.r-project.org) (35). For subse-
quent analysis, values for clinical sample replicates were averaged.
Information on identified phosphopeptides, phosphosites, and pro-
teins can be found in supplemental Table S1. For all phosphopeptide
identifications, annotated, mass-labeled MS/MS spectra are provided
in supplemental Figs. S8 and S9.

INKA Analysis—Kinase activity was predicted using the INKA anal-
ysis tool as described (30). For the INKA analysis, phosphopeptide
abundance measures were obtained from the individual cell line
measurements. Label-free spectral counts were used as a proxy for
abundancy and used in a standard INKA analysis based on four
in-silico metrics calculated from phosphopeptide spectral count data.
Two kinase-centric metrics focus on phosphopeptides derived from
protein kinases themselves: a “kinome” metric, for all phosphopep-
tides derived from a given kinase, and an “activation loop” metric,
which is restricted to phosphopeptides derived from the kinase acti-
vation loop segment. Two substrate-centric metrics focus on phos-
phopeptides derived from proteins that are deemed substrates for a
given kinase: a “NetworKIN” (NWK) metric, for phosphopeptides from
proteins that are predicted to be a substrate for a specific kinase by
the motif-based NetworKIN algorithm (36), and a “PhosphoSitePlus”
(PSP) metric, for phosphopeptides from proteins that have been
experimentally observed to be a substrate for a particular kinase, as
documented in the PhosphoSitePlus catalogue (37). These four met-
rics, all related to kinase activity directly (kinase-centric) or indirectly
(substrate-centric), are integrated into a single INKA score with a
requirement for kinases to be implicated by both the kinase- and the
substrate-centric side of the analysis. The INKA tool provides bar
graphs for all individual analyses, and final INKA scores for top 20
kinases.

Analysis of Kinase Inhibitor Targeting of (Inferred) Kinases—The
(kinase) target space of kinase inhibitors quizartinib, ponatinib, ibru-
tinib, tofacitinib, and GDC0994 was compiled from literature (38–43),
selecting kinases inhibited at concentrations below 500 nM. Inhibition
data was supplemented with data on drug-kinase binding affinity (500
nM) for kinases for which no inhibition data was available. For each
cell line, for each of its kinome, activation-loop, NWK, PSP and INKA
metric analyses, kinase activity data were filtered for the kinases
included in the pertinent target space (supplemental Table S2). For a
given combination of cell line, metric analysis, and kinase inhibitor,
the percentage potential kinase inhibition was calculated as the sum
of activity values (ia, inferred activity) for kinases in the drug target
space, divided by the activity values for all kinases in the data for a
cell line (equation 1) (supplemental Table S2A, G ,M, S and Y).

% potential kinase inhibition �
�ia(target space kinases)�ia(all kinases)

� 100

(1)

Log EC50 values for drugs were compared with the percentage
potential kinase inhibition of these drugs for the AML cell lines using
Pearson correlation. The EC50 values for ponatinib were supplemented
with data from the Genome of Drug Sensitivity in Cancer resource
(GDSC), http://www.cancerrxgene.org, consulted Nov.2018) (44). These
are indicated in red in supplemental Table S2.

In Silico Analysis of Cell Line KI Sensitivity—Thirty KIs were se-
lected from the dose dependent protein-drug interaction analysis (40)
from the proteomicsDB analytics toolbox for which drug sensitivity
data was available in the GDSC database or from our own experi-
ments. For each of the 30 KIs the (kinase) target space was deter-
mined from literature (38–43, 45–59). Target spaces include kinases
inhibited with an IC50 below 500 nM, supplemented with evidence of
drug-kinase binding at a Kd below 500 nM as described above (sup-
plemental Table S4). Drug response data were found in the GDSC
database for 13 out of 16 cell lines in our data set. For independently
tested drugs in this manuscript that were selected based on the INKA
profile (see above), the corresponding EC50s were used instead of
those in the GDSC database. Per cell line, drug EC50s were divided
into two groups based on the presence of the INKA-implicated driver
kinase in the target space of the drug. Drug EC50s were visualized in
a scatterplot and distribution of the EC50s for each group is shown
with a Tukey box plot. The difference in response between the two
groups was evaluated using the Mann-Whitney U test.

Molecular Analysis—AML cell lines (n � 16) and two primary patient
AML mononuclear fractions were analyzed for common AML-associ-
ated molecular aberrancies according to standard diagnostic proto-
cols. DNA and/or RNA was extracted from cell pellets made at the
time of lysate preparation as described previously (60, 61). Samples
were analyzed for the presence of molecular aberrations in FLT3 (ITD),
c-KIT (exon8/17), NPM1 (exon12), JAK2 (exon 14), and CEBPA,
FIP1L1-PDGFRA, BCR-ABL, PML-RARA, RUNX1-RUNX1T1 (t(8;
21)(q22;q22); AML-ETO), and CBFB-MYH11 (inv(16)) fusions, and
11q23 (MLL) rearrangements according to standard procedures
(http://www.modhem.nl). When FLT3-ITD was present, the allelic ratio
(AR) was determined by dividing the area under the curve (AUC) of the
ITD peak by the total AUC of the ITD and wild-type peaks as found in
fragment analysis.

Pathway Analysis—Exploration of downstream pathway activation
was done by matching detected phosphoprotein data to an AML scaf-
fold pathway, consisting of the PI3K, MAPK, and JAK-STAT pathways.
The AML scaffold pathway was constructed by combining pathway
information from four sources, KEGG (62), PANTHER (63), REACTOME
(64), and Cell Signaling Technology pathways (https://www.cellsignal.
com/contents/science/cst-pathways/science-pathways). Gene sym-
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bols were converted to HGNC nomenclature for each source list, and
combined lists were made for each pathway. Pathway lists were further
integrated to create a list with pathway-associated proteins. The final list
was matched to the phosphoprotein list of our data set, and pathway-
associated proteins detected in our data set were included in an AML
signaling list (n � 199). For each sample, phosphoprotein-level spectral
counts were matched to members of this list to create a per sample
overview of pathway activation.

Pathway Visualization—To provide a per sample view of pathway
activation, we built a simplified pathway scaffold in Cytoscape (65)
(version 3.3.0), based on the kinases and phosphatases present in the
AML signaling list that were identified in our data set, supplemented
with a few other pathway proteins identified in our data set. Protein
relations were extracted from the STRING database (https://string-
db.org) (66). Phosphoprotein counts per sample were matched to this
scaffold pathway to create a per sample visualization of pathway
activation. The color key range was set to 0 to 50 for all samples, with
proteins undetected in a sample visualized in green.

Signaling Profiles—The spectral count-based AML pathway acti-
vation lists (supplemental Table S3) were used to calculate z-scores
with median normalization of phosphoprotein counts within each
sample column, using the Perseus software package (49) (version
1.5.5.0). Hierarchical clustering (distance measure: Euclidean, linkage
method: average) was done for all cell lines and clinical samples using
the hclust() function in R.

Western Blot Analysis—Per sample, 20 �g of lysate was loaded on
a pre-cast 4–12% gradient gel (Bio-Rad), and proteins were trans-
ferred onto an Immobulon P PVDF membrane (Merck Millipore, Bil-
lerica, MA). Blocking buffer consisted of 5% BSA in PBS/0.1%
Tween20 (PBST). The blot was incubated overnight at 4 °C with
anti-phosphotyrosine antibody 4G10 Platinum (Merck Millipore) di-
luted 1:1000 in PBST containing 1% BSA.

Drug Sensitivity Assay (MTT)—Quizartinib (AC220), imatinib,
ponatinib, masitinib, tofacitinib, GDC-0994, and binimetinib were ac-
quired from Selleckchem (Munich, Germany). Ibrutinib was pur-
chased from MedChem Express (Sollentuna, Sweden). Optimal cell
amounts for plating were determined with growth curves for each cell
line to ensure logarithmic growth (between 3000 and 13,000 cells/
well). Proliferation was determined at 96 h to ensure a minimum of
three doublings for each cell line. Cell proliferation was assessed after
a 4-hour incubation with 10% MTT (3-(4,5-dimethylthiazolyl-2)-2–5-
diophenyl tetrazolium bromide) (Sigma, Taufkirchen, Germany) at
37 °C following a previously described protocol (67). The EC50 value
was defined as the drug concentration needed to inhibit 50% of cell
growth compared with growth of untreated control cells. All experi-
ments were done in quadruplicate.

Experimental Design and Statistical Rationale—Phosphoproteom-
ics was performed for 16 AML cell lines with different genetic profiles
and mutations. Workflow reproducibility of the pY phosphoproteom-
ics workflow was benchmarked previously (31). Samples were meas-
ured in a single-shot experiment. For cell lines, single biological
samples (n � 1) were used for analysis. For clinical samples, biolog-
ical material was split at the start of sample processing and measured
as two technical replicates. For further analysis, values for phospho-
peptides identified in both replicates were averaged into one value
per clinical sample. For phosphopeptides identified in only one rep-
licate the value of the identification was used. The INKA score and its
component metrics are within-sample values, and statistical rele-
vance of the former has been addressed (35). For drug response
analyses, fourteen out of 16 cell lines were tested for multiple KIs in
quadruplicate, and drug response curves show mean viability with the
standard deviation indicated. For correlation between reduction of
INKA scores for a drug’s target space and drug EC50s in Fig. 6,
Pearson correlation in R was used.

RESULTS

Phosphoproteomic Profiling of AML Cell Lines Shows Het-
erogeneity in Phosphorylation Patterns—Label-free phospho-
proteomics has been shown to be a valuable tool to investi-
gate kinase signaling (57–59), and, unlike isotopic labeling
approaches, is feasible for application to large clinical multi-
group cohorts that we envisage to screen in future. To inves-
tigate kinase hyperactivity and intracellular signaling in AML,
we used our robust and reproducible workflow for label-free
quantitative pY-based phosphoproteomics (31) combined
with a dedicated analysis on a panel of 16 AML cell lines (Fig.
1). In total, 4853 phosphopeptides from 2279 phosphopro-
teins were identified, carrying 4229 phosphosites (3605 class
I, localization probability � 0.75). The bulk of the class I
phosphosites (3525) were phosphotyrosine sites on 4430
phosphopeptides (supplemental Tables S1 and S5). The num-
ber of identified phosphopeptides per sample was highly
variable, ranging from 241 to 2764 phosphopeptides in indi-
vidual cell lines (Fig. 1; supplemental Table S5). This high
variability in phosphorylation patterns was confirmed by an-
ti-pY Western blot analysis using aliquots of cell line lysates
(supplemental Fig. S1) and underlines the need for analysis of
individual samples.

Unsupervised clustering using all normalized phosphopep-
tide intensities separated cell lines with high phosphorylation
levels and clusters displaying intermediate and low levels of
phosphorylation (Fig. 2A). Cell lines did not cluster based on
French-American-British (FAB) classification of hematologic
diseases (Fig. 2A) or growth conditions such as doubling time
or medium (data not shown). Importantly, the closely related
KG-1 and KG-1a cell lines, where KG-1a is a less mature
subline of KG-1, showed comparable phosphorylation pat-
terns and clustered together.

Out of 2279 identified phosphorylated proteins, 138 were
classified as protein kinases (Fig. 1, supplemental Table S5).
The heterogeneous levels of phosphorylation per cell line
observed on Western blotting and at the phosphopeptide
level were also reflected in the unsupervised clustering using
kinase counts (supplemental Fig. S2A).

Molecular characterization of the cell line panel following
standard molecular diagnostic procedures identified common
genomic aberrations in only 6 out of 16 cell lines (supplemen-
tal Table S6). These included genomic aberrations in the
AML-linked kinase genes FLT3 (MV4–11, MOLM-13, Kasumi-
6), PDGFRA (EoL-1), KIT (Kasumi-1), and JAK2 (HEL). Inter-
estingly, analysis of Kasumi-6 revealed two distinct FLT3-
ITDs, one of which was only detected at a low AR. No kinase
aberrations were detected in any of the other 10 cell lines.
Phosphopeptide clustering did not group the MV4–11,
MOLM-13 and Kasumi-6 cell lines based on their FLT3-ITD
mutation, indicating that phosphoproteomics adds a comple-
mentary layer of information.
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INKA Ranking Pinpoints Hyperactive Kinases in Accordance
with Corresponding Molecular Aberrations, Confirming Their
Potential as Drug Targets—Several fusions and gain-of-func-
tion mutations in kinases are known driving factors in AML. An
initial exploration into phosphorylation of the known AML TK
drivers revealed that cell lines with an identified kinase muta-
tion showed unusually high phosphorylation at the protein
level when compared with the other cell lines in the panel
(supplemental Fig. S2B). In addition, four cell lines without
identified mutations according to standard genetic testing
(KG-1, KG-1a, MM6 and Kasumi-3) also showed high phos-
phorylation of FGFR1, FLT3 or PDGFRA, indicating potential
kinase driver activity in these cell lines (see outliers in supple-
mental Fig. S2B, Fig. 3, green panel).

To gain insight in (hyper)activity of kinases in a single cell
line and pinpoint hyperactivity indicative of driver activity, we
performed INKA analysis (35). The INKA approach is based on
a 4-component analysis, for each given kinase, of phosphory-
lation of the kinase itself (“kinome” metric) and its activation
loop segment (“activation loop” metric) on the one hand, and

phosphorylation of all of its possible substrates as deduced
from NetworKIN predictions and the PhosphoSitePlus cata-
logue of experimentally observed substrates (“NWK” and
“PSP” metrics, respectively) on the other. Only kinases with
both kinase-centric and substrate-centric evidence get a non-
zero INKA score.

Bar graph visualizations of the INKA scores for the six cell
lines with an identified TK mutation indicated high activity of
these kinases, with ranks between position 1 and 6 of the
highest INKA scores (Fig. 3). The high ranking of these mutant
kinases was also apparent in the four individual INKA com-
ponent analyses (supplemental Fig. S3A–S3F). INKA scores of
mutant kinases were especially pronounced for the FIP1L1-
PDGFRA fusion cell line EoL-1 and the Kasumi-1 cell line
carrying an N822K KIT point mutation (Fig. 3). INKA ranking of
the FLT3-ITD mutant cell lines MV4–11, MOLM-13, and Ka-
sumi-6, and the V617F JAK2 cell line HEL showed a top 2–6
ranking of FLT3 and JAK2, next to several other kinases.
Interestingly, other high-ranking kinases in these cell lines
were generally located downstream in the FLT3 and JAK2

FIG. 1. Experimental outline. A panel
of AML cell lines with known and uniden-
tified kinase drivers was subjected to
phosphoproteomics. To this end, immu-
noprecipitated phosphotyrosine peptides
of 16 AML cell lines were analyzed by
nanoLC-MS/MS. Combining phospho-
peptides per protein allowed for quantifi-
cation of overall protein phosphorylation
state. Kinase activity in the cell lines was
assessed by four different analyses. Ki-
nase activation was inferred from total ki-
nase phosphorylation and activation-loop
phosphorylation and substrate driven
analysis was done using known kinase-
substrate relations and the motif-based
kinase-substrate associations. Alongside,
downstream pathway analysis was done,
focused on AML associated pathways
(PI3K, JAK-STAT, and MAPK), to gain in-
sight in downstream network activation.
Based on the results, candidate drivers
were selected for functional validation us-
ing kinase inhibitors.
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cellular signaling hierarchy, thereby still implicating FLT3 and
JAK2 as primary suspects of driver activity. KIT activity was
also indicated for Kasumi-6, indicating this kinase might also
contribute to signaling in this cell line.

Exposure of EoL-1, Kasumi-1, MV4–11 and MOLM-13 cells
to quizartinib (a PDGFRA, c-KIT and FLT3 inhibitor) confirmed
dependence on their drivers, with EC50 values below 10 nM

(supplemental Fig. S3A–S3D). The JAK2 mutant HEL was only
moderately sensitive to JAK2 inhibition with an EC50 for to-
facitinib at 5.5 �M (supplemental Fig. S3F). This result was
comparable to sensitivities found with the JAK inhibitors rux-
olitinib (0.66 �M) and fedratinib (1.02 �M) for this cell line in the
GDSC web resource. To check whether these results were
specific to the cell lines with activity of a kinase targeted by
the inhibitor, a few of the other cell lines without the intended
target driver were taken along as negative controls. As ex-
pected, these cell lines were much less sensitive to the KIs
tested compared with those with an indicated driver targeted
by the inhibitor (supplemental Fig. S4). The KI ibrutinib was
also tested, as several relevant kinases (both the major target,
BTK, and multiple other kinases to which the drug binds in the
nanomolar range) showed high INKA rankings. In correspond-
ence with the general presence of these kinases in all cell
lines, EC50s for ibrutinib were moderate with EC50s generally
above 1 �M (supplemental Fig. S4). Overall, EoL-1, Kasumi-1,
MV4–11, MOLM-13, and HEL cell lines were much less sen-
sitive to ibrutinib than to the driver targeting inhibitor (supple-
mental Fig. S3A–S3F).

Phosphoproteomics Reveals Unexpected Hyperphosphory-
lated Kinases and INKA Analysis Indicates Their Potential as
Drug Targets in Four Cell Lines—Outlier analysis of phosphory-
lated kinases in our data set indicated four additional cell lines
in our AML panel that potentially contain a kinase driver
(supplemental Fig. S2B) although not indicated as such by a
standard diagnostic mutation screen. These included FGFR1

(KG1 and KG1a), FLT3 (MM6), and PDGFRA (Kasumi-3), and
kinome ranking for these cell lines showed high phosphory-
lation for each kinase (rank 1–4) (Fig. 3, green highlighted
area; Fig. 4A). Kinase activity in these four cell lines was
further supported by phosphorylation of the respective acti-
vation loops (rank 1–2) and by one or both substrate-centric
analyses (supplemental Fig. S3B–S3C and S3I–S3J), resulting
in a top 2 INKA ranking and thereby indicating high activity of
these kinases in these cell lines.

Targeting of FGFR1 in the KG-1 and KG-1a cell lines with
ponatinib further supports driver function of FGFR1 in these
cell lines with drug EC50 values of 2.8 nM and 1.0 nM, respec-
tively (Fig. 4C, supplemental Fig. S3B–S3C, supplemental Fig.
S4). Inhibitor selection based on indicated FLT3 and PDGFRA
hyperactivity in the MM6 and Kasumi-3 cell lines was equally
successful, with an EC50 of 0,068 nM in MM6 and 1.8 nM in
Kasumi-3 for quizartinib (Fig. 4C, supplemental Fig. S3I–S3J,
supplemental Fig. S4). As expected, the related KG-1 and
KG-1a cell lines showed comparable responses to ponatinib.
Ibrutinib had a comparatively minimal effect in all four cell
lines with EC50s above 1 �M. A subsequent literature search
for these cell lines confirmed mutations in the respective
driver kinases identified (29, 68, 69). Together, the results
support driver activity of the respective kinases as predicted
by our phosphoproteomics-based INKA analysis.

MAPK Signaling is Relatively High in Cell Lines Without a
Clear TK Driver—In six of the sixteen cell lines in our panel,
HL-60, ML-2, OCI-AML3, NB4, THP-1 and ME-1, we did not
identify a clearly hyperactive TK driver, as assessed by group-
based outlier analysis and INKA analysis (Fig. 3, blue high-
lighted area; Fig. 5A; supplemental Fig. S3K–S3P). Although a
subset of these cell lines (ML-2, OCI-AML3, THP-1, and ME-1)
showed some phosphorylation of known AML drivers such as
FLT3 and KIT, phosphorylation levels detected in these cell
lines were much lower than in the cell lines carrying a FLT3 or

FIG. 2. Unsupervised clustering of the panel of 16 AML cell lines. Unsupervised clustering of phosphopeptide intensities indicates that
cell lines cluster independent of mutation status or FAB classification.

Phosphoproteomics for Drug Response Prediction in AML

Molecular & Cellular Proteomics 19.5 889

http://www.mcponline.org/cgi/content/full/RA119.001504/DC1
http://www.mcponline.org/cgi/content/full/RA119.001504/DC1
http://www.mcponline.org/cgi/content/full/RA119.001504/DC1
http://www.mcponline.org/cgi/content/full/RA119.001504/DC1
http://www.mcponline.org/cgi/content/full/RA119.001504/DC1
http://www.mcponline.org/cgi/content/full/RA119.001504/DC1
http://www.mcponline.org/cgi/content/full/RA119.001504/DC1
http://www.mcponline.org/cgi/content/full/RA119.001504/DC1
http://www.mcponline.org/cgi/content/full/RA119.001504/DC1
http://www.mcponline.org/cgi/content/full/RA119.001504/DC1
http://www.mcponline.org/cgi/content/full/RA119.001504/DC1
http://www.mcponline.org/cgi/content/full/RA119.001504/DC1
http://www.mcponline.org/cgi/content/full/RA119.001504/DC1
http://www.mcponline.org/cgi/content/full/RA119.001504/DC1


FIG. 3. Top 20 ranking phosphokinases in the 16 AML cell lines. Kinases were ranked based on their INKA score. Potential drivers are
indicated by an arrow and bars are colored (PDGFRA � pink, FGFR1 � purple, KIT � orange, FLT3 � blue, JAK2 � green). Six cell lines
showed high phosphorylation for known AML driver kinases that harbored mutations confirmed by standard diagnostic tests (supplemental
Table S1). Furthermore, phosphoproteomics uncovered potential driver kinases in 10 other cell lines (green and blue shaded cell lines) that were
missed by the standard diagnostic tests.
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KIT mutation. Similarly, limited substrate-derived evidence for
activation of these kinases was found in these cell lines, and
INKA analysis only indicated potential activity of KIT (rank 5) in
ME-1.

Inspection of the INKA ranking in these cell lines revealed
relatively high INKA ranking for MAPK3 (rank 5–8) in four cell
lines, i.e. ML-2, HL-60, OCI-AML3 and THP-1, as compared
with cell lines with a TK driver (Fig. 3; Fig. 5A). Importantly,
activity of MAPK 3 and of MAPK1 was supported by both the
kinase-centric and substrate-centric analyses, in which the
latter indicated activation of upstream activators MAP2K1 and
MAP2K2 in these cell lines (supplemental Fig. S3K–S3N). An
inspection of the Cancer Cell Line Encyclopedia (CCLE) da-
tabase (70) (https://portals.broadinstitute.org/ccle) and the
Cosmic Cell Lines Project (CCLP) database (71) (https://
cancer.sanger.ac.uk/cell_lines) indicated the presence of up-
stream RAS mutations in cell lines displaying MAPK1/3 acti-
vation, offering an explanation for the observed activity.

Incubation of ML-2, HL-60, OCI-AML3 and THP-1 with the
MAPK1/3 inhibitor GDC-0994 showed a relatively better in-
hibitory response (EC50 � 0.5 �M–2.7 �M) when compared
with ibrutinib (p 	 0.0001) (Fig. 5C, supplemental Fig. S3K–
S3O). Additionally, consistent with upstream RAS activation,
inhibition with the upstream MEK inhibitor binimetinib proved
even more successful in these cell lines (EC50 � 8 nM–144 nM).
Despite the relatively low kinase rank of MAPK3 in the NB4 cell
line, just outside the top 20 (rank 21), pathway visualization of
NB4 signaling still indicated involvement of MAPK in NB4 cel-
lular signaling (supplemental Fig. S3O). Indeed, MEK-ERK inhi-
bition proved successful for this cell line (EC50 of 0.5 �M for
MAPK1/3 and 28 nM for MAP2K1/2; Fig. 5C, supplemental Fig.
S3O), and these results are in line with the KRAS mutation
present in this cell line (CCLE and CCLP data).

Systematic Analysis of Correlation Between Kinase Ranking
and Drug EC50 Values for Individual Cell Lines—We explored
to what extent INKA scores and the metric values of the four

FIG. 4. Validation of potential kinase drivers in four AML cell lines without identified driver mutations. A, INKA score ranking for the
MM6 and Kasumi-3 cell lines indicates high activity of the FLT3 and PDGFRA kinases while ranking in KG-1 and KG-1a cell lines uncovers
FGFR1 (arrows). B, List of experimentally established drug targets of ponatinib (green panel), quizartinib (pink panel) and ibrutinib (blue panel)
with an affinity below 500 nM. Targets indicated by circles were discovered through a chemical proteomics approach (40), and those indicated
by triangles used cell-free essays for target identification (39, 43, 72). Bold font indicates kinases that are intended targets of the drug, whereas
plain font indicates additional target kinases. Kinases with a top 20 INKA score in the KG-1, KG-1a, MM-6 and Kasumi-3 cell lines are indicated
with the corresponding colors as in panel A. C, Targeting of suspected driver kinases in the above cell lines with a KI effective against FGFR1
(ponatinib), or FLT3 and PDGFRA (quizartinib) shows effective inhibition of cell viability in the nanomolar range. Ibrutinib is used as a control.

Phosphoproteomics for Drug Response Prediction in AML

Molecular & Cellular Proteomics 19.5 891

http://www.mcponline.org/cgi/content/full/RA119.001504/DC1
https://portals.broadinstitute.org/ccle
https://cancer.sanger.ac.uk/cell_lines
https://cancer.sanger.ac.uk/cell_lines
http://www.mcponline.org/cgi/content/full/RA119.001504/DC1
http://www.mcponline.org/cgi/content/full/RA119.001504/DC1
http://www.mcponline.org/cgi/content/full/RA119.001504/DC1
http://www.mcponline.org/cgi/content/full/RA119.001504/DC1
http://www.mcponline.org/cgi/content/full/RA119.001504/DC1


underlying analyses could be linked to drug EC50 values for
individual cell lines. To this end, a target space was specified
for each drug, selecting experimentally proven targets inhib-
ited by the drug at concentrations below 500 nM, supple-
mented with targets for which no inhibition data were avail-
able but with a binding affinity below 500 nM. For each cell line
in each specific analysis, the percentage potential kinase

inhibition was formulated as the ratio between the summed
metric values of kinases in the target space of a KI and the
summed metric values of all kinases. The resulting % poten-
tial kinase inhibition was then compared with the drug-spe-
cific log EC50 values for a cell line. In case of predictive value,
an inverse correlation between % potential inhibition and log
EC50 would be expected.

FIG. 5. Ranking of phosphorylated kinases in six cell lines without an identified mutation or TK hyperphosphorylation. A, INKA scores
of MAPK1 and MAPK3 (arrow) rank high in four out of six cell lines without a clear hyperactive TK driver. B, List of experimentally established
drug targets of GDC-0994 (orange panel), binimetinib (purple panel) and ibrutinib (blue panel) with an affinity below 500 nM. As in Fig. 4, the
target space (40, 42, 43), is indicated in the phosphokinase profiles. Bold font indicates kinases that are intended targets, whereas plain font
indicates additional targets of the drug. Kinases with a top 20 INKA score are indicated with corresponding colors as in panel A. C, Targeting
of MAPK1 and MAPK3 with GDC-0994 shows effective inhibition of cell viability in the nanomolar range compared with treatment with ibrutinib
(control) (p 	 0.0001, two-way ANOVA). Targeting the MAPK pathway by upstream MAP2K1 and MAP2K2 inhibition using binimetinib was even
more effective (p 	 0.0001 and p 	 0.0001, respectively). Colors as in panel A.
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Overall, the kinase-centric data (phosphorylated kinase and
phosphorylated activation loop) showed more consistent in-
verse correlations as compared with substrate-centric kinase
analyses (Fig. 6). This was especially true for the drugs tar-
geting an RTK driver, whereas the relation was less clear
for the drugs targeting downstream kinases like tofacitinib
(JAK2), GDC-0994 (MAPK1/3) and ibrutinib (BTK, LYN). This is
most likely because of the broad involvement of these kinases
in downstream cell signaling, thereby not limiting their involve-
ment to those cell lines carrying a mutation. Though INKA
scores are based on all four underlying analyses, correlation
between % potential kinase inhibition and log EC50 showed
similar results to the kinase-centric analyses, with correlation
clearest for those inhibitors targeting RTKs.

In Silico Validation of INKA-guided Drug Selection—To fur-
ther validate our INKA-guided drug selection in a wider panel
of drugs, we performed an in silico analysis of cell line sensi-
tivity for a panel of 30 KIs for which kinase inhibition data was

available in the proteomicsDB analytics toolkit, and for which
data on drug sensitivity was available in the GDSC (supple-
mental Table S4). Comparison of drug EC50s for KIs targeting
the INKA-identified driver kinase of an RTK-driven cell line
versus selected non-profile KIs showed that EoL-1 (p �

0.0001), Kasumi-1 (p � 0.038), MV4–11 (p � 0.0015),
MOLM-13 (p � 0.0006), KG-1 (p � 0.0075), and MM-6 (p �

0.0005) were significantly more sensitive to KIs targeting their
respective drivers (supplemental Fig. S5).

Though sensitivity of HEL to other JAK2-inhibiting KIs was
comparable to its response to tofacitinib, the JAK2-driven cell
line HEL did not respond significantly better to JAK2-inhibiting
drugs compared with other KIs (p � 0.2217), indicating that
targeting of JAK2 alone might not be enough in this cell line.
Analysis of RAS-mutant cell lines also showed variable results
with p values ranging between 0.2245 and 0.0248. Overall,
response to driver inhibition was less distinct for cell lines
without an RTK driver.

FIG. 6. Systematic analysis of ranked inferred kinases and their INKA metrics in relation to drug EC50 values. Percentage potential
kinase inhibition for quizartinib, ponatinib, ibrutinib, tofaitinib and GDC0994 was separately calculated for “Kinome”-, “Activation loop”-,
“PhosphoSitePlus” (PSP)- and “NetworKIN� (NWK)-based metrics of kinase activity as well as for the aggregate INKA score. This involves, for
a given metric/score, taking the ratio of the summed values of kinases in the target space of a kinase inhibitor and the summed values of all
kinases within a cell line. Log EC50 values for quizartinib, ponatinib, ibrutinib, tofaitinib and GDC0994 were compared with the percentage
potential kinase inhibition of these drugs for the AML cell lines using Pearson correlation.
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Phosphoproteomics Demonstrates FLT3 Activation in
FLT3-ITD-positive Patient Samples—To assess if identifica-
tion of hyperactive phosphorylated kinases is also feasible in
AML clinical samples that undergo a �1.5-hour purification
protocol, we analyzed AML cells of two FLT3-ITD-positive
AML patients. The first sample (Pt.1) was collected from a
66-year-old female AML patient carrying two FLT3-ITD vari-
ants, with an AR of 46% for the dominant variant, and an
NPM1 mutation (supplemental Table S7). Blast percentage
before MNC isolation using Ficoll-Paque was 97% as deter-
mined by immunophenotyping. The second sample (Pt.2) was
acquired from a 45-year-old female AML patient with 93%
blast cells before isolation. This sample also carried both an
FLT3-ITD (AR of 95%) and an NPM1 mutation.

Phosphoproteomic analysis of the two clinical samples
yielded 1089 phosphopeptides, with 880 phosphosites (768
class I) on 553 phosphoproteins, including 55 phosphorylated
kinases (supplemental Table S8). Despite a lower sample
input (5 mg versus 10 mg), phosphorylation of FLT3 was
detected at a similar order of magnitude as observed for the
FLT3-ITD mutant cell lines (supplemental Fig. S6, kinome
analysis). Additionally, a higher extent of FLT3 phosphoryla-
tion was detected for the patient with the highest FLT3-ITD
AR (Pt.2). INKA analysis of the two clinical samples indicated
activity of FLT3 in both samples (rank 6), which was sup-
ported by both kinase-centric and substrate-centric analyses
(Fig. 7A, supplemental Fig. S6), which is similar to the ranking
found in ITD-FLT3 AML cell lines (Fig. 3, supplemental Fig.
3C–S3E).

Overlapping phosphopeptide data of the patient samples
with that of the three FLT3-ITD-positive cell lines MV4–11,
MOLM-13 and Kasumi-6 revealed that nearly all phosphopep-
tides measured in the cell lines could also be identified in the
clinical samples (supplemental Fig. S7A). Furthermore, de-
spite the lower protein input, an additional 251 phosphopep-
tides were detected in the clinical samples. In total, 71 kinases
were identified in the combination of both data sets, and 42 of
these were detected in both cell lines and clinical samples
(supplemental Fig. S7B).

To further investigate the potential effect of sample proc-
essing on phosphorylation in clinical samples, we clustered
cell lines and patient samples together based on their AML
signaling pathway components (Fig. 7B, supplemental Table
S3). This analysis showed that most samples clustered by

FIG. 7. Phosphoproteome analysis of two FLT3-ITD positive
patients. A, INKA score ranking of kinases for each patient sample
identified FLT3 as highly active in both patients. Ranking of FLT3 was
comparable to that in FLT3-ITD-positive cell lines. FLT3 is indicated in
blue. B, Hierarchical clustering of all samples shows the similarity in
pathway phosphorylation between cell lines and clinical samples.
Samples clustered predominantly by their identified AML drivers.
Clustering is based on within-sample z-scores of summed phospho-
peptide counts for proteins that are part of the defined AML signaling
network (supplemental Table S3).
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their identified RTK drivers. Although the Pt.2 patient sample
clustered together with the FLT3 aberrant cell lines, the Pt.1
patient sample clustered in an adjacent sub-cluster together
with RAS-driven cell lines. These results underscore the sim-
ilarity in signaling patterns of cell lines and patient samples
and suggest that sample processing has minimal impact on
AML signaling.

DISCUSSION

In view of the discovery of frequent molecular aberrations in
RTKs in AML, and the limitations of mutation-based treatment
selection, there is a clinical need to predict drug sensitivity of
AML patients for kinase inhibitors. Phosphoproteomic ap-
proaches may provide an additional layer of functionally rel-
evant molecular information that is advantageous for effective
treatment selection. Here, as a first preclinical step, we have
explored application of phosphoproteomics coupled to INKA
analyses for KI selection for individual “AML “cases” in an in
vitro setting. To our knowledge, we provide the largest AML
pY-phosphoproteome data set to date (4853 phosphopep-
tides from 2279 phosphoproteins), thereby significantly ex-
tending previous findings of limited depth (�48–450 phos-
phopeptides) in 13 AML cell lines (16, 19, 29, 30), five of which
are included in our data set.

We have analyzed cellular kinome states by ranking kinase
phosphorylation levels in single samples and by cohort outlier
analysis. Most notably, our study revealed that INKA analysis,
based on quantification of kinase phosphorylation, both at the
level of the entire molecule and at the level of the activation
loop specifically, in combination with phosphosubstrate anal-
ysis, can serve to deduce aberrant kinase activation. Appli-
cation of single-sample INKA ranking to a panel of AML cell
lines enabled us to explore how different genomic kinase
aberrations translate into differences in the phosphoproteome
of six AML cell lines, and whether phosphoproteomics-based
INKA analysis could reveal their RTK hyperactivity. Further-
more, we were able to identify unexpected FLT3, PDGFR,
FGFR1, and MAPK pathway activity in ten more cell lines.
Analysis of two patient samples produced comparable results
to those of the cell lines, indicating that the elaborate sample
processing needed to purify AML blast cells from blood has
no major influence on clinical sample phosphorylation state
and that our method might be translatable to clinical samples.
Our data show that phosphoproteomics in combination with
INKA analysis can be used as a global readout of kinase
activation that can be harnessed to select KIs for inhibition of
identified targets. Potentially, this could also include elucida-
tion of kinase-driven resistance mechanisms as well as stim-
ulatory influences from the microenvironment that are missed
by mutation-based analyses.

Evaluation of INKA-guided drug selection in a panel of 30
KIs from publicly available data showed that RTK-driven cell
lines were significantly more sensitive to KIs targeting the
INKA-identified RTK drivers, confirming the ability of our

method to identify driver RTKs and the success of KI-based
treatment of RTK-driven cell lines. However, though INKA was
able to indicate activity of the mutant driver JAK2 and RAS
pathway-related kinases MAPK1 and MAPK3 in non-RTK-
driven cell lines, response to single KI inhibition of these
downstream hyperactive kinases was much less distinct from
selected non-profile kinase inhibitors. Possibly, monotherapy
is not enough for these cell lines. Interestingly, despite evi-
dence for only three kinases in its target space, the MEK
inhibitor trametinib caused the largest response by far in
HL-60, ML-2, and OCI-AML3 compared with other MEK in-
hibitors. Also, as the insulin receptor is ranked high (position
3–4) in ML-2, OCI-AML3, and THP-1, this receptor might be
an interesting co-target in these cell lines. Further research is
needed to reveal the mechanisms behind this variable re-
sponse and the success of combination treatment in these
cell lines.

Identification of kinase activity was not limited to the iden-
tification of driver kinases, as several other kinases showed
high INKA score ranking. These kinases were generally in-
volved downstream of RTKs such as SRC-family kinases, and
kinases functioning further downstream such as MAPK14,
GSK3A/B and CDKs. Though some components, such as
adaptor proteins, were more specific to cell lines with a
hyperactive RTK, kinases such as BTK, LYN, MAPK14,
GSK3A/B and CDKs were generally phosphorylated in all
cell lines and clinical samples, indicating a possible “house-
hold” function.

In the FLT3-ITD mutant cell lines, FLT3 generally scored
lower than or similar to several downstream components in
the INKA analysis. However, these cell lines still proved highly
responsive to FLT3 inhibition, indicating that pathway hierar-
chy is equally important in selecting potential driver kinases
for treatment. Indeed, despite the less striking difference in
INKA scores in the FLT3-ITD mutant cell lines, sensitivity to a
FLT3-targeting inhibitor was similar to that of the FLT3 point
mutant cell line MM6, where FLT3 scored exceptionally high.
The importance of targeting RTKs over other kinases was also
evident from our systematic analysis of kinase activity in
relation to drug EC50 values, reflecting the involvement of
RTKs as known drivers in AML. Co-activated kinases could
potentially be interesting for use in combination treatment.

Previous efforts in AML mainly involved global phosphopro-
teomics in conjunction with phosphosubstrate-based analyses
for kinase inference (17, 54, 55, 57, 58). For the phosphoty-
rosine-specific data set of AML phosphoproteomes presented
here, we showed the superior correlation of kinase-centric rank-
ing with drug EC50 values as compared with substrate-centric
ranking. Substrate-centric metrics do significantly contribute to
the performance of INKA scoring (35), however, and their low
correlation with drug EC50 values did not compromise the cor-
relation of the aggregate INKA scores with EC50. Whether these
results may be extrapolated to global phosphoproteomics data
dominated by serine and threonine phosphorylation remains to

Phosphoproteomics for Drug Response Prediction in AML

Molecular & Cellular Proteomics 19.5 895



be determined. On a further note, most KIs demonstrate at least
some degree of polypharmacology (see Figs. 4 and 5, and
supplemental Fig. S3). This may be considered an added ben-
efit, with one drug inhibiting multiple active kinases, and is
therefore taken into account in the analysis shown in Fig. 6,
where the target space of a drug is used to assess the relation
between drug EC50 and the magnitude of individual kinase
activity metrics for separate cell lines.

In summary, our study provides an in-depth global analysis
of the phosphotyrosine-based phosphoproteome in AML. We
demonstrated the potential of the INKA ranking strategy
based on kinase phosphorylation, supported by evidence of
substrate phosphorylation, to provide a readout for kinase
activation in single AML samples. Underscoring our ap-
proach, we functionally verified target potential of hyperac-
tive kinases in ten cell lines for which standard diagnostic
mutational analysis did not reveal any drivers. Our analysis
of two clinical samples illustrates, in principle, the feasibility
of kinase activity analysis in patient material. A more elab-
orate assessment of the phosphoproteome-guided drug
matching strategy in de novo and relapsed patient samples
will shed light on its potential for future clinical application in
guiding specific kinase inhibitor selection for individual AML
patients.
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