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Signaling networks process intra- and extracellular infor-
mation to modulate the functions of a cell. Deregulation of
signaling networks results in abnormal cellular physiolog-
ical states and often drives diseases. Network responses
to a stimulus or a drug treatment can be highly heteroge-
neous across cells in a tissue because of many sources of
cellular genetic and non-genetic variance. Signaling net-
work heterogeneity is the key to many biological pro-
cesses, such as cell differentiation and drug resistance.
Only recently, the emergence of multiplexed single-cell
measurement technologies has made it possible to eval-
uate this heterogeneity. In this review, we categorize cur-
rently established single-cell signaling network profiling
approaches by their methodology, coverage, and applica-
tion, and we discuss the advantages and limitations of
each type of technology. We also describe the available
computational tools for network characterization using
single-cell data and discuss potential confounding factors
that need to be considered in single-cell signaling net-
work analyses. Molecular & Cellular Proteomics 19:
744-756, 2020. DOI: 10.1074/mcp.R119.001790.

CELL-TO-CELL HETEROGENEITY IN THE SIGNAL TRANSDUCTION
RESPONSE

Signaling pathways mediate cell communication and coor-
dinate cellular functions such as proliferation, differentiation,
and energy metabolism (1-4). They are often regulated by
phosphorylation events mediated by kinases and phospha-
tases that result in the controlled activity of downstream ef-
fector molecules. Early research in signal transduction fo-
cused on delineating individual signaling pathways (or
cassettes of signaling events) and understanding the enzyme-
substrate relationships within these pathways. For example,
after the discovery that MAP kinases (mitogen-activated pro-
tein kinases) are serine/threonine kinases regulated by phos-
photyrosine signaling, identification of both upstream kinases
and downstream targets enabled the definition of “cascades”
of specific phosphorylation events that respond to distinct
cues for each MAP family member (5-7).

Although this reductionist view of signaling events helped
understand key principles of signal relay, it soon became ap-

parent that signaling pathways are rarely independent within
cells and living organisms, but are instead integrated. In general,
crosstalk between two signaling pathways produces an output
that differs from which would be triggered by only one of the
pathways, and involves direct or indirect connections between
the pathways (8, 9). For example, an enzyme in one pathway
may directly phosphorylate and regulate a component of an-
other pathway. Alternatively, indirect crosstalk can, for example,
involve the transcriptional output of one pathway controlling the
expression of components of another pathway (8). Together
with positive and negative feedback loops within pathways,
these crosstalks can fine-tune or amplify signal in a context-de-
pendent manner, resulting in a composite output (10).

Although they remain essential to the understanding of
signaling, bulk biochemical studies of pathways and net-
works, for example using global phosphoproteomics profiling
(11-13), also do not account for cell-to-cell variability. At the
single-cell level, network responses can be highly variable
depending on cell type and on environmental conditions.
These differences are because of many sources of genetic
and non-genetic heterogeneity in individual cells (Fig. 1).

Genetic heterogeneity is often explained by mutations that
affect the present and functionality of proteins and causes in-
herited phenotypical variability in a population of cells (Fig. 1A).
Mutated signaling proteins may reshape signaling network
structures and result in different response dynamics (14). In
cancer, genomic instability leads to the accumulation of muta-
tions that results in discrete genetic abnormities that further the
signaling response heterogeneity in cells from the same tumor
(15).

Non-genetic heterogeneity is known as differential pheno-
types in cells sharing the identical genome. Causes of non-
genetic heterogeneity include epigenetic regulation and so-
called intrinsic and extrinsic factors. Intrinsic heterogeneity
denotes the inherent stochasticity of biomolecules present in
a cell (16) that may affect chemical processes involved in the
life cycles of an mRNA or a protein. Extrinsic heterogeneity is
generated by factors that modulate the transcriptome and the
proteome of cells in an ununiformed manner. Variables such
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as concentration of a stimulus (identities of neighboring cells),
extracellular matrix stiffness (17), local crowdedness and spa-
tial constraints (18, 19), nutrient and oxygen gradients (20),
cell cycle and cell volume (21) integratively provide heteroge-
neous signaling network responses in isogenic cells (Fig. 1B).

The signaling network heterogeneity resulting from these
factors is crucial for biological processes, such as cell differ-
entiation and tissue development (22) and the maintenance of
a functional bio-system (23). During the progression of many
diseases, including cancer, the signaling network heteroge-
neity also causes an increase in phenotypical complexity that
may reduce the efficacy of therapeutic interventions (24). For
decades, these single-cell-level variances could not be sys-
tematically profiled because of technical limitations (Fig. 1C).
Our understanding of signaling network behaviors in diseases
is therefore often incomplete. The recent emergence of mul-
tiplexed single-cell measurement technologies has made it
possible to profile signaling networks cell-by-cell. This allows
to uncover the origin of genetic or non-genetic heterogeneity
(25, 26), to analyze the variation of signaling networks affected
by this heterogeneity (27, 28), and to evaluate downstream
transcriptional and phenotypic effects induced by modulation
of a signaling pathway or network (29, 30).

THE SINGLE-CELL ERA OF SIGNALING NETWORK ANALYSIS
Single-cell Analysis with High Multiplexity

Single-cell analysis has been performed since the invention
of the microscope. Conventional microscopic methods are
used to visualize cell structure, assess protein expression levels,
and study cellular and subcellular spatial properties. These
studies are facilitated by genetic or immunological fluorescent
protein tagging methods (31). Because of the limited multiplex-
ing capacity of conventional microscopy, independent experi-
ments using different batches of cells are generally required,
resulting in the loss of relationships between assessed markers.
This makes it challenging to study signaling mechanisms at the
network level using conventional microscopy. The era of ‘omics
has made it possible to simultaneously measure transcriptomic
and proteomic information (32). Protein phosphorylation, one of
the most critical post-translational modifications for signaling
transduction, can be globally analyzed with phosphoproteomic
approaches (33). The lack of sensitivity makes it challenging to
apply these methods to single-cell measurements, however.
Very recently, novel approaches that enable multiplexed anti-
body detection capacity (34-39) and signal amplification (40—
42) have made it possible to explore cellular phosphorylation

Molecular & Cellular Proteomics 19.5

745



Profiling Cell Signaling Networks at Single-cell Resolution

QrPe9Np o=

Non-spatial single-cell analysis

Spatial single-cell analysis

_ [HCWCCe

Live-cell imaging

Mass Cytometry

Refelectron

=T—9¢c oo|e—m=i/S
Pusher

imaging

Detector:

Single-cell sequencing

Cells Oil

Beads @ ©

@ @ 9o 0o i} o %\ .
]
Round 2
Round 3
Round 4
Buffer 1 e
Round n

Mass spectrometry-based

Sequential fluorescence imaging

:. | Round 1 O l
)

Kinase activity reporter

Fic. 2. Approaches to analyze cell signaling networks at single-cell resolution. Information on signaling network states in individual cells
can be analyzed in cell suspension with mass cytometry, which allows simultaneous measurement of about 50 markers such as phospho-
rylation levels of signaling proteins and markers of cell phenotype. Single-cell RNA sequencing technologies allow transcriptomics profiling that
can be used to infer cell signaling states. Multiplexed cell signaling profiling can be performed in situ with mass spectrometry-based imaging
methods or with sequential immuno-based fluorescence imaging; these methods preserve spatial information. Live-cell imaging methods (e.g.,
kinase translocation reporters, FRET) can be used to monitor dynamic signaling behaviors in real time with single-cell resolution, although with

lower multiplexing capability.

landscapes and signaling regulatory network structure cell-by-
cell in heterogeneous samples. Here we summarize currently
available approaches for signaling network analysis at single-
cell resolution (Fig. 2 and Table ).

Non-spatial Single-Cell Analysis Based on Immunological
Approaches

Flow Cytometry—Flow cytometry uses fluorophore-la-
beled antibodies to detect and quantify protein abundance
in individual cells. It has been used to monitor relationships
between multiple phosphorylation sites and correlations be-
tween phosphorylation states, functional readouts, and lin-
eage-specific markers in complex populations of cells (43).
With the capability to simultaneously measure ~10 (up to 30

in more advanced setups) phosphoproteins and phospholip-
ids, flow cytometry-based single-cell analysis has recently
been combined with inhibitor perturbation assays enabling
the inference of signaling circuits and the reconstruction of
signaling networks (44). The development of fluorescent cell
barcoding has greatly increased the throughput of flow cy-
tometry-based intracellular signaling analysis. It is now rou-
tinely implemented as a screening tool to quantify cellular
responses to kinase inhibitors in individual cell types in het-
erogeneous populations (45, 46). However, because of the
overlap of the fluorescent spectra of the fluorescent dyes
used to label antibodies, the number of markers that can be
analyzed simultaneously by flow cytometry remains limited,
and signaling networks can only be sparsely or partially inter-
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rogated using this technique. Nevertheless, with the advan-
tages of throughput and accessibility, flow cytometry is one of
the most used methods for single-cell signaling assessments
in research and diagnosis (47, 48).

Mass Cytometry—Mass cytometry is based on inductively
coupled plasma time-of-flight mass spectrometry and a sin-
gle-cell sample introduction system (34). In mass cytometry,
metal isotope-tagged antibodies are used to label proteins or
protein modifications in cells. Metal tags allow multiplicity
considerably higher than possible with flow cytometry. During
the mass cytometry measurement, each stained single cell is
vaporized, atomized, and ionized. The metals in the formed
ion cloud are quantitatively analyzed by the mass spectrom-
eter to yield a high-dimensional single-cell proteomic readout
(Fig. 2, left panel) (34, 49). A mass cytometry analysis simul-
taneously quantifies up to 50 cell-surface or intracellular
markers, including phosphorylation sites, with high analytical
throughput of around 500 cells per second and millions of
events per sample. A mass-tag barcoding strategy allows
simultaneous measurement of hundreds of samples, eliminat-
ing batch effects that confound conventional measurements
and reducing the workload (27, 50, 51).

The mass cytometry does not have sensitivity superior to
flow cytometry, but cell auto-fluorescence, which interferes
with quantification of a fluorescently labeled marker in flow
cytometry, is not an issue with mass cytometry (34). Although
minor spill-over between channels of the mass cytometer
occurs because of metal impurity, mass overlap, and oxida-
tion (52), these events are manageable with proper experi-
mental design and can be removed computationally (53).

Mass cytometry has been used in drug screening (50).
Relationships between all pairs of measured phosphorylation
sites can be computed to infer network responses to a stim-
ulus (54) or to trace the network reshaping through a pheno-
typical transition (55). When coupled to a transient overex-
pression technique, mass cytometry-based signaling profiling
enables assessment of how intracellular signaling states and
dynamics depend on protein abundance. These types of ex-
periments have revealed novel signaling mechanisms in-
volved in cancer progression and drug resistance (27, 56).

Single-cell Immuno-sequencing—As only about 50 metal
isotopes are routinely used in mass cytometry, deep profiling
of phosphoprotein networks is not possible. Two recently
developed techniques, REAP-seq and CITE-seq, barcode an-
tibodies with oligonucleotides to increase multiplexing. These
methods allow detection of targeted proteins by single-cell
sequencing simultaneously with quantification of RNA tran-
scriptomes in the same cells (57, 58). More than 10 million
distinct barcodes can be generated with a 12-mer oligonu-
cleotide (4'2), making the measurable parameters in this type
of methods virtually unlimited. REAP-seq and CITE-seq have
been implemented for cell-surface marker staining, and it is
expected that these techniques will soon be used at the
intracellular level for comprehensive single-cell signal profil-

ing. Yet, sequencing-based approaches suffer from high
technical variance and are therefore less quantitative than
flow and mass cytometry methods. Experimental cycles are
also slower in sequencing methods compared with flow and
mass cytometry, making optimizations more time-consuming.

Lab-on-Chip and Microfluidics — Lab-on-chip technologies,
such as single-cell barcode chips (SCBCs) and single-cell
Western blotting (scWesterns), are more sensitive than cyto-
metric methods and allow detection of low-abundance pro-
teins (59-61). These approaches have been applied to re-
solve single-cell signaling network variations and functional
heterogeneity (60, 61). Investigations of single-cell signaling
kinetics can also be performed using microfluidic systems
that allow fine time resolution and accurate dose control of the
profiled stimulus (62).

Non-spatial Single-cell Analysis Based on ‘Omics
Approaches

Immunostaining-based techniques allow multi-dimen-
sional deep profiling of signaling networks at single-cell
resolution, but also face three main limitations: First, the
selection of measured targets is based on prior knowledge,
so these methods are not suitable for exploratory studies.
Second, not all targets of interest are measurable because
of the high dependence on antibody availability. Third, given
different antigen-binding affinities, quantifications cannot
be compared across antibodies. Fortunately, the develop-
ment of several antibody-free ‘omics approaches has pro-
vided complementary techniques that do not suffer from
these limitations.

Single-cell Proteomics by Mass Spectrometry—A big chal-
lenge for single-cell mass spectrometry is the comparably low
sensitivity of the technique, especially for low abundance
proteins, which is because of sample loss during processing,
the absence of amplification approaches for proteins, and
limitations to instrument sensitivity. Advances in sample
processing and alternative strategies to overcome these lim-
itations have been introduced in the past few years. For
instance, SCoPE-MS (Single Cell ProtEomics by mass spec-
trometry) uses labeling with tandem mass tags to embed
single mammalian cells in hundreds of carrier cells to separate
the identification (from multiple “carrier” cells) from quantifi-
cation of proteins in single cells, enabling quantification of
over 1000 proteins per single cell (63). A second-generation
version of this method SCoPE2 that includes optimized sam-
ple preparation steps was used to assess over 2,000 proteins
in 356 single cells within 85 h (64). This field of research is very
active, and further advances in this type of approach and their
adaptation to profile the phosphoproteome in single cells are
expected to help push the boundaries of single-cell proteom-
ics. Nevertheless, the low throughput and high cost are likely
to remain significant limitations.

Single-cell Transcriptomics and Epigenomics— Single-cell
sequencing techniques (40, 65) do not directly measure pro-
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tein abundance and cannot detect functional protein modifi-
cations that reflect signaling network activation. However,
with the strength to quantify global RNA expression and iden-
tify whole-genome transcriptional regulation landscapes,
these approaches can be used to infer transcriptional regula-
tory networks and the dynamics of signaling pathways in
response to a stimulus (Fig. 2, left panel). For example, single-
cell RNA-seq revealed a paracrine signaling-required repres-
sion of the inflammatory program (66). Single-cell epigenomes
can now be measured with ATAC-seq, which sequences
transposase-accessible chromatin (67, 68). By coupling sin-
gle-cell transcriptomics and epigenomics analyses, the net-
work of transcriptional regulation during stem cell differentia-
tion was profiled, and crucial signaling pathways during the
transition from quiescence to proliferation and differentiation
were identified (69, 70).

Spatial Single-cell Analysis Based on Immunological
Approaches

Spatial variables (e.g. cell contacts and protein localiza-
tions) might act as crucial determinants during the processing
of cellular signaling information. These properties cannot be
assessed with the single-cell analytical methods described
above as cell detachment or tissue dissociation is required for
sample acquisition. Imaging-based cytometry and ‘omics
techniques can preserve cellular spatial information and are
also capable of resolving subcellular details of protein local-
ization. The additional spatial dimension gained with these
approaches provides clues to sources of cellular heterogene-
ity and facilitates the profiling of signaling network behaviors.

Sequential Fluorescence Imaging— Spatial information on
protein localization and tissue organization can be acquired
through fluorescence microscopic measurements of cell
monolayers or tissue sections. Fluorescence spectrum over-
lap limits the number of channels that can be detected in a
simultaneous measurement, however. To achieve the high
multiplicity required for signaling network profiling, technolo-
gies have been developed that allow sequential imaging of the
same specimen without influencing antigen abundance or
tissue structure (Fig. 2, middle panel). The first generation of
sequential imaging approaches applies fluorophore-labeled
antibodies to detect targets of interest (37, 38, 71, 72). Spe-
cifically, MELC implements photo-bleaching after each round
of antibody staining and imaging cycle to remove the residual
fluorescence (71). Alkaline oxidation chemistry is used in a
recently developed method called MxIF to chemically inacti-
vate the fluorescent dyes after imaging (38, 73). CyclF com-
bines oxidative inactivation and enzymatic antibody cleavage
for sequential imaging (37). Multiplexed imaging can be also
performed with indirect immunofluorescence, which does not
require special antibody conjugation and allows amplification
of signal from low-abundance markers using secondary anti-
bodies (72). Experiments that rely on sequential staining and

bleaching can take several days (37, 38, 72), tissue properties
may change and sample handling can introduce error.

Second-generation sequential imaging approaches employ
DNA-labeled antibodies (74, 75). Unlike methods that require
time-consuming rounds of antibody staining, DNA-labeled
antibodies are simultaneously applied to the specimen. The
DNA oligonucleotides conjugated to the antibodies serve as
barcodes that can be sequentially detected by fluorophore-
labeled dNTPs in CODEX (75) or by fluorescent probes di-
rectly and indirectly linked to complementary DNA sequence
in Exchange-PAINT (74) and immune-SABER (42). These ap-
proaches allow profiling of spatial signaling heterogeneity and
reveal tissue organization-related network variations (38, 76).
The capability for multiplexed super-resolution imaging in Ex-
change-PAINT enables the assessment of signaling protein
interactions and clustering effects (77) but is time-consuming.

Challenges shared by all fluorescence-based methods are
potential sample autofluorescence, which can be especially
high in formalin-fixed, paraffin-embedded samples.

Mass Spectrometry-based Immunological Imaging Ap-
proaches—In imaging mass cytometry (IMC), all antibodies
are applied simultaneously to stain tissue samples. A laser is
then used to ablate antibody-stained samples spot by spot. A
mixed argon and helium stream then transports the ablated
materials into a mass cytometer. Proteins and protein modi-
fications, such as phosphorylation, are quantified, preserving
subcellular level (1 um?®) spatial information (Fig. 2, middle
panel) (36, 78). IMC can be used to analyze proteins (including
phosphoproteins) and RNAs simultaneously enabling, for ex-
ample, analysis of correlations between transcriptional control
and spatial signaling properties (79). Multiplexed ion beam
imaging (MIBI), like IMC, uses metal-labeled antibodies for
tissue staining. In MIBI, an oxygen duoplasmatron primary ion
beam is used to liberate the antibodies to generate the sec-
ondary ion beam. Subsequently, a magnetic sector mass
spectrometer or time-of-flight is used to detect the isotope
abundances from the second ion beam from every pixel of
analyzed sample (35, 80). The advantages of MIBI are that the
same sample can be scanned multiple times and that the
resolution can achieve 10 nm. The benefits of all mass spec-
trometry-based immunological imaging approaches are that
samples can be stored indefinitely, that sample autofluores-
cence does not interfere with quantification, and that the
dynamic range is orders of magnitude higher than in fluores-
cent-based approaches.

Spatial ‘Omics in Single-cell Analysis

MALDI-based Imaging—MALDI-based imaging mass spec-
trometry can be used to detect biomolecules, including lipids,
metabolites, peptides, and proteins (81). Although MALDI-
based imaging is mainly applied at tissue-level resolution, it
has been used for unbiased quantitative and spatial profiling
of the signal-mediating lipidome and metabolome (82) and in
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systemic assessments of disease states and drug responses
(81, 83). A novel MALDI-based tissue imaging platform was
recently developed that, because of optimized ionization ef-
ficiency, has a resolution at the subcellular level of 5 um per
pixel (84). Using a transmission geometry ion source, 1-um
resolution can be achieved with MALDI-based imaging sys-
tems, although at compromised sensitivity (85).

Spatial Transcriptomics—Several spatial transcriptomics
approaches have been established based on various tech-
niques, including fluorescent in situ sequencing (FISSEQ) (86),
multiplexed MERFISH (41), and spatial barcoding (87). Data
from these experiments can be used to infer signaling path-
way activation and cell-to-cell communication. Spatial tran-
scriptomics are also powerful methods for evaluating remote
cell-signaling control mechanisms because mRNAs are used
as expression readouts for secreted ligands (e.g. cytokines
and chemokines) that are difficult to detect in proteome-
based analyses (79).

Live-cell Imaging

It is important to note that cell signaling transduction is a
dynamic process that cannot be fully understood from snap-
shot measurements of transient network states. Information
along the time dimension, in addition to the multiplexed sig-
naling profiling, is therefore necessary to systematically de-
code the causality of signaling behaviors and to characterize
network kinetics (88). As signaling events are mainly present
intracellularly, they can be detected only after a fixation and
permeabilization procedure that disrupts the signaling dy-
namics through time. Conventionally, serial snapshot informa-
tion is acquired to enable the rebuilding of time dimension and
the computational reconstruction of signaling trajectories (56,
89). Technically, these approaches do not fully resolve the
transient events of signaling processing, and the computation
inference becomes complicated when measured signaling
behaviors that are highly heterogeneous. Several live-cell im-
aging methods exploit protein physical properties (e.g. kinase
subcellular localization and protein proximity) to monitor sig-
naling events through time (28, 90-95). Although these meth-
ods are not yet highly multiplexed, capturing information on
central signaling nodes through time allows tracing the path-
way and network behaviors.

Fluorescence Resonance Energy Transfer—Fluorescence
resonance energy transfer (FRET) experiments are based on
energy transfer between two proximate fluorophores that
leads to a shift of the emission spectrum that is captured by
microscopy. FRET can be used to monitor the proximity of
interactive signaling proteins (95) or as a biosensor for phos-
phorylation events to indicate pathway activity in real-time
(Fig. 2, right panel) (28, 94). FRET-based analysis character-
izes single-cell temporal signaling states that can be corre-
lated with functional readouts such as proliferation and differ-
entiation. Given the broad fluorescent spectrum occupancy

from each FRET sensor, multiplexing of FRET experiments to
study complex signaling network behaviors is challenging.
Several approaches to increase FRET multiplexing have been
developed that rely on careful selection of fluorophores or
image decoding and error propagation schemes. Up to six
protein interaction/phosphorylation events have been meas-
ured simultaneously in a multiplexed FRET setup (96-98).
FRET biosensors used in combination with a multi-parameter
imaging platform have been used to separately monitor the
activities of 40 signaling proteins in individual cells; the data
generated were used to infer network dynamics comprehen-
sively (92).

Activity-based Reporters—Many kinases, such as ERK, are
translocated to the nucleus once activated. Thus, fluores-
cently-labeled versions of these proteins can be used to track
signaling activities in real-time (90, 93, 99). Studies of kinase
nuclear translocation at single-cell resolution revealed consid-
erable heterogeneity in signaling dynamics (90) and noise-
facilitated transcription output (93). A novel category of
biosensors, known as kinase translocation reporters, was de-
veloped to convert phosphorylation into a nucleocytoplasmic
shuttling event that allows monitoring of the activities of key
signaling mediators including JNK, p38, and ERK simultane-
ously to identify temporal signaling crosstalk between the
pathways (Fig. 2, right panel) (91). An important strength of
these live-cell imaging technologies is the preservation of
natural cellular states. The same imaged samples can be
re-analyzed using other compatible single-cell methods. For
instance, a study has coupled NFkB nuclear translocation
analysis with single-cell RNA-sequencing to reveal three dis-
tinct cell subpopulations with different transcription profiles
(29).

Each of the approaches discussed above has its advan-
tages and limitations, as summarized in Table |. When select-
ing a single-cell method to study cell signaling networks, we
suggest that experimentalists first accurately phrase their
question and then assess whether it is necessary to acquire
spatial or dynamics information, and then consider the factors
of multiplexing, sensitivity, throughput, and cost.

COMPUTATIONAL METHODS FOR SIGNALING NETWORK ANALYSIS
USING SINGLE-CELL INFORMATION

Multiplexed measurements allow systematic assessment of
network states and dynamics in one single experiment in
which the multivariate dependences and high-dimensional
distributions are precisely preserved. Network responses to
perturbations can be visualized at the single-cell level using
single-cell signaling fold changes (100), although the interpre-
tation of signaling causality can be indirect. Recently devel-
oped computational approaches apply statistical inference to
reconstruct signaling network structure (44, 54, 101, 102) and
use mechanistic models to characterize network dynamics
(108, 104).
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For the reconstruction of signaling networks, Bayesian
modeling has been applied in flow cytometry measurement of
11 intracellular phosphorylation sites with individual treat-
ments of nine small-molecule inhibitors. Exploiting natural
cellular variability and the re-shaping of multivariate distribu-
tions upon perturbations, a probabilistic network was assem-
bled that replicates known pathway relationships and predicts
novel network causalities (44). Alternatively, correlation-based
statistics can be used to quantify relationships and depen-
dences between measured parameters and are therefore
widely used to assess the strength of signaling circuits and
infer network structure and dynamics in both flow cytometry
and transcriptomics data (105, 106).

In complex signaling regulatory networks, relationships be-
tween pairs of signaling proteins are often dependent on
multiple parameters and non-monotonic in shape. Correlation
analysis often fails to reflect the true strength of these rela-
tionships. Based on information theory, methods have been
developed that use mutual information (MI) and maximal in-
formation coefficients (MIC) to quantify the relationships be-
tween two variables independently of their linearity and con-
tinuity (107, 108). A more advanced measure, termed DREMI,
has been recently developed to quantify mutual information in
a density-independent manner; this removes the bias of cell
distribution. Networks reconstructed and quantified by
DREMI recapitulate well-known signaling processes (54). In
combination with experimental methods for tracing biological
time during a cell transition (109), DREMI revealed signaling
network reprogramming during cellular phenotypical shifts
(55). Another density-independent measure, called binned
pseudo-R? (BP-R?), applies classical R? statistics. The BP-R?
score reflects the strengths of signaling relationships in
steady-state and dynamic studies with high accuracy (56).

Mechanistic models can reveal biochemical insights into a
given signaling network and the functional heterogeneity
within a cell population. Ordinary differential equations (ODESs)
are commonly applied when mass action kinetics analyses
are used to determine the concentration of signaling nodes
over time. ODE models have been used to study network
features such as feedback loops (110). A pilot single-cell
analysis used ODE-constrained mixture modeling to study the
variability of the response of phosphorylated ERK to stimula-
tion with NGF in PC12 cells; two cell subpopulations with
differential signaling responses caused by varied receptor
abundance were identified (103). In another study, a hierar-
chal population model was developed, in combination with
the single-cell modeling, to explain multiple levels of hetero-
geneity in NGF-treated PC12 cells (104).

ACCOUNTING FOR CONFOUNDING FACTORS

Single-cell technologies have enabled characterization of
differential signaling behaviors in cell populations that are
masked by conventional batch measurements. However,
these advantages also come with the challenge that multiple

levels of confounding factors can bias the single-cell readouts
(21, 111-117). Corrections for these potential confounding
factors must be implemented in single-cell data analyses.

One of the most critical biological confounding factors is
the cell cycle, as different signaling and transcriptional pro-
grams are active during each cell-cycle phase; these pro-
grams regulate events such as protein synthesis and DNA
replication. Phosphorylation of signaling proteins is involved
in cell-cycle regulation, and phosphoprotein levels vary
through the cell-cycle progression (118, 119). For single-cell
analysis, it is essential to distinguish variation because of
cell-cycle stage from other sources of heterogeneity. Multiple
computational methods are now available to account for cell-
cycle effects in single-cell transcriptomic data, mass cytom-
etry-based phosphorylation network analysis, and micro-
scopic imaging analysis (21, 112, 114, 119).

As a signaling network is an integration of biochemical
reactions, the rate of signal transduction is determined by the
signaling protein concentration (103, 120). Protein concentra-
tion cannot be directly inferred from abundance measure-
ments using the single-cell analysis techniques described
here, as the volume is unknown. Studies have confirmed that
cell size confounds single-cell measurements because size
linearly correlates with most measured mRNA or protein or
protein modification levels (21, 115). To account for the cell
size, a method has been developed to experimentally esti-
mate cell size based on total protein measurement. By nor-
malizing the measured single-cell parameters to the cell size,
relative concentration information can be gained (21).

The tissue dissociation protocol can also confound single-
cell measurements. Both mechanical force and enzymatic
treatment can trigger activation of stress signaling in cells,
which will result in changes in the single-cell transcriptome
and proteome (117). Minimizing the protocol length has been
shown to reduce these potential artifacts (56). Alternatively, an
in situ fixation approach can be used to minimize alterations in
cellular phenotypes in tissue samples prior to analysis (121).

CONCLUSION AND PERSPECTIVE

Signaling networks are centrally involved in information
processing necessary for proper control of cell functions and
cell fate. Deregulated signaling often leads to the emergence
of disease. Recent advances in systems biology research
have identified multiple layers of variability that contribute to
heterogeneous signaling network states and dynamics. Im-
portantly, the essential role of signaling network heterogeneity
in the initiation and development of diseases, such as cancer,
has been revealed. Many recently developed techniques are
now capable of quantifying signaling events and network
behaviors at the single-cell level.

Currently, up to 50 phosphorylation sites can be simultane-
ously quantified in mass cytometry-based single-cell proteom-
ics analyses (50, 56). Imaging mass cytometry and several se-
quential imaging approaches provide spatial information in
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addition to signal profiling (36, 37, 74). These methods are ready
to be used in systematic inference of signaling network behav-
iors in tissues at single-cell resolution (103, 104). Meanwhile,
transcriptomics can be measured at the single-cell level to
indicate activities of particular signaling pathways. Integrated
with spatial information, transcriptomic methods have already
furthered our understanding of paracrine signaling regulation,
which involves secreted signaling proteins (40, 66, 86).

Technical advances have increased the multiplexity of an-
tibody-based single-cell measurements. A caveat remains
that suitable antibodies do not exist for many membrane-
localized receptors or for many intracellular phosphorylation
sites. Single-cell transcriptomic approaches can be used to
assess MRNA expression globally and in an unbiased man-
ner. Although these methods are prone to technical noise,
making reliable detection of low-abundance mRNAs challeng-
ing, computational strategies have recently been described
that mitigate this issue (122-125).

Integration of single-cell signaling characterization with
multi-omics profiling will lead to an understanding of signaling
circuits as well as feedback mechanisms between signaling
pathways and transcriptional and epigenomic programs (79,
126, 127). Using oligonucleotide-tagged antibodies (57, 58),
phosphorylation sites can be measured in combination with
transcriptomic sequencing in the same cells. Spatial ap-
proaches, including imaging mass cytometry, now also allow
simultaneous measurement of protein and RNA (79) and can
be applied to answer questions regarding crosstalk between
the regulators of the phosphoprotein network and transcrip-
tion and the involvement of spatial factors, such as cell-to-cell
contacts and protein localization, in such networks.
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