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Terrestrial photosynthesis is regulated by plant phenology and
environmental conditions, both of which experienced substantial
changes in recent decades. Unlike early-season photosynthesis,
which is mostly driven by temperature or wet-season onset,
late-season photosynthesis can be limited by several factors and
the underlying mechanisms are less understood. Here, we analyze
the temperature and water limitations on the ending date of pho-
tosynthesis (EOP), using data from both remote-sensing and flux
tower-based measurements. We find a contrasting spatial pattern
of temperature and water limitations on EOP. The threshold sep-
arating these is determined by the balance between energy avail-
ability and soil water supply. This coordinated temperature and
moisture regulation can be explained by “law of minimum,” i.e., as
temperature limitation diminishes, higher soil water is needed to
support increased vegetation activity, especially during the late
growing season. Models project future warming and drying, espe-
cially during late season, both of which should further expand the
water-limited regions, causing large variations and potential
decreases in photosynthesis.
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Global change and human management have dramatically
increased vegetation growing-season length and peak-

season vegetation activity during the past several decades
(1–4). The resultant greening of the Earth also increased the
carbon uptake by terrestrial ecosystems, offsetting one-third of
anthropogenic CO2 emissions (5) and providing negative feed-
backs to global warming (6). However, recent studies indicate
emerging negative effects of warming on ecosystem carbon se-
questration (7, 8), making it questionable whether the increase in
terrestrial carbon uptake of the past several decades will con-
tinue. Vegetation photosynthesis, especially during the late
growing season, has large variations and high sensitivity to dif-
ferent limiting resources and plays an important role in the
global carbon cycle (9, 10). The prediction of late-season pho-
tosynthesis by Earth system models faces large uncertainty, as it
is affected by conditions not only during the late growing season
but also by legacy effects from previous seasons or years (11, 12).
For example, if warming allows for earlier and more rapid veg-
etation growth in spring, this could draw down soil moisture,
potentially resulting in a lagged adverse effect on plant photo-
synthesis in the late growing season (12, 13). Complex changes in
vegetation dynamics such as changes in, and responses to,
growing-season length are large sources of uncertainty in future
projections of ecosystem carbon uptake and functioning, as the
coupled relationship between vegetation and soil moisture is
notoriously challenging to model (14, 15).
Compared with plant phenology derived from remotely sensed

greenness indices, plant physiological phenology (i.e., phenology
based on photosynthesis) is more sensitive to the environment
due to the additional physiological regulation (16), as well as
changes in leaf pigment concentration and canopy structure that
are not effectively captured by the conventional normalized

difference vegetation index (NDVI) (17, 18). Factors causing the
variations of the late growing-season photosynthesis or ending
date of photosynthesis (EOP) can therefore also be regarded as
limiting factors to ecosystems productivity. Nutrients, photope-
riod, and several other factors can also play a role in regulating
physiological phenology, but they often act on longer time scales
and are not considered here. Previous studies mostly focus on
the effect of warming on phenology, especially in the northern
middle to high latitude (9, 12). The effect of water limitation,
however, is less well understood. Considering the global warming
and potentially drying trend predicted by Earth system models,
water limitation may become increasingly important as the
temperature limitation diminishes (19).
Due to limited direct observations, especially of photosyn-

thesis and soil moisture, quantifying the environmental limita-
tions on EOP, when water resources can be limiting, has proven
challenging (14). Successful retrievals of sun-induced chlorophyll
fluorescence (SIF) from satellite observations now provide an
effective way to observe plant photosynthesis at the global scale
(20). SIF is emitted during the light reaction of photosynthesis
and is strongly linked to the energy absorption by chlorophyll
and successive partitioning to photochemical carbon fixation
(21). Leaf- and canopy-level observations have revealed a strong
and near-linear relationship between remotely sensed SIF and
in situ ecosystem photosynthesis, especially at weekly to seasonal
time scales (22). Here, we used a machine learning-reconstructed
contiguous SIF (CSIF) (23) dataset as a proxy of ecosystem gross
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primary production (GPP) to investigate the temperature and
water limitations and their interactive effect on the EOP. The
machine-learning algorithm is trained on more than 1.8 million
paired samples from Orbiting Carbon Observatory 2 (OCO-2)
level 2 SIF and colocated Moderate Resolution Imaging Spec-
troradiometer (MODIS) reflectance data during 2015 to 2016.
This reconstructed CSIF dataset is demonstrated to well capture
the interannual variability of OCO-2 SIF even for years without
training samples, and has a global continuous coverage with high
temporal frequency (4 d), low uncertainty, and a longer duration
(starting in 2001) than the original product (for example, OCO-2
SIF has a 16-d revisit cycle, starting from October 2014) (Methods
and SI Appendix, Text S1 and Fig. S1). Comparisons with site-level
eddy-covariance observations demonstrate rather high accuracy in
capturing the drought responses and spatial and interannual var-
iability of EOP (R = 0.96 and 0.77 for all site-year and interannual
anomalies, respectively; SI Appendix, Figs. S2 and S3). We also
note that evergreen needleleaf forest has less-than-optimal per-
formance as compared with other ecosystem types; this should

have limited effects on our analysis and has been discussed in
detail in SI Appendix, Text S1.

Results and Discussion
Precipitation and Temperature Limitations on EOP. We first derive
EOP from CSIF based on a weighted spline-fit algorithm with a
fixed per-pixel threshold (Methods); its correlations with average
temperature and precipitation are then calculated for different
preseason lengths (15, 30, 60, 90 d). The preseason is defined as
a time period right before the multiyear average EOP. Fig. 1
shows the strongest EOP–climate correlation among these pre-
season lengths. EOP in both high-latitude and low-latitude cold
regions (e.g., Qinghai Tibet Plateau) correlates positively with
pre-EOP temperature and negatively with pre-EOP precipitation,
i.e., higher temperature and lower precipitation correspond to
delayed EOP. In low-latitude regions or arid ecosystems, the
correlations are reversed. These relationships are robust regard-
less of the climate datasets used (European Centre for Medium-
RangeWeather Forecasts (ECMWF) Re-Analysis (ERA)-Interim
or remote sensing-based; Methods) (Fig. 1). Similar patterns can
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Fig. 1. Correlation between CSIF derived EOP and climate variables. (A and B) Correlation with ERA-Interim pre-EOP temperature and precipitation. (C and
D) Correlation with pre-EOP mean daily LST from MODIS and precipitation from GPCP. The 0.1, 0.05, and 0.01 significance level of correlation correspond to
±0.41, ±0.48, and ±0.61 for ERA-Interim (2001 to 2017) and ±0.46, ±0.53, and ±0.66 for remote sensing-based datasets (2003 to 2016). Correlations are
calculated for each climate variable with different preseason lengths (15, 30, 60, 90 d), and only the strongest correlation is shown for each pixel in the maps.
Insets show the frequency of the preseason lengths for each correlation category (“–*,” “–,” “+,” and “+*” for significant negative, negative, positive, and
significant positive, respectively), with darker color indicating longer preseason length. (E) MAT from ERA-Interim during 2001 to 2017. (F) One-month pre-
EOP average SSM from SMAP during 2015 to 2018. Cropland, tropical rainforest with weak seasonality, and barren area are masked and shown as white.
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also be found if we use EOP derived from near-infrared re-
flectance of vegetation (NIRV) instead of CSIF (SI Appendix, Text
S2 and Fig. S4). We also calculate the partial correlations between
CSIF-derived EOP and radiation, temperature, and precipitation,
with the other variables fixed (SI Appendix, Fig. S5). The partial
correlations are weaker than the simple correlations, but the
spatial patterns are similar.
We regard the variables with positive correlations to be the

limiting factors for ecosystem productivity in the late growing
season, since for most cases, increase in these resources is ben-
eficial. Temperature may negatively impact photosynthesis when
it is above an optimal value, but the average and maximum
(during extremely hot years) temperature during the pre-EOP
are mostly below 25 °C (SI Appendix, Fig. S6), except for the
Sahel region, where the dominating cropland and savannas
ecosystems also have higher optimal temperature (24). The
correlation between EOP and temperature (REOP,Ta or REOP,LST

) is
spatially inversely correlated with the correlation between EOP
and precipitation (REOP,Prec, R = −0.60 and −0.67, P < 0.001, for
ERA-Interim and remote-sensing datasets, respectively; SI Ap-
pendix, Fig. S7). This suggests that EOP in most regions is either
limited by temperature or water. Negative temperature effects
can be mostly attributed to water limitation, as demonstrated
below. For most pixels, temperature averaged over 1 to 2 mo
pre-EOP has the strongest effect on EOP, while precipitation
affects EOP with a longer pre-EOP period (2 to 3 mo) (Fig. 1
and SI Appendix, Fig. S8). This is due to the memory of soil
moisture on subseasonal and seasonal time scales (25).
By comparing these correlations with the mean annual tem-

perature (MAT) and 1-mo pre-EOP surface soil moisture
(PSSM) retrieved from the Soil Moisture Active Passive (SMAP)
satellite (26) (Methods), we find that the regions limited by
precipitation (positive correlation with EOP) have either high
MAT or low PSSM (Fig. 1). Although the surface soil moisture
(SSM) retrieved from SMAP only represents the upper 5 centi-
meters of soil, observations at 6:00 AM local time may be
strongly coupled to soil moisture at deeper depths due to plant
hydraulic redistribution (27), especially in semiarid regions
where water limitation can be important. A comparison between
Gravity Recovery and Climate Experiment (GRACE) liquid
water equivalent thickness (LWET) and SMAP SSM also dem-
onstrates high spatiotemporal consistency for most low- to
midlatitude regions (SI Appendix, Figs. S9 and S10), further
supporting that SSM can correctly represent the water condition
at deeper depth on monthly time scales. We also calculate PSSM
with different preseason lengths and normalized using wilting
point and soil porosity (SI Appendix, Figs. S11 and S12). These
results show similar spatial patterns and do not change our
main findings.
In the MAT and PSSM two-dimensional (2D) space, regions

with significant positive and negative correlation with pre-EOP
temperature can be effectively separated using a support vector
machine (SVM) (Fig. 2A). SVM is a supervised classification
algorithm that can find an optimum hyperplane (or line) to
separate the labeled samples into different categories, so that the
gap (or margin) between two classes is maximized (Methods).
Because some regions are colimited by both water and temper-
ature (MAT ∼10 °C and PSSM between 0.2 and 0.3 cm3 cm−3),
the SVMs computed on either temperature or precipitation
alone (green lines in Fig. 2 A and B) do not overlap with each
other. However, we are able to find a third SVM only based on
pixels whose EOP is limited by either water or temperature,
i.e., EOP positively correlates with pre-EOP precipitation or
temperature, respectively (Methods). This SVM function, relying
on both MAT and PSSM, suggests that there is an interactive
effect between ecosystem energy availability (as assessed by
MAT) and soil water resource (as assessed by PSSM). Co-
ordination of these two determines the limiting environmental

factors to EOP. A very similar SVM can also be found using the
NIRV dataset (SI Appendix, Fig. S13). If we do not consider the
interactive effect and instead use a combination of two in-
dependent thresholds for MAT and PSSM to separate the
temperature and water limited area (SI Appendix, Text S5 and
Fig. S14), the accuracy of the model prediction decreases, with a
lower kappa coefficient (0.767 as compared to 0.825 for SVM, SI
Appendix, Table S1). Previous studies attribute the differential
responses to water availability as biome dependent, such as dif-
ferences between grassland and forest (28, 29). We do find a
biome dependence for this environmental limitation on EOP
(Fig. 2C), but the predictability using biome type is lower com-
pared to the SVM (accuracy and kappa coefficient decrease by
0.17 and 0.33, respectively), which is uniquely based on climatic
conditions. This suggests that environmental factors can also play
an important role in shaping the differential responses to water
limitation, both through the direct effect on plant physiology,
and indirect and interactive effect on biome distribution.

Evidence from EC Flux Measurements. To test whether this joint
regulation of soil moisture and MAT also exists in field obser-
vations, we use 50 flux tower sites with at least 5 y of observations
across the globe. Due to the limited number of sample sites, we
do not attempt to fit another SVM for the flux-based measure-
ments but we instead use the SVM obtained from remote sensing
data. The SVM fitted from the remote sensing data performs
well in separating the sites that are more limited by water (red)
or temperature (blue) (Fig. 3). In the margin of the SVM, both
temperature- and water-limited sites exist, and are aligned along
the SVM function. Sites that are both (yellow) limited by water
and temperature or neither (green) also mainly locate within the
SVM’s margin, with no clear biome type dependence. Outside
the margin of the SVM, water-limited sites are dominated by
grasslands and woodlands, while the temperature-limited sites
are mostly forest. If we replace the SMAP-based PSSM with
in situ soil moisture measurements, the clustering still exists, but
the function that separates the water- and temperature-
limitation changes (SI Appendix, Fig. S15). This is likely due to
the low cross-site comparability of soil moisture caused by dif-
ferences in soil properties (porosity, soil texture), which affect
the relationship between soil moisture and water potential, as
well as differences in measurement sensors and calibration,
measurement depth, and periods of observation.
The interactive effect between energy and water can be

explained by a supply versus demand perspective on resources.
Energy is beneficial for plants’ biochemical processes to fix
carbon, but also increases evaporative demand, thus depleting
soil water resources. For example, the potential for vegetation
growth increases with MAT (SI Appendix, Fig. S16), suggesting
that energy availability increases the upper boundary of the plant
growth if water is not limiting. Several previous studies also
suggest that a heatwave may not necessarily decrease vegetation
photosynthesis and canopy greenness unless it is accompanied
with low soil moisture (30, 31). However, greater plant biomass
together with higher temperature also leads to greater water
consumption in these regions, and a higher PSSM is needed to
support vegetation water needs. Similar responses are also found
for the temperature and precipitation regulation on interannual
variation of NDVI (32). From a physiological perspective, lower
soil moisture increases stomatal sensitivity to vapor pressure
deficit (VPD) (33), which is largely dependent on temperature.
Lower MAT (or VPD) has a smaller effect on stomatal closure,
making plants less dependent on precipitation water supply in
colder conditions. This mechanism is also supported by field
experiments: at higher temperature, the decrease of soil mois-
ture exerts stronger limits on stomatal conductance and photo-
synthesis for multiple boreal forest species (34). In addition, this
interactive effect of MAT and PSSM can also be related to plant
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biogeography. Compared with grasslands, which are mostly dis-
tributed in warm and dry regions, forests tend to grow in cooler
regions and generally have deeper roots, enabling access to deep
soil water. These forests can therefore sustain photosynthesis
under lower SSM for longer periods of time, and are more re-
sistant to heatwaves or droughts (29). Although increasing CO2
in the atmosphere can decrease stomatal conductance (35), this
water-saving effect is strong only in regions and periods where
transpiration dominates the water flux and can be almost can-
celled out by the concurrent increase of VPD (36). Several free-
air CO2 enrichment experiments also suggest that increased CO2
might not compensate for the drought-induced carbon losses (37,
38). Other factors (e.g., radiation, ozone) that may covary with
temperature or precipitation can also trigger the leaf senescence
and EOP, their effects should be further investigated.

Future Changes in Water Limitation on EOP. To evaluate the ro-
bustness of this SVM through time, we calculate temperature
and water limited regions for two separate periods (2001 to 2009
and 2009 to 2017) and fitted two additional SVMs for each pe-
riod. The SVMs for each period are almost identical to the SVM
we find previously for the entire study period, and their classi-
fication performances are also comparable (SI Appendix, Fig.
S17). This suggests that this energy and water colimitation on
EOP holds through time and may be used for future predictions.
We then predict the water-limited regions and their changes
until 2100 using simulations from 23 climate models that took
part in phase 5 of the Coupled Model Intercomparison Project
(CMIP5), under both Representative Concentration Pathway
(RCP) 4.5 and RCP8.5 scenarios (Fig. 4). Using the ensemble
median of MAT and PSSM, the predictions of current water-
limited regions are similar to our remote sensing-based obser-
vations, further corroborating the effectiveness of the SVM
classification. Warming and drying in the future expand the
water-limited regions under both RCP4.5 and RCP8.5 scenarios.
This increase is much larger in RCP8.5 than in RCP4.5, with
much of the boreal forests in Canada and Europe under water
threat. The spread of this prediction across models is nonetheless
large, ranging from ∼45 to 70% of the total land surface at the
2010s to ∼50 to 90% at the 2090s under RCP8.5. The Institut
Pierre-Simon Laplace and Institute for Numerical Mathematics
Climate Model Version 4 models predict the largest and smallest
increase in water-limited area during the 21st century, re-
spectively (SI Appendix, Fig. S18).
Most land area is projected to have higher MAT and drying

soil in the warm season in future scenarios, and both of these
contribute to increases in the precipitation-limited area. To
separate their exclusive contribution (MAT or PSSM), we fix one
using the average of current prediction (2006 to 2015) and track
the change in water-limited area due to the changes of the other
(Methods). As expected, warming and drying land surface move
most land areas toward the lower-right corner of the MAT-
PSSM space, causing a regime shift from temperature-limited to
precipitation-limited for some regions. These regime shifts are
primarily due to a large increase in MAT, whose contribution is
an order of magnitude larger than that due to PSSM (SI Ap-
pendix, Fig. S19). Although the predicted decrease in average
soil moisture is prevalent in most models (39), its magnitude,
after transformation using Eq. 1, is relatively small compared
with the temperature increase, which is global and large.
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Fig. 2. Temperature and precipitation limitation on EOP in the MAT and
PSSM space. Correlation between EOP and pre-EOP temperature (A) and
precipitation (B) from ERA-Interim. Only pixels with significant relationship
(P < 0.1) are shown. The green lines in A and B shows the separation of the
positive and negative correlation. The black line separates the temperature-
or precipitation-limited (positive correlation between EOP and pre-EOP air
temperature [Ta] or precipitation [Prec.]) regions (y = 59.60x − 6.03). Dashed
lines show the margins of the SVM. The dominate vegetation type for each
0.5° grid cell from MODIS is shown in C. The histograms on the top and right

of the graphs shows the marginal distribution on PSSM and MAT, re-
spectively. The landcover data are aggregated from IGBP classification.
Grassland includes grassland, savannas, and wetland. Woodland includes
open and closed shrubland, and woody savannas. Forest includes evergreen
needleleaf forest, deciduous broadleaf forest, and mixed forest.
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In future projections, CO2 fertilization may reduce stomatal
conductance and increase water savings (35). This effect is consid-
ered in current Earth system models, but the prediction of vegeta-
tion growth varies enormously (40), making the total water usage
uncertain. Additionally, most models do not include an explicit
plant hydraulic model, leading to too large of a disconnection be-
tween SSM and root zone soil moisture (41). This suggests that
simulated SSM in the upper 10 cm may not be as good a proxy for
the root zone soil moisture as an observational proxy (where hy-
draulic redistribution is at play), and the contribution from the
model PSSM might be underestimated. However, considering the
low contribution from the soil moisture in determining the water-
limited regions, our projected increase in water limitation on EOP
should still be robust. Since this projection is made based on a fixed
threshold obtained from space-for-time substitution, other factors
affecting these relationships might emerge in the future, such as
nutrient limitations and dynamic changes of biome types, contrib-
uting to the uncertainty of our analysis.
Due to the high interannual variability of precipitation, eco-

systems limited by pre-EOP precipitation would experience large
variations in EOP and consequently on ecosystem carbon up-
take. These ecosystems will also be vulnerable to late growing-
season high temperature and drought, which are projected to
intensify in many regions with future warming (42, 43), further
enhancing the interannual variability of terrestrial carbon uptake
(44, 45). Considering the projected decrease of soil moisture
during the late growing season (39), a decrease of late-season
photosynthesis induced by strengthening moisture limitation may
also be anticipated. Although our analysis does not include
samples in tropical rainforests due to the low seasonality and
inaccurate soil moisture satellite retrievals, previous studies
suggest that water may play an important role in regulating leaf
flushing during the dry season (46). Recent studies also suggest
that the atmospheric CO2 growth rate (CGR) is strongly coupled

to the global terrestrial water storage and tropical land tem-
perature (47) and that CGR sensitivity to tropical temperature
has doubled due to the soil moisture decline in the past decades
(48), further emphasizing the key role of moisture availability for
carbon cycle, especially photosynthesis processes. The long-term
declining trend and increasing variability of soil moisture in
many regions may also reduce the capacity of continents to act as
carbon sinks (15). Our study projects an increase in water-limited
areal extent, mostly due to the increase in MAT, suggesting an
even stronger impact of water availability on late-season carbon
uptake in the future. The observed MAT and pre-EOP soil
moisture regulation on EOP responses to environmental factors
can also be used to constrain soil water stress on photosynthesis
in Earth system models, reducing the uncertainties in future
carbon cycle predictions.

Materials and Methods
CSIF Dataset. The CSIF dataset used in this study is a machine learning-
generated, high-quality dataset with a 0.05° spatial and 4-d temporal res-
olution. This dataset first trained and validated a neural network (NN) using
OCO-2 SIF and colocating MODIS MCD43C4 nadir bidirectional reflectance
distribution function (BRDF)-adjusted reflectance during 2014 to 2017 (23).
The NN was then used to generate the CSIF dataset using four bands (blue,
green, red, and near-infrared) reflectance from MODIS for 2001 to 2017.
Validation shows very high consistency with OCO-2 SIF (23). In this study, we
used the clear-sky daily SIF, which shows stronger correlation with satellite
observation and eddy covariance-estimated GPP (49). The 0.05° dataset was
aggregated to 0.5° to match the resolution of other datasets. Since this
dataset is not based on direct satellite SIF observations, justifications of using
reflectance to predict SIF as well as potential caveats are discussed in de-
tailed in SI Appendix, Text S1.
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Climate Datasets. We used two types of climate dataset for the climate
sensitivity of late-season photosynthesis analysis. The first type is from the ERA-
Interim reanalysis data (50), air temperature at 2 m (“t2m”), total precipitation
(“tp”), and photosynthetically active radiation (“par”) were used. The second
type is from remote sensing-based dataset: the MODIS land surface temper-
ature (LST) from Aqua satellite (MYD11C2) (51), precipitation from the Global
Precipitation Climatology Project (GPCP) (52), and PAR from Breathing Earth
System Simulator (BESS) (53). Additionally, we also used the soil moisture re-
trievals from SMAP to get the preseason soil water condition (26). The detailed
information for these datasets can be found in SI Appendix, Text S3.

FLUXNET2015 Dataset. We used the daily eddy covariance observations from
the FLUXNET2015 Tier 1 dataset 54 to derive the EOP and analyze the
temperature and precipitation limitation. Among the 166 Tier 1 sites, a
rigorous data quality check and site (site-year) selection criteria are applied
and described in SI Appendix, Text S4. We used the daily GPP estimates
based on the nighttime partitioning method (55) and the reference Ustar
(“GPP_NT_VUT_REF”) to derive the EOP. For months with no valid net eco-
system exchange (NEE) observations (monthly mean “NEE_VUT_REF_QC” =
0, mostly in high latitude nongrowing season), GPP was set to 0 to avoid
unrealistic GPP by the gap-filling algorithm. The MAT was calculated based
on the site measured temperature. To be consistent with the CSIF analysis,
we also calculated the PSSM using SMAP retrievals since not all sites have soil
moisture observation and the measurement depth varies across sites. For the
validation of the CSIF retrieved EOP, we further visually selected sites that
were located in homogenous landscapes within 5 km × 5 km. This footprint
size is comparable with the 0.05° CSIF resolution, so that their phenological
dates are comparable. Altogether, 24 sites were used in this validation (SI
Appendix, Table S2).

CMIP5 Models.We used 23 CMIP5 models to predict the future dynamic of the
regions limited by precipitation or temperature (SI Appendix, Table S3). Both
RCP4.5 and RCP8.5 scenarios were analyzed. To calculate the pre-EOP soil
moisture, we first obtained the multiyear average EOP from CSIF. SSM
(“mrsos”) was then linearly interpolated to daily values and averaged over
the 1-mo pre-EOP period. The soil depth representing SSM varies among
models, but this difference is ignored here for simplicity. The model en-
semble median for the water-limited regions was calculated from the mul-
timodel median MAT and pre-EOP soil moisture using the SVM from remote
sensing-based analysis.

Phenology Retrieval. We used a smoothing and threshold-based method to
retrieve EOPs from both CSIF and EC-based GPP estimates (GPPEC). This
method has been previously used in other studies (56), and we improved it
by using a weighted scheme to smooth the GPPEC time series based on the
data quality. First, the peak growing season was determined by the multi-
year average monthly GPP or CSIF. If the peak of growing season is between
April to September, the growing cycle starts from January and ends in De-
cember; otherwise, the sites or pixels may be located in the dry Mediterra-
nean region or southern hemisphere, and the growing cycle starts from the
previous May to current April. Second, with the growing cycle separated, the
daily GPPEC or 4-d CSIF data were smoothed using a weighted spline with 9
(for CSIF) or 11 (for GPPEC) degrees of freedom. The weights were de-
termined by the “NEE_VUT_REF_QC,” which ranges from 0 to 1 and rescaled
to 0.05 to 1, so that the GPP during polar night will be set to 0 and still have
constraint on the smoothing curve. Third, using the multiyear-averaged
smoothed GPPEC or CSIF, the threshold for determining the EOP is calcu-
lated as the minimum + 30% of the amplitude. This site-specific fixed
threshold is used to derive EOP for each site/pixel. If multiple peaks exist
within 1 y, the EOP is extracted from the later one if the second photosyn-
thetic active period (GPP > threshold) is greater than 30 d.

Analysis. With the multiyear average EOP, we calculated the average pre-
EOP climate for each variable with different preseason length (15, 30, 60,
90 d). For variables with an 8-d temporal resolution (e.g., MODIS LST), they
were linearly interpolated to daily values. The correlations or partial

correlations were calculated for each preseason length, and the strongest
correlation for each pixel or site was used to represent the pre-EOP cli-
mate limitations.

We used the SVM to separate the pixels with significant (P < 0.1) positive and
negative correlations between pre-EOP climate and EOP. SVM is a widely used
supervised learning method for classification problems (57). The labeled samples
are first projected to a multidimensional (two for our case) space, with each
dimension corresponding to one predictor variable. The essence of this algo-
rithm is to find an optimum hyperplane (or line for our study) that separates the
labeled samples into different categories, so that the distance between each
category is maximized. The classification was conducted for temperature and
precipitation separately using MAT and pre-EOP SM as predictors; positive and
negative correlation between climate factors and EOP are the two groups that
need to be separated. We also trained an SVM to separate the temperature-
limited (positively correlated with air temperature) and water-limited (positively
correlated with precipitation) pixels. Pixels limited by both or neither were re-
moved from analysis (less than 10% of the total points). The resultant SVM is a
function of both predictor variables and can be used to predict whether the EOP
or late growing-season photosynthesis is limited by water or temperature. The
“svm” function in the R package “e1071” (58) was used with a linear kernel. In
addition to this classification method, we also compared another threshold-
based method, as detailed in SI Appendix, Text S5.

To separate the contribution of increasing MAT and variations of SSM to
the changes of water limitation on EOP using CMIP5 simulations, we set up
two independent analyses that fix either MAT or pre-EOP SM using the
average from the first 10 y of RCP prediction (2006 to 2015) and let the other
change with time. The contribution of the MAT (βMAT ) and pre-EOP SM (βSM)
to the expansion of water-limited regions can be estimated using the
equation below for each model and for the ensemble:

β = Afix
t

A2010s
{t = 2010s, 2020s, . . .} , [1]

where Awith a subscript represents the area of water-limited regions in that
decade, and the superscript indicates that either MAT or pre-EOP SM is fixed,
corresponding to βSM and βMAT , respectively.

Data Availability. The CSIF dataset used in the analysis can be accessed
through https://figshare.com/articles/CSIF/6387494. Other datasets used in
the analysis are also publicly available: BESS PAR, http://environment.snu.ac.
kr/bess_rad/; MODIS LST, https://lpdaac.usgs.gov/products/myd11c2v006/; GPCP,
https://catalog.data.gov/dataset/global-precipitation-climatology-project-gpcp-
climate-data-record-cdr-version-1-3-daily; ERA-Interim, https://www.ecmwf.int/
en/forecasts/datasets/reanalysis-datasets/era-interim; SMAP soil moisture, https://
nsidc.org/data/SPL3SMP_E; FLUXNET2015, https://fluxnet.fluxdata.org/data/
fluxnet2015-dataset/; and CMIP5, https://esgf-node.llnl.gov/search/cmip5/.
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