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Abstract

It is now widely appreciated that the spatial organization of the genome is non-random, and its
complex 3D folding has important consequences for many genome processes. Recent
developments in multiplexed, super-resolution microscopy have enabled an unprecedented view of
the polymeric structure of chromatin, from the loose folds of whole chromosomes, to the detailed
loops of cis-regulatory elements that regulate gene expression. Facilitated by the use of robotics,
microfluidics, and improved approaches to super-resolution, thousands to hundreds of thousands
of individual cells can be analyzed in an individual experiment. This has led to new insights into
the nature of genomic structural features identified by sequencing, such as topologically associated
domains (TADs), and the nature of enhancer-promoter interactions underlying transcriptional
regulation. Here, we review these recent improvements.
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Nuclear microscopy goes molecular

Work in recent decades has shown that the spatial organization of the genome is non-
random, and its complex 3D folding has important consequences for all genome processes,
including replication, segregation, repair and transcriptional regulation [1-12]. Microscopy
has long been a mainstay technique used by researchers to visualize nuclear organization,
though the resolution of conventional approaches did not reach the the important molecular
scale of many of these processes. This is now changing, as recent developments in super-
resolution microscopy (see Glossary) approaches provide access to an unprecedented view
of the polymeric structure of chromatin, from the length scales of whole chromosomes, to
the few kilobase interactions among nearby cis-regulatory elements. In place of pairwise or
three-way interaction measurements, new highly-multiplexed methods allow thousands of
potential interactions to be probed simultaneously in each cell, for unbiased image-based
discovery. Facilitated by robotics and microfluidics, along with tricks to accelerate super-

"Correspondence: boettiger@stanford.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered
which could affect the content, and all legal disclaimers that apply to the journal pertain.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Boettiger and Murphy

Page 2

resolution imaging, thousands to hundreds of thousands of individual cells can be analyzed
in an individual experiment, providing a robust statistical power to these methods. These
advances have given us new insights into the relationships between chromatin structure and
epigenetics [13-17], the nature of topological associated domains (TADs) [16,18,19], the
nature of enhancer-promoter interactions underlying transcriptional regulation [19], and
opened a multitude of new opportunities for future investigations.

Here, we review the technologies that have driven these improvements. We first highlight
significant technical advances in labeling and imaging respectively, which have marked a
new chapter in microscopy studies of chromatin structure. In the process, we will also
explain a labeling paradox - why a small volume protocol outperforms a larger volume
alternative, and an imaging paradox - why some super-resolution techniques like
photoblinking fluors can worsen resolution in certain high-resolution chromatin imaging
experiments. With this appreciation of recent technical developments, we will describe new
insights into nuclear architecture revealed by these imaging techniques, highlighting some of
the ways these newly revealed structures differ from the textbook picture and earlier reviews
based on bulk approaches. Finally, we touch on the exciting emerging frontiers and new
challenges for the field.

Technical Advances

Super-resolution imaging of precisely defined genomic coordinates

Two recent innovations have transformed sequence specific imaging of chromatin
organization: the ability to produce synthetic DNA at high complexity and large volumes,
most notably through the Oligopaints technology [20-24], and the advent of super-
resolution fluorescence microscopy techniques which allow resolution of 50 nanometers or
better [25-27] (Fig. 1). To appreciate the contribution of these innovations and their
foundations in earlier work, it will be helpful to consider a brief summary of earlier
established approaches.

Oligonucleotide probes for imaging the 3D organization of genomic sequences have been
produced through approaches dependent on molecular cloning, such as PCR and nick
translation [28-32]. These classical methods enabled numerous insights into the spatial
organization of nucleic acids in cells and nuclei over the last 50 years [33-47]. Despite
notable innovations [32,48,49] these methods provide limited control over the probe
properties; producing a pool of dsDNA carrying randomly interspersed modified bases,
typically fragmented in variable lengths of 50-500 basepairs. Variability in probe quality
among in this approach arises due to uncompensated variation in sequence composition
across the genome in GC content, repeat content, and enzyme interaction bias. Many
conventional experiments mitigate this variation by using larger genomic target windows.
This has typically limited the genomic resolution of conventional FISH probes to 10s of
kilobases.
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precision, control, and affordability

The advent of low cost, high complexity oligonucleotide-synthesis, enabled by the
proliferation of microarrays, allowed synthetic, rationally and computationally designed
oligonucleotides (oligos) to circumvent many of the limitations of cloning dependent
approaches [20,32,50-52]. Control of the nucleic acid sequence at the base pair level allows
for computational design of an optimal array of short homologous sequence (typically 20—
50mers). All oligos can be made to the same length (for more uniform diffusion), and
selected for similar GC content, melting point, and degree of secondary structure.
Computational tools identify the best way to tile the oligos across the target to maximize
their number and uniformity of hybridization properties, while avoiding potential for off-
target binding. Thus, though genomic targets vary substantially in features which affect
hybridization, the computationally designed probes reduce this variation, enabling
increasingly high-throughput and multi-target applications. The use of array-based oligo
probes was introduced by several groups [20,51,52], though the variation called Oligopaints
[20] has been most widely adopted, due in part to its clear and improving pipelines for
computational design and probe synthesis [22,24,53] and the integration of synthetic handles
for downstream applications [17,21,24,54].

Approaches for making Oligopaints have become steadily easier and more cost efficient in
recent years. An original emulsion-PCR-based approach costing ~$900/umol probe was
replaced with a traditional PCR amplification and labeling step, requiring only 3 days at one
tenth the cost in reagents [20]. Further improvements followed by removing gel-based
purification [22] and minimizing the use of milliliter-scale PCR [24]. The evolved
production protocols reduced reaction volumes needed for umol-scale probe production by
two orders of magnitude, cutting cost by at least an order of magnitude [24]. This was
achieved by relying on in vitro transcription (IVT) as a key amplification step followed by
reverse transcription (RT) to convert probes back to more stable DNA [24,55,56].

How does a smaller volume reaction help increase yield and how can it be more cost and
time efficient to convert from DNA to RNA and back, rather than clean up a labeled PCR
product? The key insight is that IVT and RT reactions can be carried out at a very high
concentration of substrate and product, unlike PCR. Amplification by IVT reduces the loss
of diversity inherent in competitive exponential growth of PCR. RT also produces single-
stranded DNA, removing the need for enzymatic or gel-based separation. Small volume
(high concentration) protocols dramatically reduce enzyme and purification costs, and
enable 96-well plate parallel processing. These advances facilitated the production of the
enormous amounts of probe required for hybridization based spatial transcriptomic methods
such as Multiplex Error Robust FISH (MERFISH)[24] and subsequent massively parallel
RNA imaging [53,57-63]. It also enabled targeted whole-chromosome scale imaging
[54,64,65] and subsequent super-resolution experiments probing genomic structure [14,17—
19,21,64,66].

Another advantage of Oligopaints has been the ability to multiplex experiments using
sequential rounds of imaging to expand the number of targets beyond the chromatic limits
set by spectral overlap. This is achieved by appending distinct synthetic barcode sequences
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to the probes. These barcodes can then be labeled through hybridization with fluorescently
labeled secondary oligos, without requiring a distinct fluorescent dye for each target. Use of
adapter/bridge oligos to link the unique barcode to a common fluorescently-labeled oligo
can further increase the flexibility and decrease the cost of labeling [17-19,54]. Aided by
advances in robotic fluid-handling, the number of sequential labeling rounds used in
published experiments has increased from 16 [24] to around 100 [19], with individual
rounds requiring only 10-30 minutes [19,24,53]. Methods of extinguishing fluorescent
signal after imaging have also evolved, from photobleaching [24,64] (which requires
significant time and is not compatible with re-labeling controls) to DNase [67] (not
compatible with DNA targets) to fluor-cleavage [53] (fast, but not compatible with re-
labeling) to strand displacement [18,19]. The latter method is not only the fastest, as it can
be performed in the same reaction in which new labels are added and thus adds no time, but
is also cheaper than fluor-cleavage (disulfide linked fluors and TCEP for cleavage are among
the most costly reagents in the experiment) and allows repeated labeling of the same target.

Super-resolution chromatin imaging

The ability to densely label chromatin with oligo-probes that specifically match genomic
features like chromatin boundaries, without restrictions based on the existing borders of
BACs or other templates, enabled new investigations into the links between epigenetic state
and 3D chromatin structure. Single molecule localization microscopy (SMLM) based super-
resolution methods, such as STORM/PALM provided the resolution boost needed to exploit
this dense, precise labeling. These methods circumvent the diffraction limit by separating in
time fluorescent signals that are too close to resolve in space. To achieve this, all the
fluorophores are initially converted into a non-fluorescent dark state, and a subset are
stochastically converted back into the bright state. This subset must be sparse enough that no
two molecules within a diffraction limited distance are bright (Fig. 2a). The position of these
molecules can be found with high precision by fitting the center of their fluorescent signal,
with a precision limited only by the number of photons (brightness) and the noise of the
detector (camera). Other super-resolution methods such as structured illumination
microscopy (SIM) have also been applied to chromatin imaging and can acquire data faster,
though the more modest 2x increase in resolution of linear SIM is notably less than that
afforded by SMLM [68]. STORM-based methods have been especially effective to study
chromatin structural properties that do not depend on knowing the precise polymer trajectory
of the chromosome, such as compaction, asphericity, variable or smooth density, and degree
of intermixing of select regions (Fig 2d). The first major insights from super-resolution
imaging explored how these structural properties varied with distinct epigenetic states (see
below).

Rather than exploiting the precision labeling of Oligopaints, an innovative approach from
Wang and colleagues exploited the use of orthogonal barcode sequences of Oligopaints to
“walk” along whole chromosomes in megabase-scale steps, providing a megabase-resolution
view of the trajectory of individual chromosomes. The average interactions across the
chromosomes from a mere ~100 cells exhibited remarkable agreement with the
checkerboard compartment pattern seen in Hi-C experiments which average millions of cells
- suggesting these interactions are surprisingly stereotyped [64]. Merging these approaches,
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investigators have recently combined the higher degree of multiplexing enabled by barcoded
Oligopaints with the resolution of densely-labeled chromatin imaged by STORM [17,18] to
study the finer, sub-megabase scale structure of chromosomes (Fig. 2b). Nir and colleagues
used sequential STORM imaging with larger 100-1,000 kb step sizes, each matched to
boundaries previously identified by Hi-C, and spanning up to 8 Mb of the chromosome [17].
Concurrently, Bintu, Mateo and colleagues used uniform 30 kb steps. The degree of overlap
between the 3D point clouds for any pair of steps showed a box-like organization that
corresponded perfectly to the TADs identified by Hi-C, the first demonstration of mapping
architectural features of TADs and loops de novo from microscopy approaches [18]. In all
these experiments, the qualitative and quantitative agreement between indirect, sequencing
based Hi-C and the microscopy results have provided encouraging cross-validation of both
methods. Where Hi-C remains much superior in coverage, the microscopy has opened new
biological insights of higher-order physical 3D structures and cell-cell variation (discussed
more in the next section).

An imaging paradox: understanding resolution

As the step size for each barcode in OligpSTORM becomes smaller, the physical size of the
domain approaches the resolution limit of STORM (Fig. 3). At this point, using STORM -
that is, localizing the fluors attached to the domain one at a time by stochastic activation, can
actually reduce the resolution of the data. This leads to our second paradox: How can a
super-resolution approach make the resolution worse? If the physical separation of the fluors
is smaller than the photon-limited resolution of an individual fluor, a more accurate
measurement is achieved just by combining the photons of all fluors and ignoring the minute
physical separation (Fig. 3). Dispensing with photo-switching has further advantages for
resolution as well. Since molecules blink stochastically and briefly, STORM techniques
must sacrifice x-y resolution to approximate z-position from a 2D image. Popular z-
estimation methods for STORM have limited dynamic range (typically <1 um), making it
necessary to sample several focal planes (typically >4 um), during which time out-of-focus
fluors are bleaching, reducing resolution. In contrast, the centroid of each unresolved cluster
of fluors yields many more photons to enhance localization precision and can be scanned
axially with no tradeoff in lateral resolution. Moreover, it allows the use of optimally bright
non-photoswitching fluors and buffers. Imaging is much faster, as there is no need to record
long movies of stochastic blinking events, in which the region of interest is primarily blank.
The high laser power density required for stochastic photoswitching can also be avoided,
allowing the user to spread limited power over a larger field of view (laser power density is
typically the major limitation to field of view size). Finally, the collected data occupies ten-
to hundredfold less disk space. With typical STORM experiments requiring 5-50 Tb of
storage, data volume is a major limitation in storage and data-processing costs. Collectively,
these differences contribute substantially to the difference in number of cells analyzed by
recently by STORM (e.g. <100-7000 cells) [14,17,18] and non-stochastic blinking super-
resolution approaches that we will describe next (>100,000 cells) [18,19,69].

By reducing the step size of sequentially imaged regions to 2-10 kb, Mateo and colleagues
were therefore able to scale up the throughput of data collection to easily acquire more cells,
while still tracing domains ranging from 100 to 700 kilobases [19]. As discussed above, this
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smaller step size allows for sub-diffraction spatial resolution without the need for STORM
and provides enhanced genomic resolution, allowing for better measure of the path of the
DNA polymer. As the approach is still a single-point-source-based optical reconstruction
technique, like STORM, but no longer stochastic, and unlike STORM is specific to DNA, it
was named ‘optical reconstruction of chromatin architecture’, (ORCA) - (Fig 2c). This
method builds on previous sequential imaging at megabase resolution [64] and the insights
in labeling consecutive 30 kb domains with STORM compared to centroid fitting only [18].
Mateo and colleagues optimized the approach for use in tissue sections, simultaneously
mapping the cell’s spatial context (its connectome in the embryo) with its genome structure.
The authors combined it with sequential labeling of dozens of mMRNA to sample the
transcriptome and provide information on the different cell types. Additionally, nascent
transcripts were labeled with intronic probes, enabling new studies of enhancer promoter
interactions on nascent transcription state. A conceptually similar approach appeared at the
same time called ‘Hi-M’, (high-throughput, high-resolution, high-coverage microscopy). It
differed in its use of a non-uniform distribution of barcode probes, resulting in an average
resolution of 17 kb, and in its application in much thicker whole-mount Drosophila embryos
in place of cryosections [69].

Technical advances to watch for

We expect to see considerable technical advances in imaging of fixed cells in coming years,
especially in terms of enhanced throughput, more analyses in primary tissues, new multi-
modal super-resolution imaging of DNA with protein, and the development of less
perturbative methods. While we anticipate some improvement in resolution, dramatic
advances may need to await the development of different labeling approaches. Currently,
labeling of sequence, rather than localization accuracy, is the major challenge to super-
resolution of DNA, and cannot be readily addressed through advances in light microscopy
such as signal amplification [70-76] or electron microscopy with immuno-gold [77-80].
Moreover, it is uncertain to what extent chromatin structure has been preserved at length
scales finer than current super-resolution imaging described here.

Technological innovations that improve the throughput of these methods will enable their
use in screens to identify how chromatin structure responds to a wide range of ¢/s mutations,
trans perturbations, and environmental perturbations, all with high temporal resolution
relative to time of perturbation. Given the large number of cells required by sequencing
based methods like Hi-C, the stagnating costs of sequencing, and the poor scaling of
resolution with sequencing depth, it will be expensive to conduct such screens across an
array of timepoints with these methods. By contrast, ORCA is already able to image many
different cell types within a single experiment and identify unique and shared structural
features of these populations. In place of using mMRNA expression profiles to separate cell
types [19], new methods using spatial position or barcodes will allow users to distinguish
cells from different treatments, genetic backgrounds, and timepoints. With as few as 100
cells providing decent mapping of TADs, subTADs and loops, increasing the number of cells
per experiment to millions of cells will allow potentially hundreds of distinct conditions to
be screened in a single experiment, rapidly and at low cost. While it is unlikely that ORCA
will provide a whole-genome view of response to perturbation, such whole-genome views
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are not essential to understanding the effects or dynamics of many perturbations. These same
properties of spatial resolution and throughput will also greatly facilitate exploration of
chromatin structure in tissue samples, which to date has largely been concentrated in cell
lines. While live-cell imaging methods will be needed to resolve the stochastic dynamics in
these experiments, live approaches are not poised to be able to map TADs or process large
numbers of cells (Box 1).

Imaging the nanoscale distribution of chromatin proteins in combination with ORCA is
another developing area in which we expect progress. Significant advances have been made
in imaging nuclear proteins in both live and fixed cells using super resolution, too numerous
to summarize here [81-96], though most of protein-labeling data to date lack information on
sequences associated with different features. A major challenge to multimodal (protein +
DNA\) imaging will be achieving sufficiently high labeling efficiency of the protein targets
[97,98]. Recent advances in protein labeling [99-107] aided by new benchmarking
approaches to measure efficiency [97,98] augur for exciting advances.

An essential area of research will be the development of less perturbative labeling and
imaging strategies. Key to such work will be robust multi-scale metrics of chromatin
structure. For example, a common objection to hybridization-based approaches is that they
denature the DNA doubléhelix, and generally unfold proteins. However, if proteins and
DNA denature /n situ (in place, to nanoscale accuracy) these molecular scale perturbations
would be unresolved and of no consequence to the nanoscale super-resolution methods
discussed here. We look forward to the development of methods which chemically freeze
DNA and protein in place with a physical constraint equal or better than the resolution.
Some molecular-scale flexibility will still be desired in these approaches, to facilitate entry/
diffusion and binding of labeled probes. The method will also need to be rapid -- without
time for degradation or activation of cell stress response pathways during the chemical
freezing process. Existing fixative approaches such as aldehyde crosslinking, high-pressure
freezing, and heat-fixation may be part of the way there. The use of heat-denaturation-free
methods such as exo-nuclease digestion down to single-strand DNA as in RASER-FISH
[108], or Cas9-mediated denaturation and binding, as in CASFISH [109], provide promising
new directions. In any case, imaging of relevant distance scale markers (kilobase to
megabase features separated by 10s of nanometers, not angstroms), should be used to assess
perturbation. Considerable recent advances in labeling regions of chromatin for live imaging
[110-114] will make these challenging measurements increasingly feasible.

insights

Links between epigenetic state and chromatin folding

STORM-based chromatin studies that resolve compaction, spreading, and mixing of
chromatin below the diffraction limit without resolving the polymer trajectory have provided
exciting insights into the links between epigenetic state and chromatin folding. For example,
a survey of three major epigenetic states of chromatin in Drosophila, active, inactive, and
Polycomb-repressed, revealed that each chromatin state followed distinct power-law scaling
of domain size as a function of length, suggesting common physical principles that track
with epigenetic state may dominate nuclear chromatin folding [14]. The three epigenetic
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classes also differed in their packaging density, the degree of self-interaction within a
domain, and the degree to which they intermix or separate from one-another (Fig 4a).

Super-resolution imaging has been particularly informative in revealing the organization of
Polycomb (Pc) bound chromatin — an epigenetic state associated with facultatively repressed
genes. In both Drosophilaand mouse, Pc domains were found to be largely compact,
globular structures, contrasting the extended, often multi-lobed organization of active
chromatin [13-16]. Pc-repressed domains also exhibit greater intradomain mixing and
greater separation from neighboring active chromatin than other forms of transcriptionally
silent chromatin [14]. The compacted, globular structure is lost upon removal of the Pc-
group protein, Polyhomeotic (Ph) [14,15,115], which suggests that PRC1 activity (of which
Ph is a core component), rather than the K27me3 deposited by PRC2, is they key
determinant of these structural features. As Pc-chromatin plays an important role in
epigenetic memory, maintaining transcriptional silencing across cell divisions and for
months to decades in post-mitotic cells, it has been postulated that its unique structural
features contribute to this ability [14,15], though further investigation will be required to test
this hypothesis and dissect the key features.

Epigenetic independent boundaries

While recent super-resolution chromatin microscopy experiments have supported the
conclusion that epigenetic states (e.g. active, Pc-repressed, HP1-repressed) contribute to the
3D partitioning of the genome through homotypic association, the roles of epigenetic-
independent features have been less clear - especially outside of /n vitro mammalian cell
culture. Taking advantage of ORCA’s ability to map even very small TADs (<20 kb) with
high resolution in small populations of cells, Mateo and colleagues identified a strong, cell-
type-specific physical partition of the posterior hox complex separating the transcriptionally
active Ubx and abd-A genes (Fig. 4c). Unlike most structural boundaries studied in cultured
Drosophila cells in vitro, this separation does not correspond to a difference in epigenetic
state and cannot be explained a homotypic association or heterotypic avoidance.
Intriguingly, deleting a small (4 kb) element at the boundary of these two larger (~60 kb)
physically separated domains abrogated this partitioning and led to mis-expression of both
genes [19]. This showed that epigenetic state is not the only structural organization
mechanism functioning in Drosophila [134]. It also shows that border elements can
contribute to separation of much larger flanking regions of chromatin /n vivo, consistent
with interpretations from systems where much more abundant cell-populations have made
3C analysis feasible [123,126,135-139]. How such relatively small border elements (a.k.a.
insulators) influence physical interactions across such substantial distances of a soft polymer
remains a mystery. Yet certainly single cell images of these separated domains should help
figure this out by allowing a direct test of some hypothesized models.

New biological frontiers

These recent advances leave the community ready to investigate a range of exciting long-
standing questions pertaining to chromatin structure. Lately, there has been considerable
interest in the potential of multiway interactions to achieve novel forms of regulation. For
example, it has been hypothesized that separate enhancers (or elements of a super-enhancer)
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may interact with one another to seed a high local concentration of certain transcription
factors (TFs) and trigger condensate formation to regulate gene expression [90,140-142]. It
has also been hypothesized that the formation of TF condensates 100s of nanometers across
could allow for enhancer-promoter communication without proximity [110,141,143]. ORCA
provides the ability to resolve clusters of enhancers and their target promoters and test if
multiway hubs form and if hub-formation correlates with enhanced gene expression.
Similarly, it provides a chance to test the action-at-a-distance proposal by relating enhancer-
promoter positions to RNA expression, especially if combined with imaging of TF
condensates.

Advances in imaging also promise to provide new insights into the longstanding mystery of
insulation. Originally identified by transgenic approaches, insulators are genomic elements
which can negate the effect of an enhancer specifically when positioned between the
enhancer and its cognate promoter [144-153]. Several hypotheses have been posited over the
years to explain this phenomenon, including functioning as a competitive promoter bait, a
directed tether, an anchor of an isolating loop domain, and a stiff or greatly decondensed
chromatin region [144-153]. With the ability to visualize the chromatin path on the length
scale of these enhancer-promoter-insulator interactions, many of these structural models may
soon be tested directly for the first time.

Concluding Remarks and Future Perspectives

From pairs of spots separated by hundreds of kilobases of unseen turns of DNA to nanoscale
3D trajectories with sequence features resolved at a couple kilobases in thousands of cells,
the last decade has witnessed a significant revolution in chromatin imaging of fixed nuclei.

While for the sake of brevity we have focused on advances in imaging fixed cells at high
spatial resolution, recent advances in live imaging have confirmed the dynamic and
frequently transient nature of these interactions suggested by heterogeneity of structural
properties measured by fixed approaches [18,19,47]. The development of the CARGO
system has allowed live imaging of non-repetitive regulatory sequences using chimeric
arrays of guide RNAs and dCAS9 [154]. This approach has been combined with imaging of
chromatin associated proteins such as mediator [89]. Tandem arrays of heterologous TF
binding sites (like TetR) have provided a first glimpse of the dynamics of chromatin
interactions of sites proximal to interacting enhancers and promoters [110,113,114]. More
widespread application of the MS2 system to label RNAs in live cells is providing new
insight about transcriptional dynamics, including regulation of bursting kinetics
[89,110,113,155-161], new evidence of rapidly encoded transcriptional memory [162], and
coordinated activation of two genes by the same promoter [157,161]. We look forward to
seeing more minimally perturbative imaging approaches with smaller arrays, approaches
that allow fluorescent labels to be positioned closer to enhancer/promoter elements for more
accurate tracking, brighter live-compatible labels to improve resolution, and more efficient
protocols for engineering labels into cells and embryos.

Recent improvements in super-resolution microscopy for chromatin organization have the
promise to address many gaps in the field, but to achieve the impact of sequencing-based
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approaches, innovations are needed to make the technologies more widely accessible. Many
features make microscopy appealing, like the perseveration of spatial organization in tissues,
the small number of cells required to detect features like TADs, the ability to process many
thousands of cells per experiment easily and cheaply, the integration with RNA detection
and the low cost per experiment once the equipment and expertise is in place. Sequencing-
based approaches like Hi-C have set a remarkable standard for portability of both
experimental procedures and computational analysis pipelines. The advances in super-
resolution and high-throughput microscopy have relied largely on home-built setups
integrating optics and automated fluid handling [17-19,69]. Some commercial setups are
emerging [17], though significant further advances are necessary to match the scalability of
home-built methods and to integrate with established optical setups. A variety of resources
have appeared to aid probe design [20,53,163-165], but tools that combine both flexibility
and ease of use are sorely needed. The large datasets produced highlight a need for improved
tools for data processing, data sharing, and data browsing. With a robust computational
community interested in genome structure we hope to see advances in this analysis as well
in the coming years.
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Cis regulatory element
A portion of the DNA sequence that influences the expression of genes on the same
chromosome (in cis) and not its homolog (in trans).

FISH
fluorescence in situ hybridization, a method for labeling RNA or DNA by hybridization
(base-pairing) of fluorescently tagged nucleic acid probes.

Hi-C

a genome-wide variant of chromosome conformation capture that uses restriction digestion,
followed by ligation and deep sequencing to detect spatial proximity among DNA
sequences.

Oligopaints
a method for producing renewable complex pools of synthetic oligonucleotides using array-
based synthesis and PCR.

Spectral overlap
The portion of light spectra shared by two fluorescent probes.

STORM
a super-resolution approach which uses stochastic blinking of fluorescent molecules to
separate detection events in time (in different image frames), allowing resolution of emitters.

Trends Genet. Author manuscript; available in PMC 2021 April 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Boettiger and Murphy Page 11

Also known as PALM, especially when the emitters are genetically encoded fluors instead of
small molecule dyes.

Strand displacement
a process by which one a longer strand of DNA displaces a shorter strand from its longer
complementary partner.

Super-resolution microscopy
Fluorescence microscopy with resolution better than the Abbe-diffraction limit of
fluorescent label: Wavelength/ 2 NA

TADs
topologically associated domains -- domains of the genome that exhibit higher intra-domain
contact than inter-domain contact.

Tile
(verb) to cover uniformly with separate non-overlapping units.
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Box 1:
When is a TAD not a TAD?

Methods with progressively finer resolution of the polymer trajectory of the chromatin
have now started to clarify some of the most studied and debated questions of chromatin
structure, such as the nature of the “TAD”. TADs were originally reported from Hi-C data
[116-118] and since also found by related techniques that infer 3D structures from a
sequencing readout of a large population of cells [119,120]. They were described as
domains of the chromatin which exhibit more frequent intra-domain than interdomain
contacts and appear as boxes on the diagonal of a chromatin-contact-map. From flies to
humans, the genome partition into TADs of variable size, leading some to call them the
‘building blocks of the genome’ [121,122]. The correlation of TAD boundaries with other
important biological features such as the boundaries of epigenetic domains, replication
domains, and of clusters of commonly co-regulated genes suggests these structures may
be functionally important [1,2,10]. Consistent with this, mutations that disrupt TAD
organization in many cases lead to aberrant gene expression [19,123-126]. Despite this
interest, there has been much controversy over defining a TAD. Do these patterns in
population average data reflect the existence of a globular domain, isolated from
neighboring globular domains by loops pinched by CTCF and cohesin, as TADs are
frequently depicted in reviews and summary figures? That is to say are TADs a structural
feature the way the nucleus is a structural feature - or are TADs only a property of an
ensemble, much like the temperature of the room is an emergent property of the motion
of many molecules. Polymer simulations can reproduce the population average
distribution of TADs without globular domains or even detectably separated domains at
the single cell level [127].

The single-cell contact maps of Bintu ef a/and Mateo et a/ frequently exhibit TAD-like
structures - i.e. local domains of enhanced contact well separated from one another, as to
create boxes on the diagonal of the single-cell contact map (Fig 4b) [18,19]. In 3D, these
structures look like separated globules, as TADs are commonly illustrated in schematics
and review articles. But are they TADs? No. Where TAD boundaries are defined by
particular genomic coordinates, these globular domain transitions can be found at
different frequencies throughout the region. The transitions have a statistical preference
for certain positions, and when all the transitions are averaged together in population data
the TADs emerge from the microscopy data in the precise pattern measured with bulk Hi-
C [18,19,69]. These data indicate TADs are not structural building blocks the way the
chromosome territory is a structure. Despite numerous reviews drawing the parallel of
chromosome territories and TADs as different scales of genome folding, the microscopy
data now show one is a physical structure that can be seen in single cells and the other is
a statistical feature which only exists in a population. The distinction is potentially
confusing as single cells do exhibit globular domains which in some cells align with
TADs. Still, imaging in perturbed cell-lines makes the difference clear: The globular,
TAD-like features of single cells persist in the absence of cohesin, while TADs within a
common epigenetic state (e.g. A-compartment) disappear [128]. The microscopy data
show exactly how this pattern emerges: the statistical positioning of the boundaries
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becomes uniform instead of biased to CTCF sites, such that the population average is free
of boundaries even though individual cells retain globules [18]. These differences
observed in the distribution of conformations at the single cell level in both wildtype and
perturbed conditions also provide valuable new data with which to distinguish competing
mechanistic models of chromatin folding [127,129-133].
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Outstanding Questions

How should we store, analyze, and annotate large imaging datasets measuring genome
structure?

At what length scale is the structure of chromatin preserved by current imaging and
labeling methods and at what length scales is it perturbed? What is the best way to
measure this?

How can we image protein and DNA structure simultaneously to better test models of
how chromatin proteins shape chromatin structure?

What proteins play important roles in shaping chromatin structure in animals, and can we
develop image-based screens to identify them? By what mechanisms do they work -- as
motors, as self-associating liquid droplets, as sticky tethers on a polymer, as polymerizing
agents? How can we image these factors in single cells with their DNA substrates to
distinguish these mechanisms?

How do multiple enhancers regulate a single gene?

How do insulators prevent aberrant interaction between enhancers and promoters?
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Highlights
Microscopy now allows measurement of the polymeric structure of chromatin

in intact, fixed nuclei, with a resolution of a few kilobases.

Multiway contact interactions and physical separation of domains can be
probed directly.

Structural information can be combined with measurements of nascent
transcription, nuclear position, cellular position, and cellular morphology.

Single cell imaging validates many of the features previously identified by
bulk, proximity-based approaches and challenges existing models of
chromatin structure.

In situ super-resolution imaging offers new potential for multi-omic single
cell analyses.
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Figure 1. Improvements in labeling and imaging chromatin.
A. Schematic of evolution in probes targeting the BX-C from Drosophila melanogaster over

the last decade, taken from our own experiments. Changes in probe cost and production time
are noted. B. Example images of the structure of the BX-C using the probe sets in A and the
techniques indicated. Typical number of cells analyzed per experiment are noted. The
STORM image is adapted from [21] with permission. In the ORCA image, data are
represented as colored spheres; the polymer interpolates these data in 3D to guide the eye in
the correct order.
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Figure 2. Similarities and differences explained: Diffraction-limited, STORM imaging,

OligoSTORM, and ORCA.

A. in STORM (e.g. [14]) a sparse subset of fluors are activated at a time, so that their
detected diffraction patterns (a.k.a. point-spread functions) don’t overlap. The centroids can
be fit computationally (red crosses). After many frames of photoswitching, the position of
all individual fluorophore centroids are combined to form a super-resolution image.
Spectrally distinct fluorophores have been used for multi-color imaging, though different
color channels have quantitatively different performance, affecting resolution [14,166]. B. In
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OligoSTORM (Nir 2018, Bintu 2018) different portions of the chromatin are labeled with
different barcodes, enabling reliable STORM in arbitrary number of pseudocolors by
sequential rounds of STORM and then hybridization. C. In ORCA (Mateo 2019), every
short segment (1-10 kb) of chromatin is given its own barcode. No stochastic switching is
used, allowing lower laser powers, wider field of view and faster imaging. A larger number
of sequential hybridization rounds is necessary to complete the domain. A smooth
interpolation of the recorded centroids approximates the chromatin path. In all the methods,
temporally separated images circumvent the diffraction limit for spatial separation. Fiducial
labels are imaged in parallel with data collection to correct nanoscopic drift during imaging.
D. Table comparing the different features which can be measured with each approach, with
example images adapted from [14,17,19], with permission. By measuring TADs, we mean
de novo mapping of TAD boundaries independent of 3C-methods or related sequencing
dependent technologies.
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Molecule position

Center without
photoswitching

STORM localizations
from photoswitching

For STORM (stochastic localization of individual fluors) to be advantageous, the absolute
spread of the fluorescent molecules positions (purple stars) should be greater than the
precision at which individual fluors can be localized by photoswitching (red crosses). In this
regime, the localizations from photoswitching (red crosses) provide a better description of
the true location and physical extent of the fluors than the centroid (blue cross). If the
distance between molecules is smaller than the localization precision, the centroid from the
combined emission of all fluors provides a more accurate estimate of the position than

individual photoswitching events.
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Super-resolution reveals domain separation B TAD boundaries exist because of statistically C Epigenetic independent, cell type specific
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Figure 4. Key Figure. Recent biological insights from advances in super-resolution imaging of
chromatin.

A. Epigenetic domains are generally not resolved using conventional microscopy but reveal
structurally distinct organization such as compaction, asphericity, and lack-of-mixing when
resolved in super-resolution [13-16,66]. An example image from [14], with permission. B.
Heterogeneous TAD-like domains are observed in single cells when using with multiplexed
super-resolution imaging. There is not a 1-to-1 correspondence between the TAD-like
domains of single cells and the TADs in the population data, but TAD-like domain
boundaries occur more frequently at population TAD boundary positions [18]. Images
adapted from [18] with permission. C. In certain cell types of Drosophila embryos,
neighboring active hox genes are physically separated from one another into distinct TADs.
This separation depends on boundary elements at the border of these TADs [19]. Image
adapted from [19], with permission.
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