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Abstract
Pattern similarity analyses are increasingly used to characterize coding properties of brain regions, but relatively few have
focused on cognitive control processes in FrontoParietal regions. Here, we use the Human Connectome Project (HCP) N-back
task functional magnetic resonance imaging (fMRI) dataset to examine individual differences and genetic influences on the
coding of working memory load (0-back, 2-back) and perceptual category (Face, Place). Participants were grouped into
105 monozygotic twin, 78 dizygotic twin, 99 nontwin sibling, and 100 unrelated pairs. Activation pattern similarity was used
to test the hypothesis that FrontoParietal regions would have higher similarity for same load conditions, while Visual
regions would have higher similarity in same perceptual category conditions. Results confirmed this highly robust regional
double dissociation in neural coding, which also predicted individual differences in behavioral performance. In pair-based
analyses, anatomically selective genetic relatedness effects were observed: relatedness predicted greater activation pattern
similarity in FrontoParietal only for load coding and in Visual only for perceptual coding. Further, in related pairs, the
similarity of load coding in FrontoParietal regions was uniquely associated with behavioral performance. Together, these
results highlight the power of task fMRI pattern similarity analyses for detecting key coding and heritability features of
brain regions.
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Introduction
A current focus of recent cognitive neuroscience research has
been to understand the functional specializations associated
with brain networks, rather than focal brain regions. One net-
work that has received a great deal of research attention is
the frontoparietal network (FPN), based on a strong theoretical

consensus that this network plays a critical role in higher cog-
nitive functions such as working memory (WM) and executive
control (Cole and Schneider 2007; Vincentet et al. 2008; Duncan
2010). Consequently, a key goal has been to determine whether
FPN functionality in higher cognition can be understood in
terms of the specific information that is being coded within
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this network. Yet progress in understanding the specific coding
properties associated with the FPN has been especially challeng-
ing, for a number of reasons. One is related to an influential
view of FPN, which postulates that this brain network is critical
for higher cognition precisely because it has a highly flexible
coding scheme that is not fixed but rather adapts to current
task demands (Duncan 2001; Assem et al. 2019). A second reason
is that the FPN is a brain network which seems to strongly
reflect individual differences in cognitive functions and abilities.
Indeed, a key characteristic of the cognitive functions attributed
to the FPN, such as WM and executive control, is that they are
dominated by individual variation (Kane and Engle 2002). Like-
wise, brain imaging studies have repeatedly shown that the FPN
is the brain network most robustly associated with individual
variation in higher cognitive functions (Kane and Engle 2002;
Jung and Haier 2007; Cole et al. 2012, 2013). Consequently, it
may be the case that understanding representational coding in
the FPN needs to incorporate and account for such individual
differences.

Thankfully, advances in cognitive neuroscience techniques
have pointed to promising methods for investigating represen-
tational coding and individual differences in brain regions such
as the FPN. Multivariate pattern analysis (MVPA) approaches
may be particularly suitable for addressing such questions, given
that they enable examination of information encoded in a dis-
tributed fashion, such as in large-scale brain networks. Prior
work has used MVPA to demonstrate that information related
to WM and executive control, such as task rules, can be decoded
from activation patterns within the FPN (Bode and Haynes 2009;
Cole et al. 2011; Woolgar et al. 2011a, 2011b; Reverberi et al.
2012; Zhang et al. 2013; Waskom et al. 2014). Moreover, we
have recently shown that individual differences in FPN coding
can predict variability in behavioral performance in executive
control tasks (Etzel et al. 2016). A particular type of MVPA, pat-
tern similarity analysis, also referred to as correlational MVPA
(Hendriks et al. 2017) or representational similarity analysis
(RSA; Kriegeskorte et al. 2006; Nili et al. 2014), may be particularly
appropriate for examination of individual differences in FPN
coding, since it provides a direct measurement of the similarity
of activation patterns, both between individuals and within
individuals across tasks. Although pattern similarity approaches
have been less frequently applied to research on the FPN and
executive control, one recent study did demonstrate a tight
coupling between idiosyncratic activation patterns within the
lateral prefrontal cortex and specific attentional control strate-
gies and task performance (Lee and Geng 2017).

Another well-established experimental and methodological
approach for exploiting individual differences in brain activation
is the examination of twin or sibling similarity in task activa-
tion patterns, which suggest underlying genetic contributions
to cognitive function. The primary logic underlying such studies
is the assumption that if individual differences in brain acti-
vation patterns are genetically encoded, then they should be
similar across related individuals, and highest in monozygotic
(identical; MZ) twins, since they, on average, share 100% of their
segregating loci. Indeed, the standard logic of the “twin design”
is to directly compare the similarity of brain activation in MZ
and dizygotic (fraternal; DZ) twins, since differences provide a
direct estimate of the heritability of brain activation patterns,
under certain assumptions (Polderman et al. 2015). A number of
brain imaging studies have been conducted using twin designs,
including some that have focused on WM and executive con-
trol (Matthews et al. 2007; Koten et al. 2009; Blokland et al.

2011, 2017). This work has demonstrated that at least some
proportion of the FPN activation variability that is generally
presumed to be idiosyncratic is in fact heritable and thus a
meaningful component of individual differences. An exemplar
of this type of research is the work by Blokland and colleagues
using a large-sample dataset from the Queensland Twin Imaging
Study (Blokland et al. 2008, 2011, 2017). In a series of stud-
ies, these researchers used whole-brain genetic modeling tech-
niques to demonstrate significant heritability effects (averaging
33% of variance) on brain activation patterns evoked during N-
back task performance, which were primarily observed in FPN
regions.

However, much of this previous work has focused on
describing brain activity with univariate statistics: analyzing
voxels individually (e.g., Blokland et al. 2011) or averaging across
voxels within regions of interest (ROIs; e.g., Blokland et al.
2008). A limitation of this approach is that it is unable to detect
patterns spanning multiple voxels. This is problematic because,
as was alluded to above, the neural encoding of cognitive
control-related representations is standardly thought to occur
within such multivariate and distributed patterns of activity.
Consequently, univariate approaches may miss some of the
key dimensions of individual difference that may be present in
distributed FPN activity patterns. A few neuroimaging studies
have utilized multivariate approaches to test for heritability
effects in twin designs (Polk et al. 2007; Pinel et al. 2015). In this
work, the key approach is to examine the relative similarity
of activation patterns in MZ twins, relative to both DZ twins
and unrelated individuals. In a first study of this type, Polk et
al. (2007) showed that pattern similarity was reliably higher
in members of MZ twin pairs within occipitotemporal regions
when processing face and place stimuli. In a follow-up study
by Pinel et al. (2015), this finding was confirmed within a face
region and was further found to differentiate from univariate
approaches, which were not sensitive to a significant MZ
similarity effect in this same region. This aspect of the Pinel
et al. (2015) findings suggests that multivariate approaches may
have potentially greater statistical and inferential power for
detecting the heritability component of individual differences.
Nevertheless, to our knowledge, no prior studies have used
multivariate approaches to estimate heritability and other
familial effects and individual differences within FPN regions,
through twin-based designs.

Another related question refers to the functional-anatomic
specificity of twin-based multivariate pattern similarity effects.
Although the prior studies focusing on occipitotemporal regions
have shown the potential power of multivariate approaches
for detecting twin similarity effects in perceptual coding, other
brain regions were not tested, so the anatomic specificity of
genetically based pattern similarity for the same perceptual
categories (i.e., faces and places) was not evaluated. In other
words, although it is commonly assumed that the multivari-
ate pattern similarity effects occur preferentially in the brain
regions thought to be involved in perceptual coding, that is,
occipitotemporal regions, this assumption has not been tested
directly, by comparison against other brain regions that would
not be thought to mediate such coding (e.g., FPN). Conversely, in
studies examining FPN twin pattern similarity effects, it would
be important to test whether such effects preferentially occur
in conjunction with task conditions that do involve FPN coding,
such as WM and executive control.

A final limitation of the prior work is that it has not provided
strong tests of whether activation pattern similarity effects are
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functionally relevant, for example, by linking them to behavioral
performance. In particular, if activation pattern similarity
reflects the fidelity or quality of representational coding, then
individual differences in activation pattern similarity should
predict variation in behavioral performance. Moreover, twin
pairs showing higher activation pattern similarity (i.e., with
each other) should also be more likely to have better task
performance. This prediction derives from the assumption
that activation pattern dissimilarity reflects, in some part,
noisiness in representational coding—since by definition noisy
representations should be uncorrelated across individuals,
whereas optimal representations should be more similar among
related pairs.

In the current study, we systematically tested each of these
predictions, addressing limitations in the prior work. Specifi-
cally, we exploited the large size and family-based structure of
the Human Connectome Project (HCP) (Van Essen et al. 2012)
dataset to investigate individual differences and twin similarity
in neural representational coding. We focused on two brain
networks for which the prior literature suggests the most clear-
cut predictions of functional specialization and dissociability:
the FPN and a contrasting visual occipitotemporal network.
We took advantage of the richness of the N-back task func-
tional magnetic resonance imaging (fMRI) within the HCP to
examine representational coding of WM load and perceptual
category. In the HCP, participants performed the N-back under
high (2-back) and low load (0-back) conditions with multiple
categories of image stimuli, including faces and places. Neu-
ral coding related to WM load should result in higher activa-
tion pattern similarity across conditions that have the same
WM load but different perceptual categories (e.g., 2-back Face
and 2-back Place) compared with conditions that have different
WM loads (e.g., 2-back Place and 0-back Place). In the same
manner, similarity-based approaches can be used to test for
anatomical specificity, since WM load-based coding should be
present in FPN but not visual occipitotemporal brain regions;
conversely, perceptual category coding should be present in
visual occipitotemporal brain regions but not FPN. As a first
step of analysis, we tested for double dissociability of neural
coding to validate the pattern similarity analysis approach as
a means of addressing individual differences questions within
the FPN.

After establishing such effects, the second set of analyses
tested the hypothesis that pattern similarity in MZ twins would
be greater than in relatives that are less genetically similar (i.e.,
DZ twins and nontwin sibling [SIB] pairs) and further, within
unrelated pairs who also do not share other familial influences
(e.g., shared environment). Even more critically, we provide a
novel test of the anatomical specificity present in this pattern
as well, such that FPN would exhibit high pattern similarity
among twins selectively for load-based coding, whereas in visual
occipitotemporal regions, high twin-based pattern similarity
would be selectively present for perceptual category coding.
Finally, we examined whether variability in pattern similarity
was functionally meaningful, in the sense of predicting better N-
back task performance, and moreover whether twin pair-based
variation could uniquely predict performance over and above
individual variation. To preview, our findings strongly confirmed
each of these predictions, providing a clear base of support for
the idea that FPN activation patterns reflect functionally specific
coding of WM-related information, while also incorporating a
substantial degree of both individual and genetically related
variation.

Materials and Methods
Dataset and Participants

This work used functional images, demographic information,
and behavioral performance measures from the HCP (http://
humanconnectome.org/) (Van Essen et al. 2012). We included
a total of 764 participants (382 pairs) from the 1200 subjects
release, selected to form four groups of paired people: monozy-
gotic twins (MZ, 105 twin pairs), dizygotic (DZ, 78 twin pairs),
non-twin siblings (SIB, 99 pairs); and unrelated people (UNR,
100 pairs). Only twins with genomically verified zygosity (as
of March 2017) were included, and twin status was assigned
based on this information, rather than self-report. Only same-
sex pairs were included in each group. MZ and DZ twin pairs are
necessarily of the same age (though sometimes scanned several
months apart); pairs of SIB and UNR were selected to be within
three years of age at the time of scanning. Only full siblings
(same mother and father) were included in SIB; UNR did not
share either a mother or a father by their self-report. No person
was included in more than one group (i.e., a person would not
be paired with their twin in the MZ group and someone else in
the UNR group).

All analyses were performed using R version 3.1.3 (R Devel-
opment Core Team 2015), with WRS (Wilcox 2017) and Desc-
Tools package functions for robust statistical tests. Trimmed
(at 0.1) means and standard errors are reported unless otherwise
specified. Code and input data for replicating the figures and
analyses are in the Supplemental and available at the Open
Science Foundation, https://osf.io/p6msu/.

Task and Data Processing
We used functional images from the HCP WM task fMRI dataset,
which is a blocked version of the N-back task (Barch et al.
2013). Briefly, task stimuli consisted of visual images (faces,
places, tools, and body parts), with each block composed of a
single category of images, performed with either 0-back load
(judge whether the currently presented image matches the tar-
get image shown at the beginning of the block) or 2-back load
(judge whether the currently presented image matches the one
shown two trials back). The task was presented in two imag-
ing runs, each of which had eight task blocks, one block for
each combination of load and stimulus category (Barch et al.
2013). Our analyses began with the parameter estimate images
[second-level FSL COPEs (Smith et al. 2004)] included in the
HCP 1200 subjects release. Briefly, these COPEs are from general
linear models performed after the images went through the HCP
Minimal Preprocessing Pipelines, which included (among other
steps) Montreal Neurological Institute atlas transformation, sur-
face projection, and surface parcel constrained 2 mm full-width
at half-maximum smoothing (Glasser et al. 2013).

Here, we focus on two distinct cognitive dimensions: percep-
tual category processing and WM load processing. In the HCP
WM task, perceptual category processing varied with which type
of image was used in a block, while WM load processing varied
with whether the block was 0-back or 2-back (higher load for 2-
back). To focus on these processes in a balanced 2 × 2 design, we
included only face and place blocks in our analysis, with four
parameter estimate images of interest for each person: 0-back
Face, 2-back Face, 0-back Place, and 2-back Place. N-back load,
face, and place image processing have been extensively studied,
allowing clear-cut a priori predictions regarding the brain regions
likely to be relevant. Specifically, we assumed that perceptual
coding of perceptual category would occur within the ventral

http://humanconnectome.org/
http://humanconnectome.org/
https://osf.io/p6msu/


3170 Cerebral Cortex, 2020, Vol. 30, No. 5

occipitotemporal visual network (Haxby et al. 2001) with fairly
consistent patterns across individuals; conversely, coding of
cognitive task goals and WM load were assumed to occur within
the frontoparietal control network (Owen et al. 2005; Cole and
Schneider 2007; Vincent et al. 2008; Cole et al. 2012) and also be
more idiosyncratic (highly impacted by individual differences).

As we could make strong expectations of which brain regions
would be relevant for these cognitive processing components
(the FPN and visual occipitotemporal networks), and since the
goal of the current investigations was to explore signal strength
and heritability patterns, rather than to isolate more anatom-
ically localized brain regions (the question of anatomic speci-
ficity is an interesting one that we address briefly below, but a
thorough investigation is beyond the scope of the current work),
we employed a network-based analytic strategy. Specifically, we
used the Gordon cortical parcellation scheme (Gordon et al. 2016)
to anatomically identify the key ROIs within the FPN and visual
occipitotemporal networks. Following the terminology of this
scheme, we hereafter refer to the specific sets of vertices that
define these ROIs as frontoparietal and visual “communities”,
rather than networks, reserving the term FPN to refer to the
more generalized (i.e., not tied to a specific parcellation scheme)
definition of this functional brain network.

The Gordon parcellation was released aligned to the HCP
preprocessed images, making it convenient, while also unbiased
with respect to our primary analyses. The two communities
include brain regions that are generally considered relevant
for WM load and perceptual category processing (Fig. 1, lower
left). All vertices falling within each of these communities were
included in the analyses; no further feature selection was per-
formed. This resulted in, for FrontoParietal, 831 vertices in the
left hemisphere and 1418 in the right hemisphere; for Visual,
3084 vertices on the left and 3689 on the right. Analyses were
performed in each hemisphere separately, and then averaged
over hemisphere.

Load and Category Scores for Pattern Similarity
Quantification

Pattern similarity approaches provide a means of quantifying
the relative degree of similarity between activation patterns
exhibited in different conditions, within brain regions of inter-
est. For this study, our hypotheses concerned the relative sim-
ilarity of vertex-level activity patterns between different task
conditions that shared either the same perceptual category (e.g.,
0-back Face and 2-back Face) or the same WM load (e.g., 2-back
Place and 2-back Face). Specifically, we expected that similarity
related to category would be higher in Visual than FrontoParietal,
whereas similarity related to load would be higher in Fron-
toParietal than Visual. We measured pattern similarity between
conditions using the Pearson correlation statistic, following a
common approach used in prior analyses (Haxby et al. 2001;
Polk et al. 2007). Note that Pearson correlation is insensitive to
additive and proportional translations: it ignores differences in
the across-vertices mean value of each example, but will detect
similarly shaped vectors (e.g., higher values in vertex 2 than ver-
tex 1) (Romesburg 2004). Accordingly, no transformations (e.g.,
normalization) were made to the parameter estimate images:
correlation was calculated using the HCP-released COPE value
for each ROI vertex.

We conducted two sets of pattern similarity analyses, the
first within individual participants (Fig. 1) and the second within
paired participants (e.g., a pair of MZ co-twins, Fig. 2). In both

types of analyses, the correlations can be arranged into matri-
ces, as is the standard approach in RSA (Kriegeskorte et al.
2008; Nili et al. 2014). Given the four conditions, six correlations
are possible within each individual (0-back Face with 2-back
Face, 0-back Face with 0-back Place, etc.), forming symmetric
similarity matrices, while 16 unique correlations are possible
within each participant pair (0-back Face in one person with
2-back Face of their co-twin, etc.). The appearance of the sim-
ilarity matrices themselves can be useful, as can be defining
a statistic to describe the degree to which particular informa-
tion coding schemes are reflected in each matrix. Reference
matrices illustrate the expected appearance for each particular
type of information coding; the reference matrices for Load and
Category coding for individuals are shown in Figure 1 and for
paired participants in Figure 2. There are multiple approaches
for calculating how well each observed RSA matrix matches a
reference; here we computed a difference score by subtracting
the mean of matrix cells specifying the task conditions that were
predicted to be less correlated (marked with − in Figs 1 and 2)
from the mean of cells for conditions that were predicted to be
more correlated (marked +). This difference-based quantifica-
tion method is sometimes described as applying a contrast, with
reference matrix cells weighted to sum to zero (e.g., Oedekoven
et al. 2017).

It is clear how to construct the Category reference matrices
for both the individual and pairwise analyses: images of the
same category should be more similar than images from dif-
ferent categories, with no expectation that the two image cate-
gories (Face and Place) would have different activation strength
in these large communities. This equivalence does not hold for
Load, however: within FrontoParietal the mean level of acti-
vation (i.e., a univariate statistic) generally increases as WM
load increases (although not a focus of the current work, we
briefly explore these types of univariate activation effects in
Supplementary Material, Section S5.2). Further, the HCP used a
0-back manipulation, which likely differs from the 2-back in
more aspects than WM load alone (i.e., 0-back and 2-back are
likely to differ more than 2-back and 4-back would differ). It thus
seems reasonable that we should only expect the similarity of
two 2-back load conditions to be greater than the similarity of
two conditions that differ in load. Restricting the load quantifi-
cation to 2-back conditions is not a perfect solution, however,
because it unbalances the reference matrices, that is, some cells
are omitted from the load quantification that are included in
the category quantification. Given this uncertainty regarding
the best way to quantify load, we settled on a conservative
approach, including both 0-back and 2-back trials in the main
analyses (as shown in Figs 1 and 2), but also conducting pairwise
analyses including only 2-back trials for comparison. Thankfully,
as described under Results, the primary findings were the same
with both analyses, but did show evidence of greater sensitivity
when only including 2-back trials.

Results
Behavioral Performance and Heritability

We first report behavioral task performance to validate
expected patterns, both across the entire group, and in
terms of heritability effects. N-back WM performance was
quantified in terms of d′ (Hautus 1995; Pallier 2002), proportion
correct, and median reaction time (ms, calculated from correct
trials only). First, we compared performance across the four
participant groups (MZ, DZ, SIB, and UNR), collapsing across
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Figure 1. Illustration of the method of quantifying similarity within each individual participant. Starting at lower left and moving clockwise, we analyzed vertices
within the Gordon FrontoParietal and Visual communities (Gordon et al. 2016). The values were extracted for each vertex from the parameter estimate images (COPEs,

as released by the HCP), one vector for each of the four conditions of interest. The Pearson correlation between all pairs of these vectors was calculated, and arranged
in the form of a similarity matrix; upper right. Two matrices, one for each community, were made for each participant. Finally, the Load and Category information in
each matrix was quantified by subtracting the average of the cells marked with − from the average of the cells marked with + in the Reference Matrices, resulting in
four scores for each participant.

Figure 2. Illustration of the method of quantifying similarity of paired participants. The imaging data (parameter estimates) for each participant were extracted for each
of the four conditions and two communities, as in Figure 1. The similarity matrix for each participant pair was constructed as Pearson correlations of all possible condi-

tion combinations between the two participants (e.g., 2-back Place of Person 2 correlated with 2-back Face of Person 1). Note that, unlike the similarity matrices for each
individual participant, these matrices are not symmetric, and the diagonal is not 1. Finally, the Load and Category information in each matrix was quantified by subtract-
ing the average of the cells marked with − from the average of the cells marked with + in the Reference Matrices, resulting in four scores for each pair of participants.

condition (Table 1). The groups were not predicted to differ in
performance, and in fact this was primarily the case. Groups
did not differ in d′ (P = 0.08) or RT (P = 0.1), although DZ twins

did show evidence of slightly better performance (P = 0.02,
measured with proportion correct and t1way, a robust ANOVA
(Wilcox 2017); Supplementary Material, Section S1.1a). Next,
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Table 1 Mean {standard error} of behavioral measures, all subjects combined, calculated from trials with the indicated conditions

Face, Place 0-back, 2-back Face, Place 0-back Face, Place 2-back Face 0-back, 2-back Place 0-back, 2-back

Proportion correct 0.92 {0.003} 0.954 {0.003} 0.896 {0.003} 0.926 {0.003} 0.918 {0.003}
d′ 2.6 {0.04} 3.01 {0.04} 2.23 {0.04} 2.62 {0.04} 2.44 {0.04}
Median RT 799.8 {4.8} 700 {4.5} 921.4 {5.8} 787.7 {5.1} 810.3 {5.1}

Distributions and subject group separated results shown in Supplementary Material, Section S1.1

Table 2 Pearson correlation between the paired people in each subject group on the behavioral performance measures

MZ DZ SIB UNR

Proportion correct 0.44 (P < 0.001)a 0.14 (P = 0.13)b 0.36 (P < 0.001)c −0.32 (P = 0.004)a,b,c

d′ 0.43 (P < 0.001)a 0.25 (P = 0.03)b 0.32 (P < 0.001)c −0.38 (P = 0.002)a,b,c

Median RT 0.34 (P < 0.001)a 0.17 (P = 0.062) 0.11 (P = 0.388) −0.07 (P = 0.4)a

P values (in parentheses) were calculated with hc4wtest, a robust regression test for R2 different than zero (Wilcox 2017), and uncorrected for multiple comparisons.
Scatterplots and regression lines are in Supplementary Material, Section S1.2. Significantly different pairwise correlations within each row (i.e., on each measure) are
indicated by shared superscripts, with P < 0.0083 (Bonferroni correction of 0.05 for 6 comparisons) as the significance threshold. All pairwise comparison P values are
listed in Supplementary Material, Section S1.2 and were calculated by twohc4cor (Wilcox 2017). The astute reader will note negative correlations among the UNR pairs,
which unexpectedly reached statistical significance for some of the measures. We believe that the observed negative correlations reflect a sampling anomaly, as a
larger set of unrelated pairings was quite close to the expected zero correlation (Supplementary Material, Section S1.5). Regardless, this does not seriously influence
our key analyses or interpretations, which center on neural pattern similarity relationships among related pairs.

we verified the presence of a significant load effect (poorer
performance on 2-back relative to 0-back; P < 0.001 for all
three measures). Again, there was no significant interaction
with subject group or perceptual category (robust ANOVA;
Supplementary Material, Section S1.1a). There was, however,
a significant main effect of category (P = 0.038 for proportion
correct, P < 0.001 for d′ and RT), such that responses were faster
and more accurate for Face trials (relative to Place).

Pairs were expected to show higher similarity as genetic
similarity increased; thus, the three groups of related indi-
viduals (MZ, DZ, and SIB) were predicted to have more
similar performance than the unrelated pairs (UNR; see
Supplementary Material, Section S5.1 for a control analysis in
which UNR pairs were matched to have similar performance).
Likewise, if genetic factors make a strong contribution to cogni-
tive task performance, the MZ pairs would be predicted to show
the strongest within-trait correlations. As shown in Table 2, we
did find that all three related groups showed stronger similarity
than the unrelated pairs for proportion correct and d′. The same
trend was present for RT, but was only significant when compar-
ing MZ twins with unrelated pairs. In all N-back performance
measures, similarity was numerically highest for MZ twin pairs,
but was not significantly different from the DZ or SIB pairs.

A parallel way to reveal the same point is through classic her-
itability modeling, which enables estimates of the proportion of
variance that is genetic in origin. Using the classical twin model,
as implemented with ACE structure (where A refers to additive
genetic, C to common familial environment, and E to individual-
specific environment; the correlations did not suggest the role
of nonadditive genetic factors) (Evans et al. 2002), we estimated
these parameters for the N-back behavioral measures. The best-
fitting model by Akaike’s Information Criterion was one in which
A and E significantly contributed to variance in these measures,
with heritability estimates in expected ranges (0.36–0.44) and
statistically significant when estimates of common environ-
ment were constrained to zero, without any deterioration of
fit (Supplementary Material, Section S1.6). These estimates are
similar to what has been observed in prior heritability analyses
of the N-back task (Blokland et al. 2008). We next examined the
brain activity data to determine whether estimation of genetic

factors could be detected with similar, if not higher, sensitivity
and specificity than the associated behavioral measures.

Anatomical Specificity of Activation Similarity Patterns:
Analyses in individuals

The first analyses were conducted to establish sufficient
power to detect heritability and validate that pattern similarity
analysis methods were sufficiently sensitive to demonstrate
the expected functional and anatomic specificity. We first
considered which conditions should have more similar acti-
vation patterns for the two types of information coding: if
WM load is coded in a brain network, then conditions sharing
the same load should exhibit similar activation patterns (0-
back Face and 0-back Place; 2-back Face and 2-back Place),
while if perceptual category is coded, conditions sharing the
same category should be more similar (0-back Face and 2-back
Face; 0-back Place and 2-back Place). We expected that the
FrontoParietal community would show more evidence of load-
related than category-related similarity, with the reverse profile
in the visual community. Following the conventions of pattern
similarity analysis, these load- and category-related similarity
predictions are shown as reference matrices in Figure 1. Next,
correlations among the six pairwise combinations of the four
parameter estimate images were calculated for each community
within each person, examples of which are in Figure 3 and
Supplementary Material, Section S2.1. Visual inspection of
individuals’ matrices suggests a clear difference between the
communities: the FrontoParietal matrices tend to resemble
the Load reference, while the Visual tend to resemble the
Category reference. This impression was evaluated numerically
by quantifying the Load and Category information in each
individual’s Visual and FrontoParietal matrices, calculating
differences according to the reference matrices (Fig. 1), which
provides four scores for each participant: FrontoParietal Load,
FrontoParietal Category, Visual Load, and Visual Category.

The distribution of the four scores (Fig. 4, Supplementary
Material, Section S2.3) provides a clear indication of anatomical
and functional specificity: in the FrontoParietal community,
the quantification scores were significantly higher for Load
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Figure 3. Similarity matrices for the two communities in four representative individuals. Additional examples are in Supplementary Material, Section S2.1, and group
averages shown in Supplementary Material, Section S2.2. Note that the FrontoParietal matrices tend to resemble the Load Reference (Fig. 1), while the Visual matrices
tend to resemble the Category Reference, a tendency confirmed by the distribution of quantification scores (Fig. 4).

than Category (P < 0.001), whereas in the Visual commu-
nity the reverse pattern was present (Category > Load,
P < 0.001). These patterns reflect a highly robust double
dissociation (Community by Information Coding interaction,
P < 0.001), supporting the notion of specificity in FrontoPari-
etal as well as Visual (all pairwise contrasts also signifi-
cant). Moreover, the prior analyses included all participants,
but the double dissociation is highly significant within
each separate participant group (MZ, DZ, SIB, and UNR) as
well (Supplementary Material, Section S2.3). In an exploratory
follow-up analysis we tested for the same dissociation, but
across the whole brain within each individual parcel, rather than
only the two communities (Supplementary Material, Section
S2.6). The parcel-level results were quite consistent with the
community-level results, showing that Category > Load effects
were primarily observed in Visual parcels, while Load > Category
effects were most robust in FrontoParietal, DorsalAttention,
and Default Mode parcels. Moreover, no individual parcels had
effects stronger than what we observed at the community level.

Although the community-based double dissociation was
highly robust at the group level, there was also clear individual
variation in the quantification scores. If this variability reflects
functionally meaningful individual differences in brain coding
of relevant task dimensions, then it should also be predictive
of individual differences in behavioral task performance. To
examine this question, we used N-back d′ as the behavioral
measure (collapsed across Load and Category). The analysis
strongly confirmed the hypothesis of functional significance,
as highly selective brain-behavior relationships were observed
(Fig. 5). Specifically, the Load score was positively correlated
in the FrontoParietal community (r = 0.31, P < 0.001), such that
individuals showing a higher score (higher fidelity of load-
based coding) had better N-back performance. Yet in the Visual
community, the reverse pattern was present, with Load score
correlating negatively with performance (r = −0.19, P < 0.001),
such that stronger Load coding predicted poorer N-back perfor-
mance. On the other hand, Category scores were somewhat

Figure 4. Distribution of Load and Category quantification scores for individuals’
matrices, by community. The Load quantification scores tend to be higher than

Category in FrontoParietal, but the reverse in Visual. Boxplots for participants by
subject group are shown in Supplementary Material, Section S2.3.

more weakly correlated with behavioral performance, and
also showed the opposite profile (i.e., negative correlation for
FrontoParietal, r = −0.15, P < 0.001; positive correlation for Visual,
r = 0.27, P < 0.001).
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Figure 5. Relationship between individual behavioral performance (d′) and matrix quantification for Load and Category. Bands are 0.95 confidence intervals for the

regression line, calculated with lsfitci (Wilcox 2017). Statistics by subject group are in Supplementary Material, Section S2.4.

Although each of these correlations indicates high brain-
behavior selectivity, they also suggest the possibility that all
four scores are independently predictive of N-back performance.
On the other hand, it seems likely that Load-based coding
might be the most strongly associated with performance in
the N-back, given the presumed dependence of the task on WM
processes. To examine this issue, the data were submitted to
a multiple regression analysis, with behavioral performance
as the outcome variable, and all four quantification scores as
potential predictor variables. This analysis confirmed that both
Load scores were independently predictive of performance, with
FrontoParietal Load positively predictive (beta = 0.32, P < 0.001)
and Visual Load negatively predictive (beta = −0.18, P = 0.0036).
However, with all four predictors in the model, although
explaining 16% of task variation, neither of the Category indices
made independent contributions to predicting N-back task
performance (FrontoParietal P = 0.4, Visual P = 0.1; full results in
Supplementary Material, Section S2.5). Together, these results
converge on the interpretation that individuals exhibiting strong
Load coding in FrontoParietal regions will tend to have better N-
back performance, while those showing strong Load coding in
Visual regions will have poorer performance.

Genetic Influences on Activation Pattern Similarity:
Analyses in Pairs

After establishing the validity and utility of pattern similarity
analysis for examining anatomically selective patterns of
individual difference in neural coding, the second set of
analyses examined the similarity of brain activation patterns
in pairs of related and unrelated individuals. These analyses
were conducted to provide a stronger and more novel test
of the hypothesis that task-specific activation patterns (e.g.,
in the FPN) are genetically influenced and reflect individual
differences. Adapting the approach used above, we again
created pattern similarity matrices, but now computed the
similarity of paired individuals, to quantify the degree to which
activation in one member of the pair matches the other.
Specifically, activation pattern similarity was again measured
with Pearson correlation, but computed for all 16 pairwise
combinations of the four parameter estimate images across
individuals (e.g., the 0-back Face of one twin to the 2-back
Face of their co-twin; Fig. 2). Example matrices for one pair of
people from each group are in Figure 6; additional examples and
group-level average matrices are provided in Supplementary
Material, Section S3.1. The appearance of these pairwise
matrices (Fig. 6) is broadly similar to the matrices for individuals

(Fig. 3): highest correlations in the lower right (cells sharing
2-back Load) in FrontoParietal, but a checkerboard pattern
(higher correlation for cells sharing Category) in Visual.

Unlike the matrices for individuals described previously, the
pairwise matrices are not symmetric, and so the diagonal is
meaningful, containing the across-person within-condition cor-
relations for each of the four matched conditions (e.g., 0-back
Face in one twin with 0-back Face of their co-twin). These
values along the diagonal, when contrasted across MZ, DZ, SIB,
and UNR, provide evidence of heritability of the condition, and
parallel the type of analyses conducted by Polk et al. (2007)
and Pinel et al. (2015). However, in these prior studies, analyses
were restricted to visual occipitotemporal regions. Here, we were
able to not only test for replication (with a much larger sample
size), but also to extend these previous findings to FrontoParietal
regions and to WM-related conditions. Replicating prior results,
we found significantly greater Visual activation pattern similar-
ity in MZ twins than DZ twins, SIB, and UNR (Fig. 7; P < 0.001 in
all pairwise t-tests, Supplementary Material, Section S3.2). How-
ever, unlike the prior work, we also found that the DZ and
SIB pairs showed significantly higher pattern similarity than
UNR pairs, even though the latter were also matched on age
and gender (the significance holds even if UNR are matched on
behavioral performance; Supplementary Material, Section S5.1).
No significant differences between DZ and nontwin SIB pairs
were found in any comparison (indicating an absence of spe-
cial twin environmental effects). The stronger participant group
effects in our study are likely due to the increased power and
precision provided by the larger sample sizes: 105 MZ and 78 DZ
twin (with an additional 99 SIB) pairs versus 11 MZ and 11 DZ
twin pairs in (Polk et al. 2007) and 16 MZ and 13 DZ twin pairs in
Pinel et al. (2015).

Although Polk et al. (2007) and Pinel et al. (2015) only exam-
ined visual occipitotemporal ROIs, we carried out the analysis
in the FrontoParietal community as well (Fig. 7, Supplemen-
tary Material, Section S3.2). Parallel findings emerged: within
FrontoParietal, pairwise t-tests also showed significantly greater
similarity in MZ twins than DZ twins, SIB, and UNR (P < 0.001)
and likewise greater similarity among DZ and SIB pairs rela-
tive to UNR (but again no differences between DZ and SIB).
The exception to this pattern was in the 0-back Face condi-
tion, in which only the difference between MZ and UNR had
P < 0.001. The reduced similarity in FrontoParietal for 0-back
load is unsurprising, as we expected FrontoParietal activation to
increase with cognitive load. In a parallel heritability analysis,
shown in Supplementary Material, Section S3.4, we found that
activation in the FrontoParietal community was more greatly
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Figure 6. Similarity matrices for the two communities in four paired people. More examples and the group averages are in Supplementary Material, Section S3.1. As
in the Figure 3 matrices for individuals, these pairwise similarity matrices tend to resemble the Category Reference (Figure 2) when calculated from Visual activation
patterns, but the Load when calculated in FrontoParietal. The resemblance and correlations are strongest in the MZ and DZ pairs, with little similarity seen in UNR
FrontoParietal.

Figure 7. Mean similarity of matched conditions (Figure 6 matrix diagonals) in the FrontoParietal and Visual communities. Error bars are standard error of the mean.

Horizontal lines indicate bars that significantly (P < 0.0083, Bonferroni correction of 0.05 for 6 comparisons) differ in a robust t-test. The full dataset and statistics are
shown in Supplementary Material, Section S3.2.

attributable to individual-specific environmental effects than
the Visual community, as indexed by the overall lower MZ simi-
larity and consequent estimates of E (e2 ranged from 0.41 to 0.49
for Visual vs. 0.75 to 0.87 for FrontoParietal). In addition, while
familial effects (genetic and common environment, estimated
as 1 − e2) were more pronounced for the Visual than FrontoPari-
etal community, the extent to which additive genetic factors
(i.e., heritability) influenced similarity in both communities was
equivalent (a2 ranged from 0.05 to 0.16) such that the increased
familial correlation in the Visual community was primarily due
to stronger effects of common environment (c2 ranged from 0.38
to 0.41 for Visual vs. 0.04 to 0.10 for FrontoParietal).

Together, these findings replicate and extend the work of Polk
et al. (2007) and Pinel et al. (2015), by demonstrating a clear role

for heritable factors that are present in activation patterns not
only within occipitotemporal visual regions, but also in fron-
toparietal regions related to WM and executive control. More-
over, the results provide convincing evidence that FrontoParietal
activation pattern similarity effects are dominated by genetic
factors, with very little influence of shared environment or other
confounding demographic factors (age, gender, etc.).

Genetic, Anatomic, and Task Specificity in Pairwise
Activation Similarity Patterns

Although the analyses reported above were useful for extending
the findings of Polk et al. (2007) and Pinel et al. (2015), and for
confirming that activation pattern similarity approaches can
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Figure 8. Distribution of pairwise Load and Category quantification scores, by Community. Load quantification scores are higher than Category in FrontoParietal,

but lower in Visual. A robust pairwise t-test was performed within each community and subject group, as listed at the bottom of each plot (YuenTTest, trim = 0.1;
Supplementary Material, Section S4.1a). The full dataset is shown in Figure 9; one MZ FrontoParietal Category outlier at −0.18 not shown.

be used to estimate heritability effects, they do not exploit
the full power of the methodology, because they only use the
diagonals of the similarity matrices (correlation between pairs
of individuals on matched conditions). The alternative (RSA-
style) approach quantifies how well the full similarity matrix for
each participant pair conforms to the reference matrices (Fig. 2),
and consequently, provides a more sensitive test of whether
pairwise similarity is preferentially strong for a particular
representational coding scheme (Load or Category). Moreover,
this approach avoids the confounds inherent in correlating
conditions of the same type (e.g., if two participants are found to
have similar activation patterns for 2-back Place, it could be due
either to the shared Load or the shared Category). Consequently,
we next computed the pairwise Load and Category quantifi-
cation scores in each of the two communities (Visual and
FrontoParietal), for paired participants of all four types (MZ,
DZ, SIB, and UNR).

The pairwise Load and Category quantification scores
showed a high degree of anatomic specificity. In FrontoParietal,
Load scores were significantly greater than Category in all
subject groups (P < 0.001; Fig. 8 and Supplementary Material,
Section S4.1). Conversely, in Visual, Category scores were much
greater than Load in all subject groups (P < 0.001). Importantly,
although this double dissociation is of the same form as
observed in the individual analyses, it reflects an independent
measure of task coding specificity. In particular, the pairwise
scores reflect selective activation pattern similarity between
individuals: a high Load quantification score in FrontoParietal
indicates that the two individuals’ activation patterns are more
similar when the WM load is the same (e.g., 2-back Face in one
person and 2-back Place in their twin) than when the WM load
is different (e.g., 2-back Face in one person and 0-back Face in
their twin).

Moreover, this coding specificity also showed clear effects
of pair group: most prominent in MZ twins, least in UNR
individuals (and the same pattern of results was found even
when selecting UNR pairs in which the pair members were
matched on behavioral performance; Supplementary Material,
Section S5.1b). Interestingly, these imaging results show genetic
similarity effects similar to the analyses of behavioral perfor-
mance. Using robust ANOVAs to test for an influence of subject
group within each of the four combinations of Community and

Quantification yielded highly significant effects for Load
in FrontoParietal (F = 5.6, P = 0.001; Supplementary Material,
Section S4.1b) and Category in Visual (F = 35.5, P < 0.001), but
not for Category in FrontoParietal (F = 2.2, P = 0.093). Using
post hoc tests to explore these significant models, Load in
FrontoParietal showed not only MZ > UNR (P < 0.001), but also
MZ > SIB (P < 0.001) and MZ > DZ (P = 0.015). Likewise, Category
in Visual showed MZ greater than all three other groups
(P < 0.001); further, DZ and SIB were significantly greater than
UNR (P < 0.001). There was no hint of a significant difference
between DZ and SIB in either model (both Ps > 0.3), suggesting
that environmental factors unique to twins have a minimal
impact on the similarity of brain activation patterns. However,
the DZ/SIB scores were more similar to the MZ scores than would
be expected if heritable factors alone were responsible for their
similarity, indicating the role of common environmental effects
on the scores for both communities. Together, these results
suggest that brain activation pattern similarity measures are
robustly heritable, influenced by familial environmental factors,
and are observed most clearly when taking into account the
task coding present in the particular brain area (weaker genetic
relatedness effects were found for Category in FrontoParietal
and Load in Visual).

We also examined similarity effects when quantifying Load
with only 2-back trials in the reference matrix (Supplementary
Material, Section S4.1), suspecting the greater activation occur-
ring during the high WM load condition would make activation
pattern similarity in twins, if present, more pronounced
(though at the possible cost of increased quantification score
variance, since twelve cells go into the calculation instead of
all 16). Indeed, the finding of Load greater than Category in
FrontoParietal but Category greater than Load in Visual was also
present when using only 2-back trials for Load quantification
(Supplementary Material, Section S4.1a). The robust ANOVAs
found a stronger effect of subject group in FrontoParietal with
2-back Load (F = 7.1, P < 0.001), but no effect in Visual for 2-
back Load (F = 0.6, P = 0.62, Supplementary Material, Section
S4.1b). Conversely, if only 0-back trials are used for Load
quantification, there is no effect of subject group in either
Community (Supplementary Material, Section S4.1b). An alter-
native interpretation of these results is that they are primarily
driven by activation differences across conditions, for example, a
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univariate increase in activation during the high load condition
could cause an apparent increase in similarity. To investigate
this possibility, we compared the mean activation in each pair
of participants but found no load-related relationships (i.e.,
high mean FrontoParietal 2-back activation in one person does
not predict high activation in their co-twin; Supplementary
Material, Section S5.2c). Together, these results underscore the
idea that these similarity measures are most clearly identifying
genetic relatedness effects when the task coding dimension
matches the functionality of the particular brain network.

Brain–Behavior Relationships in Pairwise Activation
Similarity Patterns

The above set of analyses confirms the presence of heritability
effects in blood oxygen level-dependent (BOLD) activity, while
using a multivariate pattern similarity approach. A test of the
functional relevance of these pairwise scores is whether they,
like the individual scores, are related to behavioral performance.
Figure 9 shows the quantification scores for all participant
pairs, with pairs ordered by behavioral performance (mean d′).
Behavioral performance clearly explains some of the variability:
pairwise quantification scores tend to increase as performance
increases. Note that these results again showed a high degree
of specificity: in FrontoParietal, the correlation between Load
and behavioral performance was significant in all related pairs
(MZ, DZ, SIB, P ≤ 0.002) but was not significant for UNR pairs
(P = 0.1); likewise, there was no association for any group when
using the Category instead of the Load score (all P > 0.2). In
contrast, within Visual, the correlation between Category and
performance was significant for MZ and DZ twins (P < 0.005)
and marginally so for SIB and UNR pairs (P < 0.025), but much
less convincing when using Load instead of Category for
quantification (Fig. 9, Supplementary Material, Section S4.2).
The anatomic and task-dependent relationship with behavioral
performance is even more striking when using only 2-back
trials for Load quantification, but absent if only 0-back trials
are used (Supplementary Material, Section S4.3). However, the
MZ correlation was not significantly greater than the DZ or SIB
correlations (which did not differ from each other: e.g., for 2-
back trials for Load in the FrontoParietal community: rMZ = 0.46,
rDZ = 0.49, rSIB = 0.43) suggesting that the relationship between
behavioral performance and variability in BOLD activity might
be due to common environmental rather than heritable factors.

Given the similarity of these patterns to what was observed
when using the individual, rather than pairwise scores, one
possible concern is that the correlations between the pairwise
scores and behavior are purely a reflection of shared variance
with the individual scores. To test for this possibility, we
conducted multiple regression analyses, predicting the pairwise
score with not only behavioral performance (from each member
of the pair separately) but also with the individual quantification
scores from the pair members (Supplementary Material, Section
S4.4). The results were again specific: in FrontoParietal, the
pairwise Load quantification scores tended to be associated
with behavioral performance, even after including the individual
quantification scores as predictors. This pattern was most
strongly present for MZ twins (β = 0.33, P < 0.001 for including
twin 1’s d′; β = 0.14, P = 0.14 for twin 2’s d′; Supplementary
Material, Section S4.4), but with similar trends in the DZ and SIB
pairs as well. Model comparison reinforced this impression of
the usefulness of including all four predictors in the multiple
regression: the full model (d′ for person 1 of pair, d′ for

person 2 of pair, quantification score for person 1, quantification
score for person 2) outperformed the model with the individual
quantification scores only (P < 0.001 for MZ; P = 0.06 for DZ;
P = 0.098 for SIB). The difference is even more striking when
only 2-back trials are used for Load quantification: the full
model outperformed the quantification scores-only model at
P < 0.001 for MZ; P = 0.0017 for DZ; P < 0.001 for SIB. The findings
are dramatically different in Visual: after accounting for the indi-
vidual Category quantification scores, there was no additional
relationship between N-back task performance and the pairwise
scores in any of the subject groups. A final control analysis
(Supplementary Material, Section S5.2c) also included the mean
(i.e., univariate) FrontoParietal and Visual activation, treating the
condition difference contrasts (2-back – 0-back and Place – Face)
as additional predictor variables in the multiple regression, to
determine whether the above effects could be explained by the
presence of mean activation differences between the conditions.
Yet even with the univariate predictors included in the model,
the FrontoParietal Load pairwise quantification score was still
found to be associated with N-back behavioral performance,
suggesting that this association could not be fully explained
by pairwise similarity in load-related univariate activation
levels.

Together, these findings strongly underscore the selective
utility of FrontoParietal regions as functional markers of WM
load-based coding and of the variability in such load-based
coding both in individuals and related pairs. Thus, better N-back
task performance is predicted both for individuals that show
stronger evidence of selective Load coding, and additionally, for
related pairs that show greater similarity in their Load coding
patterns. Conversely, neither Visual regions nor variation in
stimulus-based coding can serve as equivalent predictors of
performance, which again reinforces the selective importance
of FrontoParietal Load coding to N-back performance.

Discussion
The primary goal of this study was to test whether multivariate
pattern similarity approaches could provide increased sensitiv-
ity and leverage for revealing the neural coding properties, indi-
vidual differences, and genetic similarity effects present within
the frontoparietal network (FPN). In this regard, the results pro-
vide compelling support along four different dimensions. First,
we found clear evidence of functional anatomic specialization, such
that while visual occipitotemporal cortex was selectively sen-
sitive to similarity effects related to perceptual category (face,
place), the FPN was selectively sensitive to similarity effects
related to working memory (WM) load, a higher-order cognitive
dimension strongly related to executive function and cognitive
control. Second, pattern similarity in FPN showed clear evidence
of systematic individual variation, and moreover, these individual
differences were strongly associated with task performance,
such that individuals exhibiting stronger selectivity to WM load
coding also performed better on the N-back task. Third, we
found that pattern similarity could be used to clearly reveal
a gradient of genetic relatedness such that identical (MZ) twins
showed the strongest levels of selective pattern similarity to
WM load in the FPN, with lower, but still significant degrees of
similarity found among pairs showing 50% genetic relatedness
(i.e., fraternal/DZ twins and siblings). Finally, we identified a
new metric for quantifying ‘pairwise’ variation in that genetically
related pairs showing greater degrees of selective similarity for
WM load coding in FPN also had uniquely better N-back perfor-
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Figure 9. Pairwise quantification scores, arranging participant pairs along the x-axis in order of increasing behavioral performance within each subject group (d′

averaged over the two participants; pairs with missing performance for either member omitted). The best performing pair is at the right of each subject group, so higher

performance is associated with higher quantification scores. Listed r and p values are from correlating quantification scores against the behavioral performance rank
ordering; Supplementary Material, Section S4.3 and the main text give correlations against the mean d′. Supplementary Material, Section S4.2 has versions of this
figure unsorted by behavioral performance and with different Load quantification. Supplementary Material, Section S5.1c has this figure for a group of unrelated
participants chosen to have similar behavioral performance.

mance. Taken together, the results strongly reinforce the coding
specificity principle, in demonstrating that FPN shows unique
coding properties that are both sensitive to multiple dimensions
of variation (individual, genetic) and also functionally relevant
for task performance. We next describe further implications
of the present results, as well as their relationship to prior
work.

Neural Coding of WM Load in FPN

The current results are consistent with a large neuroimaging
literature indicating the importance of the FPN in WM and
executive control functions (Braver and Ruge 2006; Niendam et
al. 2012; Rottschy et al. 2012). However, the current work extends
beyond much of this prior literature, which has tended to rely on
univariate measures of FPN involvement in WM. Indeed, in prior
work, the focus has typically been on demonstrating increased
or decreased FPN activity as a function of WM load, or other
relevant variables, such as the type of information being main-
tained, updating or manipulation requirements, and distractor-
related interference. By contrast, multivariate approaches shift
the focus to the pattern of activity, potentially providing greater
traction regarding how WM load is represented in the FPN. In par-
ticular, multivariate approaches can provide information regard-
ing the WM-related content being coded by a region, even when
the mean (i.e., univariate) level of activity may not change or be
sufficiently sensitive (Harrison and Tong 2009; Serences et al.
2009; Riggall and Postle 2012). In the current study, we specif-
ically employed multivariate pattern similarity techniques to
demonstrate that the structure of activation similarity or dis-
similarity across WM conditions can also be informative. For
example, here we demonstrated that FPN regions show signif-

icantly greater activation similarity in conditions that share the
same WM load, even when the content of information being
maintained can change, relative to posterior occipitotemporal
regions. Moreover, we established that such similarity metrics
are functionally important, in that they may reflect how well
WM load information is represented in an individual (or pair
of individuals), as this information appears to predict more
accurate task performance.

Although the current study highlights the potential of pat-
tern similarity approaches for testing questions regarding WM,
executive control, and FPN function, it should be clear that this
work represents just an initial step, and indeed the questions
being asked in the current study were cast at a relatively coarse
grain. For example, the current study focused on just the N-
back task, with only two levels of WM load, and relied on block-
related measures of activity. However, because pattern similarity
analyses are eminently flexible, the approach could be easily
extended to compare various WM task paradigms, to focus on
different load levels, or to utilize event-related designs, which
would enable a more fine-grained focus on various within-
trial events (encoding, delay, and probe decisions) and/or activ-
ity dynamics within the trial (King and Dehaene 2014). Such
extensions are likely to be highly fruitful and could be used to
resolve important questions raised by the current work, such as
the finding that the similarity structure of the 0-back seemed
different from the 2-back. By examining other load levels (e.g.,
1-back, 3-back) it could be better determined whether there are
qualitative differences that make some load levels more distinct
from others (e.g., 2-back and 3-back may be more similar to
each other than they are to 0-back or 1-back). Indeed, although
there is a growing literature utilizing MVPA decoding approaches
within the domain of WM and cognitive control (D’Esposito
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and Postle 2015), the use of pattern similarity measures is still
sparse in this domain, relative to its adoption in other cognitive
domains, such as perceptual coding (Kriegeskorte et al. 2008;
Chikazoe et al. 2014) and episodic memory (Xue et al. 2010;
LaRocque et al. 2013; Dimsdale-Zucker and Ranganath 2018).
We hope that the utility of the pattern similarity approach
demonstrated here will encourage other researchers to begin
applying it to a broader range of questions in WM and executive
control.

Neuroimaging of Individual Differences

Within cognitive neuroscience there has been steadily increas-
ing interest in using neural measures to better capture and
characterize individual differences (Braver et al. 2010; Gordon
et al. 2017; Gratton et al. 2018; Satterthwaite et al. 2018; Cooper
et al. 2019). This focus on individual differences has partly
been driven by the advent of large-scale neuroimaging studies,
which are optimized for sensitivity to detect reliable individual
variation (Cooper et al. 2019). Indeed, a primary rationale and
goal of the HCP was to define individual variation in the human
connectome (Van Essen et al. 2012). The success the HCP and
others like it have led to a great deal of excitement around the
concepts of personalized neuroscience (Satterthwaite et al. 2018)
and “connectome fingerprinting” (Finn et al. 2015). Yet much
of the recent excitement around individual difference-focused
datasets such as the HCP has been on characterizing individual
differences from resting-state functional connectivity and under
task-free states (Tavor et al. 2016; Gratton et al. 2018) rather than
on task-based fMRI activation patterns.

The current findings illustrate some of the unique advan-
tages of task-based fMRI patterns in terms of detecting func-
tional and anatomic specificity of individual variation. In partic-
ular, a key finding was that individual differences were found to
be dependent on task context. Within the FPN, the individual dif-
ferences in activation patterns that predicted task performance
were selective to coding of WM load; individual differences
in the coding of perceptual category in FPN had no relation-
ship to task performance. Conversely, when looking at visual
regions, the strength of WM load coding negatively predicted
performance, such that individuals with strong coding of WM
load in Visual tended to have poorer task performance. These
context-specific individual differences patterns also highlight
the utility of pattern similarity approaches for understanding
the nature of individual variation. The findings reinforce the
notion that it is the coding specificity of FPN and visual regions
that is functionally critical for optimal task performance. In
other words, the findings demonstrate that it was the individ-
uals showing the strongest functional specificity—coding WM
load only in FPN and perceptual category only in visual regions—
who exhibited the best performance. This relationship should
only be present if coding specificity is functionally relevant for
task performance. Together, this work suggests that comput-
ing pattern similarity-based quantification scores that compare
alternate coding schemes could be a powerful approach for
revealing individual differences. Future work is needed, though,
to demonstrate that such approaches could also work well in
other domains. For example, in the HCP Gambling task, quan-
tification scores could be computed to identify reward or pun-
ishment coding and determine whether individual differences
in coding scores might predict functionally relevant behavioral
indices (e.g., trait reward or punishment sensitivity).

Genetic Relatedness Effects

The current approach represents a departure from the standard
methods used in genetic neuroimaging analyses, in which uni-
variate measures of ROI or voxel-based activation contrasts are
tested for genetic correlation and subsequent statistical mod-
eling of heritability. Instead, the method used here to identify
potential genetic relatedness was one that harnessed poten-
tially more powerful multivariate pattern similarity approaches.
Although such approaches have rarely been used in this litera-
ture, they may be particularly well-suited for analyses of genetic
relatedness. The key hypothesis is that, if influenced by genetic
factors, then activation pattern similarity in paired individuals
should track their degree of genetic similarity (i.e., relatedness:
MZ > DZ and non-twin siblings > unrelated). The utility of the
pattern similarity approach for identifying heritability in brain
activation was first demonstrated by Polk et al. (2007), in a study
focused on perceptual category coding in visual regions, with
similar findings obtained by Pinel et al. (2015).

The current findings replicate this earlier work, but also
extend it in important ways. Specifically, by harnessing the large
sample size of the HCP, we were able to confirm the robustness
of heritability effects, with clear evidence of MZ > DZ in both
Visual and FrontoParietal. However, due to our considerably
larger sample size and ability to combine data on DZ twins
and SIBs, we were able to obtain a more precise estimate of
common environmental influence. While our MZ correlations
were similar to those reported by Pinel et al. (2015), our DZ
and SIB correlations were nearly double their estimate, result-
ing in fairly robust estimates of common environment (see
extended discussion in Supplementary Material, Section S3.5).
Thus, even though our estimates of individual-specific environ-
ment approximate those reported by Pinel et al. (2015), familial
similarity for Visual was due to genetic and common environ-
ment in our study. In contrast, Polk et al. (2007) reported higher
MZ and DZ similarity than the current study or the work of
Pinel et al. (2015), supporting the role of common environmental
effects in addition to heritable influences, but underestimating
the role of individual-specific environmental factors.

Potentially the most important methodological advance of
our work over by Polk et al. (2007) and Pinel et al. (2015) is that we
evaluated pattern similarity effects in paired individuals across
a full set of task conditions, rather than restricting analyses to
matched conditions. This extension of the pattern similarity
approach enables construction of a full similarity matrix, sim-
ilar to the RSA popularized by Kriegeskorte et al. (2008). In
this approach, the observed similarity matrix can be compared
against theoretically specified reference matrices to compute
quantification scores, which can then be used to test between
alternative coding models. Importantly, quantification scores
incorporate the similarity of the twin pair members when they
are performing the same task [as is usual, such as the estima-
tion of cross-pair within-task correlations in genetic modeling
(Neale and Maes 2002)], but also the similarity when they are
performing different tasks (e.g., one pair member performing
2-back Face and the other performing 2-back Place; cross-pair
cross-task correlations).

The RSA-style quantification score approach may be a more
reliable and sensitive way of revealing familial effects than even
found in the prior studies adopting pattern similarity analyses.
The power of this approach was most clearly demonstrated
in the direct comparison of genetic relatedness influences on
pairwise quantification scores in Visual and FrontoParietal, as
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these clearly indicated the specificity of observed heritability
effects (Fig. 8). In particular, although Visual quantification
scores showed evidence for heritability in perceptual coding
(i.e., scores showing a MZ > DZ, SIB > UNR pattern), these regions
showed no evidence of heritability with regard to WM coding.
Conversely, FrontoParietal quantification scores indicated
heritability effects on WM coding, replicating prior results
(Blokland et al. 2008, 2011), but showed no evidence for
heritability with regard to perceptual coding. Thus, the current
findings make a stronger case for the functional-anatomic
specificity of heritability effects than has been observed in prior
genetic neuroimaging studies examining the FPN. Such findings
of functional-anatomic specificity would not be possible in
genetically informed studies that are solely focused on task-
free states or do not manipulate task context.

Quantifying “Pairwise” Variation

A novel advantage of the pattern similarity approach used here
is that it produces a unique quantification score for each twin
pair, rather than treating each twin as an individual observation.
We demonstrated that this pairwise measure is functionally
important, in that it was reliably associated with task perfor-
mance. Critically, the pair-related predictive effects were unique,
that is, over and above the variance explained by individual
quantification scores. While not implemented in the current
analysis, it would even be possible to estimate the statistical
significance of the quantification score for a given twin pair by
creating null distributions from the estimated similarity of each
member with unrelated members of the dataset (e.g., comparing
the differences in pairwise Load quantification scores when a
given individual is paired with their co-twin relative to when
they are paired to a set of unrelated individuals).

The brain–behavior relationships uncovered using the pair-
wise quantification scores are compelling and provocative in
their implications. Specifically, we observed that genetically
related pairs showing more similarity to each other (greater
FrontoParietal Load quantification) also tended to show better
N-back task performance. However, this observation leads to
an additional question: why might such a pattern be present?
Although our interpretation remains speculative, we suggest
that it might be due to the combination of two factors: (1)
“sharper” or higher fidelity task coding patterns in high per-
forming individuals and (2) increased anatomic or functional
similarity among related individuals. With regard to the first
factor, it is generally assumed that people with higher task
performance are more focused and engaged with the task, and
our own prior work provides initial evidence that stronger and
more distinct task coding patterns would be expected in these
individuals (Etzel et al. 2016). If we assume this first factor to
be correct, we might then also expect that high performing
individuals would have activation patterns that would tend to
be similar (at the vertex level) to their twin or SIB. In particular,
we speculate that genetically related individuals would be more
likely to show similar activation patterns to each other when
both are coding task-relevant variables, such as WM load, in an
optimal (i.e., veridical) manner. Logically, there are far more ways
to perform a task poorly (e.g., not attending, forgetting the stim-
ulus, confusion about the instructions) than there are to perform
it well. Thus, it is more likely that a pair of related individuals will
show high similarity to each other when both have an optimal
coding of WM load. Note that we are not claiming that related
individuals (or twins) are more likely to show higher fidelity or

less noisy task coding patterns in general, but that similarity of
activation patterns can be used as an additional way to identify
individuals that are likely to show stronger coding of relevant
task variables.

It is also noteworthy that the relationship between behav-
ioral performance and activation similarity in MZ twin pairs
did not significantly differ from DZ pairs or SIBs, suggesting
that while familial effects play a role, they are more likely
to be of an environmental nature. Under the equal environ-
ments assumption (Plomin et al. 1976), MZ and DZ twins (and
in our case, SIBs) share some environmental factors to the same
extent. Our initial twin analyses of d′ did not support the role of
shared environment (Supplementary Material, Section S1.6), but
it is plausible that the detection of shared environment, while
underpowered in the univariate model, was better estimated
when examined in the context of brain–behavior relationships.
Such common environmental influences may reflect the impact
of socioeconomic status and parental educational achievement,
which are known to impact executive functioning (Hackman and
Farah 2009; Noble et al. 2015), and which may have resulted in
twins (both MZ and DZ) and siblings being exposed to similar
educational opportunities. As academic achievement is herita-
ble (Cesarini and Visscher 2017), common environmental esti-
mates in such instances may be upwardly biased in the pres-
ence of undetected positive and passive gene-common envi-
ronment covariance [rAC; i.e., parental educational achievement
and executive functioning creates the educational environment
that the twins are passively exposed to via neighborhood and
school choice (Verhulst and Hatemi 2013)]. Undetected assor-
tative mating can also inflate estimates of common environ-
ment and there is considerable support for primary assortment
for intelligence (Coventry and Keller 2005; Plomin and Deary
2015). Alternatively, we might posit that, given the complexity of
these multivariate correlational indices, we were underpowered
to tease apart genetic and environmental sources of familial
similarity. Another possibility is that the equal environments
assumption is not met, but a sensible test of that hypothesis
was not possible in this sample of adult twins (which was
still of small size for such genetic modeling), particularly given
the potentially complex multivariate relationships (e.g., pars-
ing these relationships in twins whose self-reported zygosity
diverged from their genomically determined zygosity).

Limitations and Future Directions

In the current work, we purposely restricted the primary analy-
ses to two large communities (FrontoParietal and Visual) and a
2 × 2 condition subset (0-back/2-back × Face/Place) of a single
task (the N-back), to allow for clear predictions regarding the
functional specialization of each brain region. We were thus
able to establish the validity and utility of activation pattern
similarity approaches, which were then more fully investigated
using novel pairwise analyses. However, the clarity gained with
these restrictions necessarily means that the findings were lim-
ited to the two communities investigated, rather than sampling
the whole brain. Likewise, by restricting the analysis to whole
communities, rather than the individual parcels of which they
are composed, the results provide information related only to a
very macro level of brain organization. In supplemental analy-
ses, we took an initial step towards addressing these limitations,
by conducting a whole-brain investigation of effects at the level
of individual parcels. These analyses were largely supportive
and convergent with the primary results. In particular, they
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confirmed that perceptual category coding was almost exclu-
sively restricted to occipitotemporal cortex parcels within the
Visual community. In contrast, WM load coding was more widely
distributed, but confirmed to be present in individual parcels
of the FrontoParietal community, with additional strong coding
found in parcels assigned to the Dorsal Attention and Default
Mode communities. However, the parcel-level results also sup-
ported the choice of focusing our primary analysis at the macro
level, as no individual parcel showed effects that were stronger
than the two communities. Although it was outside of the scope
of the current work to explore the optimal spatial scale and
distributed versus focal nature of observed activation pattern
similarity effects, a more systematic investigation of this issue
would seem to be a valuable direction for future work.

A second purposeful restriction of focus in the current study
was to investigate the validity and utility of multivariate pattern
similarity approaches for addressing questions of functional
specialization, individual differences, and genetic similarity in
the FPN, but without directly benchmarking these approaches
against more standard univariate (i.e., activation level) analyses.
Thus, it is important to be clear that we do not make strong
claims regarding the superiority of multivariate approaches rela-
tive to univariate ones, only that they appear to have important
potential that heretofore has not been fully exploited. Indeed,
many questions remain as to the exact relationship of multi-
variate and univariate findings. Although fully exploring these
relationships was beyond the scope of the current study, we
did conduct some initial control analyses, to address a poten-
tial alternative interpretation of the results, which was that
the observed genetic pair-based similarity effects and brain-
behavior relationships could be fully explained by univariate
activation differences among relevant task conditions in the FPN
(e.g., 2-back > 0-back activity). Our analyses do convincingly rule
out this explanation, since at the spatial scale of FrontoParietal
and Visual communities, univariate activation levels were not
significantly correlated among genetically related pairs. Like-
wise, even when including univariate (i.e., mean-ROI) activation
differences among task conditions in the regression model, pat-
tern similarity in related pairs was still uniquely associated with
N-back task performance. Nevertheless, additional work needs
to be done to better understand the boundary conditions under
which univariate activity levels might contribute to multivari-
ate pattern similarity effects, or when each technique may be
preferable.

As mentioned above, even within the HCP there is a larger
set of tasks beyond the N-back from which to explore indi-
vidual differences and genetic effects. Based on the coding
specificity principle, we would expect that these effects would
each show a distinctive pattern of anatomic localization that is
task context-dependent. In other words, the coding specificity
principle would suggest that FPN regions would only be sensitive
to individual differences and genetic effects in task contexts
related to WM and executive control (e.g., Relational Processing),
but not in far different contexts (e.g., Motor and Emotion).

Additionally, with the exception of the behavioral data, for
which we used ACE models, we computed quantitative esti-
mates of heritability using simple adaptations of the Falconer
equations. It seems possible that more sophisticated statistical
analyses could be used to estimate heritability components
using the full variance-covariance structure of the activation
similarity matrices, along with other techniques, such as struc-
tural equation modeling. In particular, the estimates of cross-
task cross-pair correlations (e.g., 2-back Face and 2-back Place

compared to 2-back Face and 0-back Place) could provide a
stronger basis for disentangling genetic from environmental
contributions to activation patterns. Thus, another target for
future work would be to more fully integrate pattern similarity
analyses into heritability models.

The use of pairwise quantification scores opens the door
for other types of genetic analyses. For example, one could
examine the role of individual genome-wide significant variants
and polygenic liability scores to WM function in quantification
scores. Another possibility would be to contrast concordant and
discordant MZ twin pairs (i.e., high vs. low pairwise quantifi-
cation scores) to identify the role of individual-specific envi-
ronmental factors, such as epigenetic signatures. Indeed, this
work suggests a potential subdomain of genetic neuroimaging
focused at the level of individual twin pairs, using quantification
scores as a functionally relevant biomarker metric with which
to subdivide and classify pairs. However, much still needs to be
learned regarding the sensitivity of the quantification scores to
the many different factors that can impact the BOLD signal (e.g.,
physiological, task, acquisition), for which simulation and mod-
eling may prove valuable. We suspect that the quantification
score approach may be especially rich for disentangling these
different contributors, such as by describing characteristic pair-
wise similarity matrices (e.g., universally high correlation may
indicate a dominant nonneural contribution). Yet even given this
acknowledged early state of knowledge regarding the sources
of activation pattern similarity, the results presented here high-
light the utility and promise of adopting such approaches for the
investigation of task coding properties, individual differences,
and genetic effects within the FPN and other brain regions. We
hope that future research will extend the current investigations
in fruitful directions.
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Supplementary material is available at Cerebral Cortex online.
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