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Abstract
In Alzheimer’s disease (AD), neurodegenerative processes are ongoing for years prior to the time that cortical atrophy can
be reliably detected using conventional neuroimaging techniques. Recent advances in diffusion-weighted imaging have
provided new techniques to study neural microstructure, which may provide additional information regarding
neurodegeneration. In this study, we used neurite orientation dispersion and density imaging (NODDI), a
multi-compartment diffusion model, in order to investigate cortical microstructure along the clinical continuum of mild
cognitive impairment (MCI) and AD dementia. Using gray matter-based spatial statistics (GBSS), we demonstrated that
neurite density index (NDI) was significantly lower throughout temporal and parietal cortical regions in MCI, while both
NDI and orientation dispersion index (ODI) were lower throughout parietal, temporal, and frontal regions in AD dementia.
In follow-up ROI analyses comparing microstructure and cortical thickness (derived from T1-weighted MRI) within the
same brain regions, differences in NODDI metrics remained, even after controlling for cortical thickness. Moreover, for
participants with MCI, gray matter NDI—but not cortical thickness—was lower in temporal, parietal, and posterior
cingulate regions. Taken together, our results highlight the utility of NODDI metrics in detecting cortical microstructural
degeneration that occurs prior to measurable macrostructural changes and overt clinical dementia.
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Introduction
Over the last several decades, there has been substantial effort
to characterize the neurodegenerative changes in Alzheimer’s
disease (AD) in vivo using noninvasive neuroimaging tech-
niques. Early studies using volumetric T1-weighted MRI focused
on macrostructural atrophy in the hippocampus (Jack et al.
1992; Fox et al. 1996; Whitwell et al. 2007) and other medial
temporal lobe structures (Mori et al. 1997; Krasuski et al. 1998;
de Toledo-Morrell et al. 2000). With advances in automated
segmentation techniques, recent studies have described
widespread gross cortical atrophy in brain regions known
to harbor AD pathology (Lerch et al. 2005; Apostolova et al.
2007; Dickerson et al. 2008; Bakkour et al. 2009; Frisoni et al.
2009; Becker et al. 2011; Chételat et al. 2012; LaPoint et al.
2017). While these studies have significantly contributed to
our understanding of the disease-related regional patterns
and progression of subcortical and cortical atrophy, it is well-
known that AD pathology accumulates for years prior to the
time when macrostructural changes can be reliably detected
with conventional T1-weighted imaging (Villemagne et al.
2013). Given the irreversible nature of neuronal loss, sensitive
detection of the earliest neurodegenerative changes occurring
during this asymptomatic stage in AD is critical for improving
diagnosis, staging, and monitoring response to therapeutic
intervention.

In contrast to macrostructural T1-weighted MRI, diffusion-
weighted imaging (DWI) provides unique quantitative informa-
tion about neural microstructure through its sensitivity to the
diffusion of water molecules within tissues (Bihan, 2003). Dis-
ruption or alteration of microscopic tissue barriers that normally
restrict water molecules (e.g., breakdown of cell membranes,
changes in cytoarchitecture, or loss of myelin) results in mea-
surable changes to the diffusion signal. The most widely used
technique to quantify the diffusion signal is the diffusion tensor
imaging (DTI) model, which models the rate and direction of
water diffusion in each voxel as a simple ellipsoid tensor (Alger,
2012). DTI metrics that quantify both directional diffusivity and
overall degree of hindered diffusion are calculated from the
tensor model and used to infer microstructural integrity and
architecture within each voxel. While DTI analyses have been
widely used to study white matter microstructure in AD, a much
more limited number of studies have used these techniques
to investigate subcortical and cortical gray matter microstruc-
tural changes (Weston et al. 2015). These studies have primarily
assessed gray matter microstructure using the DTI metric of
mean diffusivity (MD)—the average magnitude of diffusivity in
all directions—and have reported that individuals with AD have
increased MD in the hippocampus (Kantarci et al. 2005; Müller
et al. 2005; Douaud et al. 2013) and cortical regions (Rose et al.
2008; Scola et al. 2010; Jacobs et al. 2013; Montal et al. 2018) where
gross atrophy is also observed. However, there are several limi-
tations to the DTI model, especially with respect to analyzing
cortical gray matter. Notably, the close proximity of the cortex
to cerebrospinal fluid (CSF) makes cortical DTI analyses particu-
larly susceptible to bias from partial volume effects, whereby the
tensor model in cortical voxels is contaminated with diffusion
signal from adjacent CSF (Henf et al. 2018). Thus, concurrent
cerebral atrophy may confound microstructural measurements
and lead to overestimation of cortical MD changes in AD.

Advances in DWI acquisition, processing, and modeling
have converged to facilitate more sophisticated techniques to
study neural microstructure. Multi-shell DWI acquisitions allow

for more complex and biologically relevant modeling of the
diffusion signal using multi-compartment biophysical models.
Neurite orientation dispersion and density imaging (NODDI)
(Zhang et al. 2012) is a multi-compartment model that partitions
the composite diffusion signal into three microstructural com-
partments: intracellular diffusion (restricted diffusion within
axons or dendrites), extracellular diffusion (hindered diffusion
outside of axons and dendrites), and isotropic diffusion (i.e., free
water). The NODDI model provides three metrics of microstruc-
ture within each voxel: (1) the neurite density index (NDI),
which reflects the proportion of water diffusion constrained
within axons or dendrites; (2) the orientation dispersion index
(ODI), which reflects the degree of neurite coherence; and (3)
the volume fraction of isotropic diffusion (VISO), which reflects
the proportion of free water (i.e., CSF) in a voxel. Importantly,
by separating out the CSF component of the diffusion signal,
the NODDI model (unlike DTI) is able to account for partial
volume effects, which makes it a particularly well-suited tool for
investigating cortical microstructure (Assaf et al. 2013; Fukutomi
et al. 2018). Indeed, over the last several years, the NODDI
model has been applied to study gray matter microstructure
in a variety of conditions, including aging (Nazeri et al. 2015),
schizophrenia and bipolar disorder (Nazeri et al. 2017), multiple
sclerosis (Granberg et al. 2017), Parkinson’s disease (Kamagata
et al. 2017), and young onset AD (Parker et al. 2018).

In this study, we used multi-shell DWI and the NODDI model
to investigate cortical microstructural alterations in mild cogni-
tive impairment (MCI) and AD dementia. The aim of this work
was to characterize gray matter NODDI microstructure along
the clinical continuum of dementia, with the goal of identifying
whether regional patterns of microstructural changes provide
unique information relative to conventional macrostructural T1-
weighted MRI. Specifically, we applied a technique called gray
matter-based spatial statistics (GBSS) (Nazeri et al. 2015, 2017),
which takes advantage of the multi-compartment modeling of
NODDI and allows for an unbiased gray matter-specific vox-
elwise statistical analysis of cortical microstructure. We then
performed a follow-up region of interest (ROI) analysis in order
to compare NODDI microstructural metrics and cortical thick-
ness measures (from conventional T1-weighted MRI) within the
same brain regions. Our findings suggest NODDI metrics are
a sensitive marker of cortical microstructure and may provide
early indication of gray matter neurodegenerative changes in
MCI and AD dementia.

Materials and Methods
Participants

Participants included individuals with AD dementia, MCI,
and cognitively unimpaired individuals from the Wisconsin
Alzheimer’s Disease Research Center (ADRC) clinical core who
had undergone both multi-shell DWI and T1-weighted structural
MRI. For this study, participants with AD dementia and MCI
were age- and sex-matched 1-to-1 with cognitively unimpaired
participants using propensity score matching (MatchIt package
in R v3.5.2), resulting in a final cohort of 112 participants:
n = 56 cognitively unimpaired participants (control group), n = 30
MCI, and n = 26 AD dementia. All participants underwent a
comprehensive neuropsychological battery to determine the
cognitive status. Participants with MCI and AD dementia were
diagnosed using available clinical and cognitive information
in accordance with the updated 2011 National Institute on
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Aging-Alzheimer’s Association (NIA-AA) workgroup diagnostic
criteria (Albert et al. 2011; McKhann et al. 2011). All participants
with MCI in this study were of the amnestic subtype—22/30
participants had single-domain MCI (only memory impair-
ment) and 8/30 individuals had multi-domain MCI (memory
impairment plus impairment in one additional cognitive
domain). All participants were discussed at a consensus review
committee consisting of physicians, neuropsychologists, and
nurse practitioners. General exclusion criteria for the ADRC
studies include any significant neurologic disease (other than
AD dementia), history of alcohol/substance dependence, major
psychiatric disorders (including untreated major depression), or
other significant medical illness. The University of Wisconsin
Health Science Institutional Review Board approved all study
procedures, and all experiments were performed in accordance
with relevant guidelines and regulations. All participants
provided written informed consent to be involved in this study.

Image Acquisition and Preprocessing

MRI data were acquired using a General Electric 3 T MR750
scanner (Waukesha, WI) with a 32-channel head coil. Diffusion-
weighted images were acquired using a multi-shell spin-echo
echo-planar imaging pulse sequence (6 × b = 0 s/mm2, 9 ×
b = 500 s/mm2, 18 × b = 800 s/mm2, and 36 × b = 2000 s/mm2;
TR/TE = 8575/76.8 ms; 2 × 2 × 2 mm3 isotropic voxel reso-
lution; 128 × 128 acquisition matrix). T1-weighted structural
images were acquired using a 3D inversion recovery prepared
fast spoiled gradient-echo FSPGR-BRAVO sequence (TI = 450 ms;
TR/TE = 8.1/3.2 ms; flip angle = 12◦; 1 × 1 × 1 mm3 isotropic voxel
resolution; 256 × 256 acquisition matrix).

Diffusion-weighted images were denoised (Veraart et al.
2016) and corrected for Gibb’s ringing (Kellner et al. 2016)
using MRtrix3 (Tournier et al. 2019), and then motion-corrected
and eddy current distortion are corrected using the eddy tool
(Andersson and Sotiropoulos 2016) in FSL (v5.0.11) (Jenkinson
et al. 2012). Next, a brain mask was constructed using the
Brain Extraction Tool (Smith 2002) in FSL, and diffusion tensor
fitting was performed at each voxel within the brain mask using
Diffusion Imaging in Python (Garyfallidis et al. 2014) to generate
fractional anisotropy (FA) maps.

NDI, ODI, and VISO parameter maps were generated by fitting
the NODDI model in Python using Accelerated Microstructure
Imaging via Convex Optimization, which improves processing
speed by approximating the NODDI model as a linear system
(Daducci et al. 2015). Additionally, a gray matter-optimized intra-
cellular intrinsic parallel diffusivity of 1.1 μm2/ms was used to
improve the model fit in gray matter (Fukutomi et al. 2018).

Prior to further processing and statistical analysis, all images
underwent visual inspection for quality control. Additionally,
participant head motion during DWI acquisition was quantita-
tively evaluated using the root mean square movement sum-
mary from eddy, which showed no differences between groups
with respect to average acquisition motion (ANOVA, F2,109 = 1.47,
P = 0.24). No participants were excluded from analyses based on
visual inspection or excessive motion.

Gray Matter-Based Spatial Statistics

GBSS is a statistical technique that adapts the tract-based spatial
statistics (Smith et al. 2006) framework in order to allow voxel-
wise analysis of NODDI metrics in gray matter (Nazeri et al. 2015,
2017). Processing steps for GBSS are depicted in Figure 1. Briefly,

gray matter fraction maps were generated by subtracting white
matter fraction maps (estimated from FA maps using the Atropos
segmentation tool (Avants et al. 2011a) in Advanced Normaliza-
tion Tools [ANTs] v2.1.0) and CSF fraction maps (NODDI VISO

parameter maps) from 1. Each tissue segmentation map was
then multiplied by its respective tissue weighting (CSF = 0, white
matter = 1, gray matter = 2) and summed to generate a “pseudo
T1-weighted” image. Pseudo T1-weighted images from all partic-
ipants were then used to create a population-specific template
using the antsMultivariateTemplateConstruction2.sh script in ANTs
(Avants et al. 2011b). Native diffusion space NODDI parame-
ter maps (NDI and ODI) and gray matter fraction maps were
then nonlinearly warped to the population template using the
warp fields generated during template construction. Population-
space gray matter fraction maps were averaged to create a
mean gray matter image, which was then skeletonized using
the tbss_skeleton tool in FSL. Finally, NDI and ODI were projected
onto the gray matter skeleton from the local gray matter fraction
maxima, and the gray matter skeleton was thresholded to only
include voxels with gray matter fraction > 0.65 in > 70% of
participants (Nazeri et al. 2017).

CAT12 Surface-Based Cortical Thickness Processing

T1-weighted structural images were processed using the
Computational Anatomy Toolbox (CAT, v12.5) for SPM12
in MATLAB (http://www.neuro.uni-jena.de/cat/). Briefly, T1-
weighted images underwent tissue segmentation followed
by cortical thickness and central surface estimation using
the projection-based thickness method (Dahnke et al. 2013).
Surface data then underwent topological correction (Yotter
et al. 2011b), spherical mapping (Yotter et al. 2011a), and
spherical registration. Prior to performing whole-brain surface-
based analyses, surface data were resampled into template
space at 32-k mesh resolution (∼2-mm average vertex spacing)
(Glasser et al. 2013) and smoothed using a 25-mm FWHM
Gaussian heat kernel (Chung et al. 2005).

Region of Interest Analysis

In order to interrogate NODDI microstructure and cortical thick-
ness within the same brain regions, we performed a follow-up
ROI analysis using eight bilateral cortical regions known to be
affected in AD. ROIs were constructed from the Desikan atlas
(Desikan et al. 2006; Klein and Tourville 2012) and included the
following regions: “frontal” (composed of superior, rostral mid-
dle, and caudal middle frontal cortex), “temporal” (composed
of middle and frontal temporal cortex), “parietal” (composed of
inferior parietal and supramarginal cortex), “precuneus,” “ante-
rior cingulate” (composed of rostral and caudal anterior cin-
gulate cortex), “posterior cingulate” (composed of isthmus and
posterior cingulate), “entorhinal,” and “parahippocampal.”

Mean cortical thickness for each ROI was extracted in the
native T1-weighted space using CAT12’s ROI tools. In order to
extract NODDI metrics in native diffusion space, a T1-weighted
atlas-space image was nonlinearly warped to each subject’s
pseudo T1 image using antsRegistration in ANTs. For each subject,
the resulting warp field was then used to warp atlas-space ROIs
to native diffusion space. In order to ensure ROIs only included
gray matter voxels, we used each subject’s gray matter fraction
map (thresholded at 0.7 and binarized) to mask each ROI. FSL’s
fslstats was then used to extract mean values for NDI and ODI
within each gray matter-masked ROI.

http://www.neuro.uni-jena.de/cat/
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Figure 1. Processing steps of GBSS. (A) For each subject, a gray matter (GM) fraction map is generated by subtracting the white matter (WM) fraction (estimated from the

subject’s FA map using Atropos) and the CSF fraction (estimated from the subject’s NODDI VISO parameter map) from 1. The GM, WM, and CSF fraction are then used
to generate a pseudo T1-weighted contrast image. (B) Pseudo T1-weighted images from all subjects are used to create a population template via iterative nonlinear
registration in ANTs (antsMultivariateTemplateConstruction2.sh). The warp fields generated from this step are then used to nonlinearly warp NDI, ODI, and GM fraction
images for each subject into population template space. (C) GM fraction images in population template space are averaged to generate a mean GM image, which is

then skeletonized using FSL’s tbss_skeleton tool. Finally, NDI and ODI are projected onto the GM skeleton from the local GM fraction maxima, and the GM skeleton is
thresholded to only include voxels with GM fraction > 0.65 in > 70% of participants.

Statistical Analysis

GBSS voxelwise analyses on the final gray matter skeleton-
masked population-space NDI and ODI images were
performed with FSL’s randomise (Winkler et al. 2014) using
nonparametric permutation inference (n = 10 000 permutations)
followed by threshold-free cluster enhancement (Smith and
Nichols 2009). Whole-brain surface-based cortical thickness
analyses were performed in CAT12 using resampled and
smoothed surface image data. For both GBSS and CAT12

surface-based analyses, separate contrasts tested groupwise
comparisons (MCI group versus control group; AD dementia
group versus control group; and MCI group versus AD dementia
group), and all analyses included age and sex as covariates.
Resulting statistical maps were family-wise error (FWE),
corrected at PFWE < 0.05 and displayed as surfaces using Surf
Ice (https://www.nitrc.org/projects/surfice/).

For ROI analyses, analysis of covariance (ANCOVA) models
were used to test differences in both NODDI and cortical thick-
ness measures between diagnostic groups (control, MCI, and AD

https://www.nitrc.org/projects/surfice/
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dementia) while controlling for age and sex. To account for mul-
tiple comparisons across the eight ROIs, a Benjamini-Hochberg
false discovery rate (FDR)-corrected significance threshold of
PFDR < 0.05 was used. For visualization purposes of this analysis,
NODDI and cortical thickness measures for MCI and AD demen-
tia groups were expressed as percent change relative to the
control group mean and plotted as mean percent change with
bootstrapped 95% confidence intervals (10 000 iterations using
the boot v1.3 package in R) for each group. In order to further
investigate whether NODDI metrics provide unique microstruc-
tural information within an ROI, we reran the same ANCOVA
models but controlled for macrostructural effects by including
cortical thickness as a covariate.

Finally, we performed an exploratory logistic regression anal-
ysis to investigate and compare diagnostic accuracy of NODDI
and cortical thickness measures for MCI and AD dementia. For
this analysis, in order to generate single parameters for each
metric, we first identified the most important ROIs by using
recursive feature elimination (RFE) in the caret v6.0 package in
R. Briefly, for each metric, RFE was run using values from all
eight ROIs as predictors, and the most important ROIs were
identified using classification accuracy with 10-fold cross val-
idation. For cortical thickness, the most important ROIs were
anterior cingulate, entorhinal, temporal, and posterior cingu-
late; for NDI, the most important ROIs were posterior cingulate,
anterior cingulate, temporal, entorhinal, and precuneus; for ODI,
the most important variables were parahippocampal, posterior
cingulate, parietal, and entorhinal. We then averaged across
these identified ROIs to generate single parameters for each
metric, which were used to predict diagnosis (along with age
and sex) in logistic regression models, running separate models
for each diagnostic group. We ran one macrostructural model
(using only cortical thickness), three microstructural models
(using only NDI, only ODI, and then both NDI and ODI), and
one multimodal model (using all three metrics: CT, NDI, and
ODI). Model fit was evaluated using the Akaike information
criteria (AIC). For each model, a smoothed receiver operating
characteristic (ROC) curve and the area under the curve (AUC)
with bootstrapped 95% confidence interval (10 000 iterations)
were generated using the pROC package (v1.14) in R.

Results
Participant Characteristics

Participant characteristics are presented in Table 1. There were
no differences between groups with respect to age, sex, APOE ε4
genotype prevalence, race, or years of education. As expected,
Montreal Cognitive Assessment (MoCA) total scores were lower
for the MCI and AD dementia groups.

Whole-Brain GBSS Analysis

GBSS was used to investigate cortical patterns of altered
NODDI microstructural metrics in participants with MCI and
AD dementia. For both groups, we observed significantly
lower cortical NDI across parietal, temporal, and frontal
regions (Fig. 2A,B; Supplementary Fig. 1) relative to cognitively
unimpaired participants. Specifically, the MCI group had
lower NDI relative to the control group predominantly in the
supramarginal and angular gyri, a majority of the temporal
lobe including temporal pole, and the left frontal lobe including
rostral middle frontal gyrus, pars triangularis, and lateral

orbitofrontal cortex (Fig. 2A). The AD dementia group showed
a similar pattern of lower NDI with additional involvement of
the superior frontal gyrus as well as posterior cingulate and
precuneus (Fig. 2B). There were no regions with significantly
lower NDI in the AD dementia group relative to the MCI group.
Finally, there were no cortical regions with significantly higher
NDI in either the MCI or AD dementia groups, and there were no
subcortical gray matter regions with significant NDI differences
in any groupwise comparison.

With respect to ODI, while there were no differences in the
MCI group compared to cognitively unimpaired participants, the
AD dementia group demonstrated significantly lower cortical
ODI in a majority of temporal, parietal, and frontal regions
relative to the control group (Fig. 2C). This pattern of lower
ODI was more widespread than the pattern observed for NDI
and additionally included the lateral precentral and postcentral
gyri, pars opercularis, medial superior frontal and orbitofrontal
regions, and anterior cingulate. Additionally, the AD dementia
groups showed lower cortical ODI relative to the MCI group in a
similar distribution (Fig. 2D). There were no cortical regions with
significantly higher ODI in the AD dementia group compared to
cognitively unimpaired participants, and there were no subcor-
tical gray matter regions with significant ODI differences in any
groupwise comparison.

Surface-Based Cortical Thickness Analysis

CAT12 surface-based analysis demonstrated that, relative to
the cognitively unimpaired group, the AD dementia group had
significantly decreased cortical thickness in bilateral superior
frontal regions, bilateral inferior parietal regions, bilateral infe-
rior temporal gyri, entorhinal cortex, and temporal pole (Fig. 3A).
Additionally, relative to the MCI group, the AD dementia group
had significantly decreased cortical thickness in several small
clusters in frontal and parietal regions (Fig. 3B). There were no
regions with significantly lower cortical thickness in the MCI
group relative to the control group.

ROI Analysis

In order to investigate both microstructure and macrostructure
within the same brain regions, we performed a follow-up ROI
analysis that involved extracting NODDI metrics and cortical
thickness in native space from eight bilateral gray matter ROIs
using a common atlas. Overall, the AD dementia group tended to
have greater differences in microstructure and macrostructure
compared to control, relative to the differences observed
between the MCI and control groups (Fig. 4). For the AD dementia
group, NDI and cortical thickness were significantly lower in all
ROIs except the anterior cingulate, while ODI was significantly
lower in all eight ROIs (Supplementary Table 1 for summary of
ANCOVA results). For the MCI group, there were no significant
differences in ODI in any ROIs compared to the control group.
Notably, in the MCI group, while cortical thickness was not
significantly decreased in any ROIs, NDI was significantly lower
in several ROIs including the temporal, parietal, and posterior
cingulate regions.

To account for the effects of macrostructural atrophy on
microstructural alterations in these ROIs, we performed the
same statistical ROI analysis while controlling for cortical
thickness. Results from this analysis are presented in Tables 2
and 3. After controlling for cortical thickness, NDI and ODI
remained significantly lower in most of the same regions
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Table 1 Participant characteristics

Control MCI AD Statistic

N 56 30 26 —
Age, years (mean ± SD) 72.7 ± 9.9 73.0 ± 10.2 72.2 ± 10.2 F = 0.05 P = 0.95
Sex, % female (n) 57.1% (32/56) 46.7% (14/30) 61.5% (16/26) χ2 = 1.39 P = 0.50
APOE ε4 genotype, % positive (n) 46.2% (25/54) 50% (15/30) 58.3% (14/24) χ2 = 0.96 P = 0.62
Race, n (Caucasian/African
American/Native American)

42/11/3 25/5/0 23/2/1 χ2 = 3.61 P = 0.46

Education, years (mean ± SD) 16.1 ± 2.6 15.3 ± 2.5 15.3 ± 3.3 F = 1.33 P = 0.27
MoCA, total score (mean ± SD) 26.7 ± 2.3 21.0 ± 3.4 16.7 ± 3.4 F = 116.8 P < 0.001

AD = Alzheimer’s disease dementia participants.

Figure 2. Decreased cortical gray matter NODDI metrics in MCI and AD dementia groups from whole-brain GBBS analysis. NDI in cortical gray matter is significantly
decreased in both MCI (A) and AD dementia (B). ODI in gray matter is unchanged in MCI but significantly decreased in AD dementia relative to both the control

group (C) and the MCI group (D). GBSS statistical maps were projected onto surfaces in Surf Ice and indicate areas with significant (FWE-corrected P < 0.05) differences.
Representative axial slices of significant GBSS results can be found in Supplementary Figure 1.
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Figure 3. Decreased cortical thickness in AD dementia groups from whole-brain CAT surface-based analysis. CAT12 surface-based analysis demonstrated areas of
decreased cortical thickness in the AD dementia group relative to the control group (A) and the AD dementia group relative to the MCI group (B). CAT12 statistical
maps were projected onto surfaces in Surf Ice and indicate areas with significant (FWE-corrected P < 0.05) differences.

Table 2 Summary of ANCOVA results for ROI analysis demonstrating differences in cortical NDI, with and without controlling for cortical
thickness

MCI vs. control AD vs. control
NDI (uncorrected) NDI (corrected for CT) NDI (uncorrected) NDI (corrected for CT)

ROI β P FDR β P FDR β P FDR β P FDR

Frontal −4.7E − 3 0.095 −4.4E − 3 0.125 −6.9E − 3 0.016 −5.3E − 3 0.095
Temporal −7.7E − 3 4.1E − 3 −6.7E − 3 0.019 −1.3E − 2 2.4E − 7 −1.1E − 3 2.5E − 4
Parietal −6.5E − 3 0.032 −5.9E − 3 0.037 −1.1E − 2 7.2E − 5 −7.9E − 3 8.6E − 3
Precuneus −5.5E − 3 0.061 −5.3E − 3 0.093 −1.0E − 2 5.4E − 4 −8.6E − 3 8.6E − 3
Ant.
cingulate

−4.1E − 3 0.095 −4.2E − 3 0.115 −4.0E − 3 0.106 −4.1E − 3 0.095

Post.
cingulate

−6.0E − 3 0.032 −5.9E − 3 0.037 −1.3E − 2 4.8E − 6 −1.2E − 2 4.3E − 5

Entorhinal −8.4E − 3 0.061 −5.4E − 3 0.181 −1.5E − 2 6.7E − 4 −8.3E−3 0.077
Parahippocampal −3.4E − 3 0.258 -3.0E − 3 0.330 −7.5E − 3 0.022 −6.6E − 3 0.070

ANCOVA models tested the effect of diagnosis on NDI, controlling for age, sex, and with and without cortical thickness; bold indicates PFDR < 0.05; CT = cortical thickness;
AD = Alzheimer’s disease dementia group.

in MCI and AD dementia groups compared to cognitively
unimpaired participants. Specifically, results for temporal,
parietal, precuneus, and posterior cingulate regions were
unchanged. Controlling for cortical thickness attenuated some
effects—specifically, in the entorhinal region, both NDI and ODI
were no longer significantly lower for the AD dementia group
compared to the control group. Likewise, in the frontal and
parahippocampal regions, NDI was no longer significantly lower
in the AD dementia group after controlling for cortical thickness.

Logistic Regression Analysis

An exploratory logistic regression analysis was performed using
different combinations of NDI, ODI, and cortical thickness in
order to test the diagnostic accuracy of these microstructural
and macrostructural metrics. For distinguishing the AD
dementia group from the control group, the macrostructural

model using only cortical thickness performed the worst
(AUC = 0.82), while the multimodal model, which combined
macro- and microstructural metrics, performed the best
(AUC = 0.91) (Fig. 5A). For distinguishing the MCI group from
control group, cortical thickness once again performed the
worst (AUC = 0.66), and the multimodal model performed the
best (AUC = 0.72) (Fig. 5B), though all models performed more
poorly than those for AD dementia versus control.

Discussion
In the present study, we used multi-shell DWI and the
NODDI model to investigate cortical microstructure along
the continuum of clinical cognitive impairment, including
MCI and AD dementia. We report that participants with MCI
had widespread decreases in cortical NDI (but no differences
in ODI), while participants with AD dementia demonstrated
widespread cortical areas of lower NDI and ODI. Moreover, our
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Figure 4. Region of interest (ROI) analysis of cortical gray matter NODDI metrics and cortical thickness within eight AD regions. NDI, ODI, and cortical thickness were

extracted from eight ROIs in native imaging space using a common atlas, and ANCOVA models (controlling for age and sex) were run to determine differences in gray
matter microstructure and macrostructure between diagnostic groups. Data for each ROI and each diagnostic group are presented as mean percentage change (black
diamond) relative to control group mean, with bootstrapped 95% confidence intervals (bars for MCI and AD dementia groups; solid black line for control group). Bars

are color-coded by ROI and indicate a significant (FDR-corrected P < 0.05) difference from control mean, while gray bars indicate no significant difference from control
mean.

Table 3 Summary of ANCOVA results for ROI analysis demonstrating differences in cortical ODI, with and without controlling for cortical
thickness

MCI vs. control AD vs. control
ODI (uncorrected) ODI (corrected for CT) ODI (uncorrected) ODI (corrected for CT)

ROI β P FDR β P FDR β P FDR β P FDR

Frontal −5.2E − 3 0.502 −3.2E − 3 0.758 −2.8E − 2 2.0E − 6 −1.8E − 2 3.6E − 3
Temporal −5.3E − 3 0.502 −2.6E − 3 0.758 −2.4E − 2 4.4E − 6 −1.6E − 2 3.6E − 3
Parietal −8.4E − 3 0.421 −6.2E−3 0.698 −3.8E−2 1.4E − 7 −2.6E − 2 3.0E − 4
Precuneus −1.8E − 3 0.857 −6.4E − 4 0.992 −2.6E − 2 3.8E − 5 −1.8E − 2 3.6E−3
Ant.
cingulate

−3.1E−5 0.995 −5.5E − 5 0.992 −1.9E − 2 1.1E − 3 −1.9E − 2 2.3E−3

Post.
cingulate

−3.1E − 3 0.736 −2.9E − 3 0.758 −1.9E − 2 1.1E − 3 −1.5E − 2 8.3E − 3

Entorhinal −1.8E − 2 0.421 −1.4E−2 0.500 −2.8E − 2 4.9E − 3 2.1E − 2 0.052
Parahippocampal −9.4E − 3 0.421 −9.4E − 2 0.500 −3.4E − 2 6.0E − 7 −3.4E − 2 2.9E − 6

ANCOVA models tested the effect of diagnosis on ODI, controlling for age, sex, and with and without cortical thickness; bold indicates PFDR < 0.05; CT = cortical thickness;
AD = Alzheimer’s disease dementia group.
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Figure 5. ROC curves from exploratory logistic regression models using NODDI
microstructure and/or cortical thickness. For NDI, ODI, and cortical thickness

(CT), per-subject parameters for each metric were used in logistic regression
models (along with age and sex) to predict diagnosis of AD dementia (A) and
MCI (B). Model summary tables below the ROC curves display AIC and AUC with
bootstrapped 95% confidence intervals (CI).

follow-up ROI analysis demonstrated that even after controlling
for cortical thickness, NODDI metrics were still significantly
lower in MCI and AD dementia groups. Additionally, for partic-
ipants with MCI, gray matter NDI—but not cortical thickness—
was decreased in temporal, parietal, and posterior cingulate
regions.

While DWI has traditionally been applied to the study of
white matter microstructure in AD, a small but growing number
of studies have also used DWI techniques to interrogate gray
matter microstructure (Weston et al. 2015). A majority of these
studies have used the DTI model to investigate cortical MD and
have reported increased MD in cortical regions that also show
macrostructural atrophy, including medial and lateral temporal
lobes, superior and medial frontal lobes, supramarginal gyrus,
posterior cingulate, and precuneus (Rose et al. 2008; Montal et
al. 2018). However, the relatively large voxel dimensions (∼2 ×
2 × 2 mm3) typically used in DWI makes gray matter DTI MD
measurements particularly susceptible to partial volume effects
from neighboring CSF or white matter tissue. In fact, a recent
study showed that after correcting for partial volume effects in a
voxelwise gray matter analysis, there were no longer any signifi-
cant differences in MD between MCI and cognitively unimpaired
participants, and the number of significant voxels between AD
and cognitively unimpaired participants was drastically reduced
(Henf et al. 2018).

In contrast to DTI, NODDI is a multi-compartment diffusion
model that accounts for CSF partial volume effects, which makes
it advantageous for analysis of cortical gray matter microstruc-
ture. In turn, GBSS can be used to capitalize on the NODDI model
to broadly test for microstructural alterations across the brain
using a voxelwise approach (Nazeri et al. 2015, 2017). In our
study, GBSS analysis revealed extensive decreases in cortical
NODDI metrics in the AD dementia group, with reductions in
ODI being more widely distributed than reductions in NDI. These
NODDI microstructural alterations occurred in regions, which
have previously been shown to have cortical thinning (Dickerson
et al. 2008; Bakkour et al. 2009) and increased MD (Rose et al.
2008; Montal et al. 2018) in AD. Additionally, for the MCI group,

GBSS analysis highlighted significantly lower NDI throughout
temporal, parietal, and portions of frontal cortex, while the
CAT12 surface-based analysis did not show any regions with
significantly decreased cortical thickness.

As a multi-compartment model, the metrics derived from the
NODDI model may be able to capture microstructural properties
and quantify neuronal cytoarchitecture better than the DTI
model. Both ex vivo (Jespersen et al. 2010; Grussu et al. 2017)
and in vivo (Fukutomi et al. 2018) evidence indicates that NDI
reflects density of myelinated axons in gray matter, while
ODI captures the heterogeneity of neurite fiber orientations,
which may reflect complexity of dendritic arborization in
gray matter. Thus, using these metrics may provide valuable
information regarding specific gray matter microstructural
changes in AD. In the present study, the MCI group showed
significantly lower NDI in temporal, parietal, and frontal regions,
suggesting that reduction in the density of myelinated axons in
these regions is an early microstructural change that occurs
prior to development of overt clinical dementia. Additionally,
while the MCI group had no changes in ODI, the AD dementia
group demonstrated prominent decreases in ODI across
characteristic AD cortical regions, which provides neuroimaging
evidence of an association between significant loss of dendritic
architecture and the clinical dementia phenotype. While
previous postmortem studies have demonstrated synaptic and
dendritic loss in MCI and AD (Davies et al. 1987; Terry et al. 1991;
Baloyannis et al. 2011; Scheff et al. 2011), additional studies
combining ex vivo imaging and histopathological analysis
at autopsy are needed in order to further characterize the
relationship between NODDI metrics and neuropathological
changes in AD.

Our follow-up ROI analysis used a common atlas in order to
more thoroughly investigate changes in both NODDI microstruc-
ture and cortical thickness within regions affected by AD pathol-
ogy. The results of this analysis highlight some intriguing find-
ings. First, similar to the results observed at the whole-brain
level in the GBSS and CAT12 surface-based analyses, the MCI
group had significantly lower NDI in several ROIs where cor-
tical thickness was unchanged, including temporal, parietal,
and posterior cingulate (Fig. 4). Notably, these regions are some
of the earliest areas of the brain where amyloid accumulates
(Buckner et al. 2005; Sperling et al. 2009) and correspond to
Stages I and II of a recently derived four-stage model of regional
amyloid progression using in vivo amyloid PET imaging (Grothe
et al. 2017). The regional overlap between these early stages
of amyloid deposition (which are most prevalent in cognitively
unimpaired and MCI individuals) and the current findings of
reduced neurite density highlight the potential utility of NDI
as an early biomarker of AD-related neurodegeneration. Our
present results provide additional information regarding ongo-
ing microarchitectural changes in these regions and, based on
our stratification by clinical disease severity, suggest neurite
density is reduced prior to cortical atrophy and development of
dementia.

Second, by extracting both NODDI metrics and cortical thick-
ness from the same ROI, we were able to test whether differences
in NODDI metrics remained after controlling for cortical thick-
ness within an ROI. Overall, a majority of regions with decreased
NODDI metrics remained significant after accounting for cor-
tical thickness, suggesting that changes in NDI and ODI rep-
resent unique microstructural alterations beyond simply gross
atrophy. A notable exception was the entorhinal region—where
controlling for cortical thickness accounted for the majority of
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microstructural alterations observed in the AD dementia group,
possibly due to the relatively small size of this ROI and the
fact that this region showed the greatest cortical thinning. The
entorhinal cortex is well-known to be affected at the earliest
stages of disease; thus, by the time AD dementia is diagnosed,
this region is likely to have undergone substantial atrophy.

Finally, our exploratory logistic regression analysis used aver-
aged microstructural and macrostructural parameters in order
to test the diagnostic accuracy of NDI, ODI, and cortical thickness
across these eight ROIs. This analysis showed that models com-
bining macrostructural and microstructural information had
the best accuracy for distinguishing the AD dementia and MCI
groups from control, while models using only cortical thickness
performed more poorly. These findings suggest that NODDI
metrics may provide additional valuable diagnostic information
regarding neurodegenerative changes in AD dementia.

While the NODDI model has been used to investigate gray
matter microstructure in a variety of psychiatric and neuro-
logical conditions, only one previous study has investigated
NODDI gray matter microstructure in the context of AD (Parker
et al. 2018). That study, which took an ROI-based approach in
individuals with young-onset AD (mean age 61.1 ± 4.9 years),
demonstrated that NDI was significantly lower in all six ROIs
studied (entorhinal cortex, inferior and middle temporal gyri,
fusiform gyrus, precuneus, and precentral gyrus), while ODI
was significantly lower in inferior and temporal gyri, fusiform
gyrus, and precuneus. The results of our present study, which
used an older population with sporadic AD dementia (mean
age 72.2 ± 10.2 years), are broadly consistent with this previous
report. Together, the previous and present studies suggest con-
cordant microstructural alterations between young-onset and
sporadic AD. Moreover, our present study extends findings of
altered gray matter NODDI microstructure to the clinically inter-
mediate stage of MCI, prior to the development of dementia.

A few limitations of the current study should be noted. First,
participants in the AD dementia group were diagnosed based on
clinical and cognitive criteria outlined in the updated NIA-AA
guidelines (Albert et al. 2011; McKhann et al. 2011), but amyloid
and tau biomarker data were not available to confirm the pres-
ence of Alzheimer’s pathology in all participants. Without these
data, we cannot rule out the possibility that some participants in
the AD dementia group do not have sufficient amyloid to meet
the criteria of the new AT(N) Alzheimer’s research framework
(Jack et al. 2018). Thus, interpretation of the present results is
limited to clinically diagnosed cognitive impairment and AD
dementia. Additional studies using CSF or PET imaging AD
biomarkers are needed and may better inform the relationship
between amyloid and tau deposition and cortical microstruc-
ture. Second, we are inherently limited by the voxel resolution
of the DWI scans (2 × 2 × 2 mm3) relative to the thickness of
the cortex (1.5–5 mm). Thus, while the NODDI model reduces
CSF partial volume effects by specifically modeling free water
diffusion, we acknowledge that NODDI metrics in cortical gray
matter may be partially influenced by imperfect suppression
of CSF signal or by the diffusion signal arising from underlying
white matter, especially in thinner areas of the cortex. However,
estimation and masking of the white matter fraction as well as
the skeletonization step in GBSS are designed to restrict statisti-
cal analysis to areas of the cortex where risk of partial voluming
is low. Finally, while we investigated cortical microstructure in
diagnostic groups representing the continuum of progressive
cognitive decline, this study was cross-sectional. Longitudinal
studies will be needed to clarify the utility of NODDI metrics

in predicting conversion from MCI to AD dementia or tracking
the progression of disease. Furthermore, with larger longitudinal
datasets, it will be possible to perform event-time modeling
of cortical microstructural alterations (Marinescu et al. 2019),
which may provide valuable insights into fine-grained patterns
of regional progression of pathologic processes that are not
apparent in cross-sectional analyses.

Conclusion
Overall, the present study demonstrates that microstructural
neurodegenerative processes are widespread and robust in MCI
and AD dementia and that these microstructural alterations
are detectable in brain regions where cortical thinning is not
detected. These findings suggest that NODDI metrics provide
unique information regarding cortical neurodegeneration not
previously detected using T1-weighted structural imaging or
DTI-based approaches. Given that AD pathology accumulates for
years prior to detectable macrostructural atrophy, future work
investigating whether NODDI metrics are sensitive and early
markers of altered cortical microstructure during the silent, pro-
dromal stage will be vital toward furthering our understanding
of the earliest neurodegenerative changes in AD pathogenesis.
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