
Strengthened Temporal Coordination within Pre-existing 
Sequential Cell Assemblies Supports Trajectory Replay

Usman Farooq1, Jeremie Sibille2, Kefei Liu2, George Dragoi1,2,3,4,*

1Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA

2Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA

3Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA

4Lead Contact

SUMMARY

A central goal in learning and memory research is to reveal the neural substrates underlying 

episodic memory formation. The hallmark of sequential spatial trajectory learning, a model of 

episodic memory, has remained equivocal, with proposals ranging from de novo creation of 

compressed sequential replay from blank slate networks to selection of pre-existing compressed 

preplay sequences. Here, we show that increased millisecond-timescale activation of cell 

assemblies expressed during de novo sequential experience and increased neuronal firing rate 

correlations can explain the difference between post-experience trajectory replay and robust 

preplay. This increased activation results from an improved neuronal tuning to specific cell 

assemblies, higher recruitment of experience-tuned neurons into pre-existing cell assemblies, and 

increased recruitment of cell assemblies in replay. In contrast, changes in overall neuronal and cell 

assembly temporal order within extended sequences do not account for sequential trajectory 

learning. We propose the coordinated strengthening of cell assemblies played sequentially on 

robust pre-existing temporal frameworks could support rapid formation of episodic-like memory.

In Brief

Farooq et al. demonstrate that time-compressed, internally generated sequential dynamics in the 

CA1 ensembles are modified by navigational experience primarily via persistent changes in 

experience-relevant short-timescale neuronal coordination on the framework of largely conserved 

long-timescale sequential dynamics to form a memory.
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INTRODUCTION

Episodic memories are an essential component of our cognitive life (Tulving, 2002). The 

proposed mechanisms behind the precise remodeling of neuronal circuits supporting 

formation of episodic memories have, however, remained debated. The demonstration that 

the hippocampus is crucial for rapid learning and memory formation in humans (Scoville 

and Milner, 1957), non-human primates (Zola-Morgan et al., 1992), and other species, most 

notably rodents (Eichenbaum et al., 1999; Morris et al., 1986), sparked a major, concerted 

effort toward identification of electrophysiological signatures underlying these cognitive 

functions. Earlier reports revealed post-experience increases in spontaneous firing rate of 

hippocampal place cells encoding a spatial experience (Pavlides and Winson, 1989), which 

suggested that increases in firing rates are markers of memory (Martin et al., 2000). With the 

realization that experience is stored in neuronal ensemble patterns rather than single-cell 

activity (Wilson and McNaughton, 1993), subsequent studies began to address the nature of 

experience-induced functional interactions between hippocampal neurons, primarily using 

rodent CA1 place cells. Those studies proposed that spontaneous cofiring of CA1 cell pairs 

with overlapping place fields selectively increases in post-experience sleep (Dupret et al., 

2010; Wilson and McNaughton, 1994).

The experience-driven changes in single-cell firing rate dynamics and in cofiring of neuronal 

pairs might not be sufficient to explain the phenomenological nature of episodic memory, 

which involves binding together multiple sequential events (Tulving, 2002). Hence, a new 

goal was set in the identification and analysis of place cell sequences. In particular, the 

replay of place cell sequence order (Lee and Wilson, 2002; Skaggs and McNaughton, 1996) 

and of animal trajectory (Davidson et al., 2009; Karlsson and Frank, 2009) on linear tracks 

in post-experience sleep was proposed to represent the ensemble signature for learning and 

memory in the CA1. In its classic formulation, this proposal posits that experience of novel 

or familiar place sequences leads to the de novo creation of compressed temporal sequences 

of firing, i.e., theta sequences (Dragoi and Buzsáki, 2006; Skaggs et al., 1996), from a blank 

slate network (Lee and Wilson, 2002; Silva et al., 2015), which are recurrently replayed at 

high rates during the post-experience sleep.

In contrast with this view, however, extended preconfigured neuronal temporal sequences 

have been observed to occur spontaneously in naive animals prior to and correlated with a de 
novo spatial experience, a phenomenon termed preplay (Dragoi and Tonegawa, 2011, 

2013b), subsequently confirmed by several studies (Grosmark and Buzsáki, 2016;Ólafsdóttir 

et al., 2015). This preconfiguration was proposed to represent the hippocampal network 

identity largely facilitating rapid encoding of novel sequential information by a selection and 

editing of existing neuronal sequence motifs, which would eliminate the need for their de 
novo creation during the experience (Dragoi and Tonegawa, 2013c; Liu et al., 2018). The 

discovery of preplay redefined the long-lasting hippocampal signature of a memory for a 

recent novel experience, which would have to rely on the difference between post- and pre-

experience spontaneous sequential activity (Dragoi and Tonegawa, 2013a; Farooq and 

Dragoi, 2019; Grosmark and Buzsáki, 2016), rather than on the observation of post-

experience activity in isolation.
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Owing to the variable nature of preplay sequences and their putative role in facilitation of 

rapid encoding, complex approaches have been employed to determine their statistical 

significance and through that their biological relevance. Recently, it has been proposed that 

preplay sequences might emerge merely due to the statistical variability in the stochastic 

single-cell firing rate dynamics of hippocampal pyramidal neurons during sleep rather than 

as a biological property of the network (Silva et al., 2015). An important implication of this 

statistical inference is that the hippocampus inherits temporal structure from the external 

world and that temporal dynamics in the neuronal networks supporting episodic-like 

memories are exclusively created during a novel experience and replayed for a limited time 

post-experience (Lee and Wilson, 2002; Silva et al., 2015). The two competing hypotheses 

regarding the nature of temporal sequences (i.e., internally generated versus externally 

driven) provide fundamentally different views on the role of the hippocampus in memory 

encoding and more generally in internally generated representations (Dragoi and Tonegawa, 

2013c; Liu et al., 2018, 2019). Therefore, here, we first revisit this point of debate and 

provide multiple lines of evidence for robust preplay of future place cell and trajectory 

sequences in two independent datasets. At the same time, we propose that statistical 

oversights could lead to a masking of the preplay phenomenon, as reported recently (Silva et 

al., 2015).

More importantly, the existence of preplay trajectory sequences raises the fundamental 

question of how the novel experience modifies these time-compressed trajectory sequences 

and their expression during post-experience trajectory replay. Currently, decoding of animal 

trajectory based on ensemble neural activity, i.e., Bayesian decoding (Davidson et al., 2009; 

Karlsson and Frank, 2009; Zhang et al., 1998), is the most comprehensive statistical method 

to assess the ability of spontaneous network patterns (i.e., trajectory preplay and replay) to 

represent a sequential spatial experience. Bayesian decoding makes use of all the spiking 

activity of all neurons and, therefore, integrates firing rate (Pavlides and Winson, 1989), 

temporal coordination at millisecond timescales (van de Ven et al., 2016; adapted after 

Peyrache et al., 2009) and neuronal order dynamics (Lee and Wilson, 2002) altogether. 

However, which of these three neuronal coding schemes support the experience-induced 

plastic changes in neuronal ensemble activity remains to be established. Here, we perform 

simultaneous recordings from a large population of hippocampal neurons and use a 

repertoire of analytical methods and simulations to identify the hippocampal signature of a 

memory for a recent novel spatial experience. Our results demonstrate that de novo spatial 

experiences induce an experience-dependent reorganization of firing rates of hippocampal 

neurons and a strengthening of millisecond-timescale temporal coordination of neurons 

within pre-existing cell assembly sequences (Hebb, 1949). At the same time, temporal order 

of neuronal and cell assembly activation into sequences and the average neuronal firing rates 

are expressed similarly in the pre- and post-experience sleep. Altogether, we propose that 

replay is a result of plasticity (i.e., persistent changes in the network due to experience) at 

the short timescale (~20 ms) within hippocampal cell assemblies via reorganization of firing 

rates and increased coordination of neuronal spiking integrated into largely stable, sequential 

network dynamics.
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RESULTS

Compressed Trajectory Sequence Preplay Precedes De Novo Spatial Experience

We recorded from neuronal ensembles in the dorsal hippocampal CA1 area using 

independently moveable tetrodes and silicon probes in experimentally naive Long-Evans 

adult male rats (n = 5) during their first reward-driven exploration of a novel linear track (de 
novo Run session). The Run session was preceded (i.e., Pre-Run) and followed (i.e., Post-

Run) by extended (~2–4 h) sleep sessions (Figure 1A; Table S1; STAR Methods). We 

commenced our investigation by reconstructing the location of the animal on the track based 

on the spike trains from the population of recorded neurons at velocities exceeding 5 cm/s, 

using a Bayesian probabilistic framework (Davidson et al., 2009; Dragoi and Tonegawa, 

2013b; Karlsson and Frank, 2009; Zhang et al., 1998). The neuronal population accurately 

represented the location of the animal during active Run behaviors (median error in decoded 

location: 7.6 cm versus 54.3 cm in shuffled datasets with permuted time bins, on a 1.5-m 

linear track during de novo run, using 250-ms time bins; Wilcoxon’s rank sum test: p < 

10−10; Figures 1B, 1C, and S1; see Figures S2A–S2C for our results from an independent 

dataset; Grosmark and Buzsáki, 2016).

We addressed the hypothesis that trajectory sequences within Pre-Run sleep depict the future 

Run trajectory by first identifying epochs of heightened hippocampal population activity 

(termed frames; see STAR Methods) of naive animals during this sleep (Davidson et al., 

2009; Dragoi and Tonegawa, 2011; Ji and Wilson, 2007). We defined “frames” as transient 

increases in the overall population activity of all recorded pyramidal neurons, such that the 

total activity in the population increased to at least two SDs above its mean. Only the frames 

spanning 100–800 ms and including activation of a minimum of 5 distinct place cells were 

used for further analysis (Table S2; STAR Methods). Importantly, in the Pre-Run sleep 

session, the animals were placed inside high-walled boxes devoid of any experience or 

exposure to the linear tracks, which were introduced into the room only at the end of the 

sleep (Dragoi and Tonegawa, 2013b). Using our decoding approach, for each frame in the 

Pre-Run sleep, we derived a set of time-compressed posterior probability distributions of 

spatial locations of the following Run trajectory at 20-ms time bin resolution. The strength 

of sequential representation in each frame was studied by computing the linear Pearson’s 

product-moment correlation of space-time weighted by the derived posteriors for the frame, 

called weighted correlation (STAR Methods). To quantify the continuity of spatial 

representation within trajectory sequences (i.e., the lack of “jumpiness” in space between 

adjacent decoded positions within trajectory sequences), we computed the maximum of 

jumps in decoded space between consecutive time bins (Silva et al., 2015) within a frame, 

called jump distance (Figure 1D; STAR Methods).

Simultaneous quantification of these two features (i.e., weighted correlation and the 

maximum of jump distances) against shuffled datasets lacking sequential structure has been 

proposed to accurately characterize trajectory sequences (Silva et al., 2015). Therefore, we 

simultaneously compared these two features of activity within frames in the Pre-Run sleep 

to shuffles generated using a commonly employed permutation method termed the time-bin 

shuffle (n = 500 shuffles). For all frames during sleep, the decoded posteriors in each time 
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bin within a frame were randomly permutated within the frame. A comparison of Pre-Run 

and time-bin shuffle (i.e., tPre-Run) frames revealed that the Pre-Run sleep has significantly 

higher incidence of true preplay sequences (i.e., high correlations and low maximum jump 

distances) compared to shuffled tPre-Run sleep (Figure 1E). This indicates a robust pre-

existing sequential structure in the Pre-Run sleep (Figure 1D for examples of preplay 

sequences; the p values are one-sided statistical comparisons of the proportions of frames in 

preplay and the shuffled datasets passing the corresponding thresholds for the two features; 

see STAR Methods).

It is conceivable that alternative sources of nonuniformity, i.e., differences in average firing 

rates of individual neurons during Pre-Run sleep frames, might lead to spurious masking of 

preplay in Pre-Run sleep (Silva et al., 2015). To control for this, we generated surrogate 

frames comprised of spike trains with Poisson distributions that have identical average firing 

rates of individual neurons across all frames compared to Pre-Run sleep frames (here called 

Poisson datasets). We directly compared Pre-Run sleep preplay sequences with 500 firing-

rate-matched Poisson datasets. Our results revealed that Pre-Run sleep had significantly 

higher sequential structure than the Poisson data (Figure 1F), thus refuting the possibility 

that preplay is simply due to inhomogeneities in firing rates across neurons. Consistently, the 

Poisson data had similar sequential structure (or lack thereof) as its own time-bin shuffle 

(here called Poisson time-bin shuffle or tPoisson; Figure 1G) and as the time-bin shuffle of 

the Pre-Run data (i.e., tPre-Run; Figure 1H; average weighted correlations: preplay 0.1916 ± 

7.6 × 10−4 versus tPre-Run 0.1709 ± 6.9 × 10−4, p < 10−10; Poisson 0.1701 ± 6.7 × 10−4 

versus tPoisson 0.1698 ± 6.7 × 10−4, p = 0.53; preplay versus Poisson: p < 10−10; preplay 

versus tPoisson: p < 10−10; Poisson versus tPre-Run: p = 0.41; tPre-Run versus tPoisson: p = 

0.84; Wilcoxon’s rank sum tests).

Next, we employed another commonly used method of shuffling data and shuffled the 

decoded probabilities in the sleep frames in the spatial domain (i.e., circular space-bin 

shuffle) rather in the temporal domain for both Pre-Run (here called sPre-Run) and Poisson 

(called sPoisson) data. This method also detected stronger sequential structure in Pre-Run 

sleep compared with sPre-Run shuffle (Figures S3A and S3B). However, upon closer 

examination, we found two methodological issues that cautioned us against using it further, 

as detailed in Figures S3 and S4. Briefly, the use of this shuffle can mislead to an 

interpretation that Pre-Run and Poisson data are similar only because they are both stronger 

than their own shuffles (Silva et al., 2015). Accounting for the issues with this shuffle 

revealed significant preplay (Figures S3 and S4; for details, see STAR Methods).

Overall, these findings show that Pre-Run preplay sequences have significantly greater 

sequential structure compared with firing-rate-matched Poisson datasets and statistically 

rigorous shuffles. The robustness of the preplay phenomenon is further demonstrated by its 

presence at the individual animal level (Figure S1) and by its maintenance when only the 

middle segment of the track in between reward locations or when the same day second 

experience on the now familiar track (i.e., Run2) were considered (Figure S5). Finally, we 

cross-validated our findings on the robustness of preplay and the statistical pitfalls of using 

the space-bin shuffle, using an independent dataset (Grosmark and Buzsáki, 2016) where 
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preplay occurred during Pre-Run slow-wave sleep confirmed by simultaneous 

electromyography (Figure S2).

Improved Ensemble Representation of a Recent Experience by Trajectory Replay 
Sequences

Given that compressed trajectory sequences during slow-wave sleep (SWS) preplay future 

novel spatial experiences (Dragoi and Tonegawa, 2013b; Figure 1), we next studied whether 

and how a de novo spatial experience on a linear track affects the dynamics of hippocampal 

trajectory sequences. To avoid the confounding effects of a different behavioral and brain 

state and of online access to experiential external sensory cues (e.g., as during awake resting 

epochs on the track), we compared the properties of Pre-Run preplay with those of trajectory 

sequence replay expressed exclusively during the Post-Run sleep in the same sleep box (see 

Figure 2A for representative examples).

To assess the experience-dependent changes in trajectory sequences during sleep, we 

compared the strength of trajectory preplay and replay. We found that replay sequences had 

higher incidence and represented the Run experience stronger compared to preplay, as 

assessed by weighted correlations and sequence scores (i.e., weighted correlations Z scored 

by their respective time-bin shuffles) as shown in Figure 2B (Pre-versus Post-Run sleep, 

mean % significant frames: 9.00% ± 0.18% versus 10.00% ± 0.20%, p < 0.001, Wilcoxon’s 

signed rank test; mean weighted correlations 0.43 ± 0.0024 versus 0.44 ± 0.0034, p < 0.005; 

mean sequence score 0.1831 ± 0.0056 versus 0.2430 ± 0.0084, p < 10−7; Wilcoxon’s rank 

sum tests). Comparison using individual animal direction as unit of analysis was consistent 

with this finding (Pre- versus Post-Run sequence scores: p < 0.005; Wilcoxon’s signed rank 

test; n = 10; data not shown). Similar results were obtained when we employed stricter 

criteria for slow-wave sleep classification (Figure S6A). Interestingly, the sequential content 

in preplay exceeded the navigational-experience-induced increase in sequential content from 

preplay to replay (Figure 1B, right), indicative of a robust pre-existing sequential backbone 

that is also the primary contributor to the overall sequential activity observed in replay 

following a de novo experience (Liu et al., 2019). Additionally, we asked whether 

representation of trajectory sequences was a function of the duration to and from exposure to 

the track. We subdivided the data into two equal epochs (0 to 1 h and 1 to 2 h to and from 

experience) and studied each epoch separately. We found that both preplay and replay and 

their difference were similar across these two epochs with different durations to and from 

exposure to the track (Figure S6B). The improvement in replay over preplay was also 

observed when two features, strength and continuity in trajectory representation, were tested 

simultaneously across Pre- and Post-Run sleep (Figure 2C; see STAR Methods for details), 

as in Farooq and Dragoi (2019) and Silva et al. (2015). Together, these findings reveal a 

significant, persistent improvement in representation of Run trajectory after the experience, 

which includes a coordinated improvement in the strength and continuity of trajectory 

sequences during Post-Run sleep.

Various mechanisms have been proposed to explain the experience-induced changes in post-

experience spontaneous activity of the hippocampal network. These include increases in the 

net firing rates of previously active place cells (Battaglia et al., 2005; Pavlides and Winson, 
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1989), changes in the temporal order of neuronal sequences (Lee and Wilson, 2002; Skaggs 

and McNaughton, 1996), and preferential increases in multi-neuronal coordination at short, 

millisecond timescales for neurons coactive during the experience (van de Ven et al., 2016; 

adapted after Peyrache et al., 2009). Because these three changes in hippocampal network 

activity (i.e., rate, order, and coordination; Figure 2D) have been observed in isolation, it 

remains unknown whether and to what extent they contribute to the post-experience increase 

in temporally compressed replay of a recent animal trajectory over its preplay during sleep 

(Figure 2B). We therefore sought to determine which of these three changes in ensemble 

activity accounts for the observed improvement in trajectory representation during the sleep 

following a de novo spatial experience. Our main approach was to isolate and when possible 

remove the contribution of each of the three factors to the increase in trajectory 

representation from Pre- to Post-Run sleep.

Contribution of Experience-Related Changes in Firing Rates to Improved Trajectory 
Representation during Sleep Replay

We observed that place cells had significantly higher firing rates in the Post-Run sleep 

frames compared with Pre-Run sleep (Figure 3A; mean firing rates in Pre- versus Post-Run 

sleep: 1.986 ± 0.0742 versus 2.102 ± 0.0868 Hz, p < 10−5, Wilcoxon’s signed rank test; 

comparison using individual animal direction as unit of analysis, n = 10: Pre- versus Post-

Run sleep firing rate, p < 0.005, Wilcoxon’s signed rank test). We tested the hypothesis that 

net increases in firing rates of place cells may be the primary contributor to the increased 

sequential content observed during Post-Run sleep trajectory replay (Figure 2B), as 

suggested previously (Peyrache et al., 2009).

We studied the effect that increased firing rates during Post-Run sleep has on the 

strengthening of trajectory representation in replay over preplay. We thus randomly and 

repeatedly (n = 100) down-sampled spike counts in Post-Run sleep frames until the grand 

average firing rate for the population matched that of Pre-Run sleep frames (Figure 3B). 

Subsequently, we compared the sequence score of these down-sampled datasets (i.e., 

replayDS) to that of the original replay and preplay. We observed no significant difference in 

sequential trajectory content between replay and replayDS in any of the 100 rate-matched 

datasets; at the same time, replayDS was stronger than preplay in all tested cases (Figures 

3C and 3D; replay versus replayDS: p values ranged from 0.09 to 0.7077; preplay versus 

replayDS: all p < 10−5, Wilcoxon’s rank sum test, n = 100). A more drastic reduction in 

firing rates of all neurons to single spikes per frame during Pre- and Post-Run sleep resulted 

in significant decreases in sequence scores for Bayesian decoding of trajectories, indicating 

that trajectory decoding depends on neuronal firing rate (data not shown). Hence, we 

conclude that net increases in firing rates of place cells cannot alone account for the 

increases in trajectory representation from preplay to replay during sleep.

Experience-driven reorganization of firing rates of hippocampal neurons might improve 

trajectory representation during frames in Post-Run sleep (Hirase et al., 2001). We observed 

a redistribution of firing rates, with some neurons increasing their activity and others 

reducing their activity in the Post-Run sleep (Figure 3E). Overall, this reorganization 

resulted in a higher correlation of firing rates between Run experience and Post-Run sleep 
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compared with Pre-Run sleep (Figure 3E, inset: Pre- versus Post-Run sleep frames’ 

correlations with Run: 0.35 versus 0.45).

We developed a targeted down-sampling approach to test the significance of this rate 

reorganization on trajectory replay. Spikes from cells exhibiting increased firing rates from 

Pre- to Post-Run sleep frames were randomly dropped from Post-Run sleep until their 

individual firing rates matched those in Pre-Run sleep frames (i.e., ReplayEF group). 

Concomitantly, spikes from cells with a post-experience reduction in firing rates were 

randomly dropped from Pre-Run sleep, as above (i.e., PreplayEF group; Figure 3F). The 

average firing rate in both equalization of firing rates (EF) surrogate datasets (n = 100) was 

1.6 Hz (Figure 3F; a 25% reduction from Pre-Run; mean firing rates PreplayEF versus 

ReplayEF; all p = 1; Wilcoxon’s signed rank tests; n = 100). The average correlations of 

neuronal firing rates in PreplayEF and ReplayEF with Run were also equal (r = 0.39). 

Importantly, ReplayEF exhibited significantly higher trajectory sequential structure 

compared to PreplayEF (Figures 3G and 3H; PreplayEF versus ReplayEF sequence strength; 

100 out of 100 Wilcoxon’s rank sum tests p < 0.05). We observed only a mild yet significant 

reduction in Replay/Preplay ratio (mean = 1.33) after equalizing firing rate correlations 

(mean ReplayEF/PreplayEF = 1.29; p < 10−10; Wilcoxon’s sign rank test). Together, our 

results demonstrate that reorganization of firing rates alone cannot account in a major way 

for improved trajectory representation in Post-Run sleep.

Contribution of Experience-Related Changes in Temporal Order of Neuronal Sequences to 
Improved Trajectory Representation during Sleep Replay

Given the limited contribution of place cell firing rates toward improved trajectory replay, 

we next investigated whether the temporal order of extended neuronal sequences improved 

in replay over preplay. To isolate the contribution of temporal order of firing during sleep to 

the rapid encoding of future place cell sequences, we employed a template-matching method 

(Diba and Buzsáki, 2007; Dragoi and Tonegawa, 2013b; Foster and Wilson, 2006; Silva et 

al., 2015). Briefly, we rank ordered place cells according to their peak firing location along 

the animal’s trajectory and computed two spatial templates per animal, one for each 

direction of movement. Each spatial template was correlated with the temporal order of 

firing of the corresponding cells during sleep frames (two correlation coefficients/frame; one 

for each template; Spearman’s correlation) separately for Pre- and Post-Run sleep (see 

STAR Methods). As a control, we shuffled the order of place cells within the templates (500 

shuffles) and computed correlation coefficients with the original frames during the 

corresponding sleeps (two correlation coefficients/frame/shuffle; one for each template). We 

found that Pre-Run frames had stronger correlations and hence more temporal structure than 

control shuffled datasets (Figure 4A; mean Pre-Run sleep versus shuffle correlations: 0.202 

± 0.002 versus 0.195 ± 0.0001, p < 10−10, Wilcoxon’s rank sum tests, data pooled across 5 

animals; 3 of the 5 individual animals were also significant; data not shown). Notably, using 

simulations based on real datasets recorded during sleep, we found that the outcome of the 

template-matching method is particularly sensitive to the number of place cells per spatial 

bin on the linear track (for details, see Figures S3 and S4 and STAR Methods). Accordingly, 

an increased average density of cells/spatial bin >1.19 randomizes the rank ordering of place 

cells with firing peaks within a spatial bin, which approaches a random place-cell order 
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similar to shuffled datasets (Figure S3H). This randomization of cell order within spatial 

bins might lead to false negative results when attempting to detect sleep preplay and replay, 

as found in our simulations (and might have contributed to the masking of significant 

neuronal order preplay, i.e., p = 0.08, Wilcoxon’s rank sum test on data versus shuffle, in a 

recent study; Silva et al., 2015).

Similar to Pre-Run sleep frames (Figure 4A), we found that Post-Run sleep frames had 

stronger correlations and more temporal structure than control shuffled datasets (Figure 4B; 

Post-Run sleep versus shuffle correlations: 0.207 ± 0.003 versus 0.193 ± 0.0001, p < 10−8, 

Wilcoxon’s rank sum tests, data pooled across 5 animals; 4 of the 5 individual animals were 

also significant; data not shown). Furthermore, the significance of preplay and replay was 

maintained when the frames with higher number of participating cells were studied 

exclusively (Figures 4A and 4B; >15 place cells/spiking event: p < 10−6, p < 10−3; 

Wilcoxon’s rank sum tests; data pooled across 5 animals). Importantly, rank-order 

correlations with Run were similar in Pre-Run and Post-Run sleep (Figure 4C) in 4 of the 5 

animals and were stronger in the Pre-Run sleep in one animal, consistent with an earlier 

report (Dragoi and Tonegawa, 2013a). Overall, this indicates that preplay and replay 

trajectory sequences have a similar temporal order representation of a de novo experience, 

which cannot explain the post-experience plasticity in trajectory replay (Figure 4D).

Contribution of Experience-Related Changes in Millisecond-Timescale Cell Assembly 
Organization to Improved Trajectory Representation during Sleep Replay

Hippocampal neurons organize into cell assemblies (Hebb, 1949) transiently activated at the 

millisecond timescale to represent individual locations along the animal’s trajectory (van de 

Ven et al., 2016). These hippocampal cell assemblies have been shown to be activated 

stronger in the post- compared with pre-experience sleep (van de Ven et al., 2016), providing 

a potential mechanism for memory consolidation. Cell assembly formation is expressed by 

the strict temporal coordination (synchronous activation) of a subset of neurons within 

millisecond-timescale windows. The exact contribution of cell assembly activation to the 

formation and plasticity of compressed trajectory sequences remains unknown. Our current 

results indicate a limited contribution of changes in neuronal firing rate and temporal order 

to the improved trajectory representation during sleep replay. This raises the possibility that 

strengthened trajectory replay could primarily be supported by plasticity within individual 

cell assemblies, presumed to represent individual locations along an animal’s trajectory, 

played along a rather stable preconfigured trajectory-representing temporal framework.

To reveal and study hippocampal cell assemblies, we detected significant, repeating 

coactivating multi-neuronal patterns (i.e., cell assemblies) at 20-ms bin-size timescale, based 

on a principal-component analysis of the observed correlation matrix of all neurons during 

Run (Peyrache et al., 2009; van de Ven et al., 2016; cell assembly method; see STAR 

Methods and Figure S4 for schematic representation of the method). This method allows the 

study of significant millisecond-time-scale interactions within the neuronal ensemble, with 

two advantages over the traditional methods, such as cell-pair cofiring (Wilson and 

McNaughton, 1994). First, it enables us to capture the instantaneous dynamics of significant 

multi-neuronal patterns compared with averaging the cofiring of all neuronal pairs across an 
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entire session. Because compressed sequences are highly variable (Fenton and Muller, 1998) 

and cell assembly dynamics unfold at the millisecond timescale (Harris et al., 2003), the 

traditional pairwise cofiring methods cannot provide the temporal resolution to study the 

dynamic relationship between cell assemblies and neuronal sequences (Lee and Wilson, 

2002). Second, this method incorporates higher order interactions, in addition to the pairwise 

interactions captured by the previous methods.

Discrete locations along the novel track were each encoded by an average of 8.2 cell 

assemblies uniquely coactive during each direction during Run (Figure 5A for all cell 

assemblies; Figure 5B for an example of a cell assembly; Table S1). Each cell assembly had 

an average of 2.5 high-contributing (HC) neurons defined as neurons with principal 

component weights >2 SD above the mean for a particular cell assembly (Figures 5B, 5C, 

and S7A). Pairs of these HC neurons exhibited a higher degree of coactivation and place 

field similarity compared to the other neuronal pairs, which we collectively called non-HC 

neuronal pairs (Figure 5D; left, mean cofiring correlation for HC versus non-HC: 0.065 ± 

0.002 versus 0.005 ± 0.0003, p < 10−10, Wilcoxon’s rank sum test; right, mean place field 

similarity for HC versus non-HC: 0.33 ± 0.02 versus 0.082 ± 0.002, p < 10−10, Wilcoxon’s 

rank sum test).

We studied the changes occurring within cell assemblies from Pre- to Post-Run sleep. We 

found that the overall activation of cell assemblies during replay frames exceeded that 

during preplay (Figures 5E, S7B, and S7C; mean Pre-Run versus Post-Run sleep: maximum 

assembly strength 25.70 ± 0.27 versus 31.03 ± 0.40; p < 10−10; Wilcoxon’s rank sum test). 

This overall strengthening in activation of cell assemblies representing Run trajectories from 

Pre- to Post-Run sleep was due to increases in (1) the proportion of significant cell 

assemblies activated within a frame (Figure 5F; mean Pre- versus Post-Run sleep in all and 

in significant frames, respectively: 0.1989 ± 0.0001 versus 0.2273 ± 0.0012 and 0.2087 ± 

0.0027 versus 0.2652 ± 0.0044; p < 10−10 and p < 10−10 for proportion of assemblies; 

Wilcoxon’s rank sum tests) and (2) the proportion of frames in which individual assemblies 

were activated (Figure S7E; mean Pre- versus Post-Run sleep in all and significant frames, 

respectively: 0.2000 ± 0.0071 versus 0.2228 ± 0.0077 and 0.2122 ± 0.0085 versus 0.2620 ± 

0.0098; p < 10−7 and p < 10−8; Wilcoxon’s signed rank tests). Despite all these changes in 

the strength of activation, the temporal sequence of cell assembly activation within frames 

(i.e., temporal score; see STAR Methods) did not change from Pre- to Post-Run sleep 

(Figure 5G; mean Pre- versus Post-Run sleep temporal score: 0.1915 ± 0.0064 versus 0.1981 

± 0.0092; p = 0.56; Wilcoxon’s rank sum test). Together, these results suggest that trajectory 

replay represents additional individual track locations with higher overall track continuity 

than trajectory preplay, but the temporal order of locations represented within a sequence 

remains conserved.

Experience-Dependent Reorganization of Neuronal Firing Characteristics within Cell 
Assemblies Supports Plasticity in Trajectory Sequences

Our observation that trajectory replay has higher activation of individual cell assemblies led 

us to study the properties of individual neurons within the cell assemblies. We investigated 

whether the changes occurring in individual neurons within a cell assembly were correlated 
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with the observed increase in cell assembly activation from Pre- to Post-Run sleep. The 

duration of cell assembly activation in frames increased by <1 ms from Pre- to Post-Run 

sleep frames (mean Pre- versus Post-Run sleep assembly duration; 22.26 ± 0.028 versus 

22.95 ± 0.047 ms; p < 10−10; Wilcoxon’s rank sum test). Therefore, we isolated the 20-ms 

epoch within the frames with the maximum activation of cell assemblies (i.e., cell assembly 

activation epoch; STAR Methods) and studied the firing characteristics of neurons within 

this epoch. We investigated two broad sets of neuronal changes within cell assemblies from 

Pre- to Post-Run sleep frames: changes in firing rates within cell assemblies and changes in 

precision of spikes of constituent neurons of cell assemblies. We found that, within the 

assembly activation epochs, the firing rates of the HC neurons to the preferred assembly 

(i.e., <10% of all neurons for each assembly) were increased (median Pre- versus Post-Run 

sleep: 12.75 ± 0.72 versus 13.93 ± 0.74 Hz for HCs, Figure 5H, p = 0.002 for Wilcoxon’s 

rank sum tests; comparison with individual animal direction as unit of analysis, n = 10: Pre-

versus Post-Run sleep, p < 0.05, Wilcoxon’s signed rank test). Furthermore, we observed 

that the number of HC neurons coactive in the cell assembly activation epochs (i.e., 

increased neuronal recruitment to assemblies) also increased from Pre- to Post-Run sleep 

from 0.228 ± 0.0013 to 0.236 ± 0.003 (Figure 5I; p < 10−4; Wilcoxon’s rank sum test). In 

addition, the tuning of HC neurons to their respective cell assembly activation epochs, 

defined as the proportion of spikes within the cell assembly out of all within-frame spikes, 

increased from Pre- to Post-Run sleep (Figure 5J; mean tuning Pre- to Post-Run: 0.524 ± 

0.002 versus 0.537 ± 0.003, p < 10−3, Wilcoxon’s rank sum test). Consistent with these 

findings, we observed that the dispersion of spikes relative to their epoch of activation 

(STAR Methods) decreased for HC neurons in Post- compared to Pre-Run sleep (Figure 5K; 

mean spike dispersion Pre- versus Post-Run sleep frames: 0.2245 ± 0.003 versus 0.2160 ± 

0.004, p < 10−6, Wilcoxon’s rank sum test; comparison with animal direction as unit of 

analysis, n = 10: Pre- versus Post-Run sleep spike dispersion, p < 0.005, Wilcoxon’s signed 

rank test).

Given that experience-related reorganization of neuronal firing rates has a limited effect on 

the plasticity of trajectory sequences during sleep (Figure 2), we next studied its effect on 

the properties of neurons constituting cell assemblies. We found that, despite equalization of 

firing rates and correlations between the PreplayEF and ReplayEF conditions (Figure 3F), 

the activation strength of cell assemblies was significantly higher in the ReplayEF compared 

to PreplayEF sleep frames (Figure 5L; mean cell assembly activation strength in PreplayEF 

versus ReplayEF: 24.82 ± 0.028 versus 29.73 ± 0.038; p < 10−10; Wilcoxon’s rank sum test). 

The residual plasticity in cell assemblies observed across the firing rate correlation-matched 

PreplayEF and ReplayEF frames (Figure 5L) paralleled a similar residual plasticity in 

trajectory sequences (i.e., sequence scores) between PreplayEF and ReplayEF frames 

(Figure 3G).

Overall, we identified two types of changes in cell assembly dynamics from Pre- to Post-

Run sleep: (1) increases in firing rates and coactivation of HC neurons within the preferred 

cell assembly and (2) increased precision of firing of these neurons within preferred cell 

assemblies during Post-Run sleep replay (i.e., decreased spike dispersion and increased 

tuning to preferred cell assembly). We propose that these changes in cell assembly dynamics 

between Pre-Run and Post-Run sleep frames could primarily lead to increased trajectory 
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representation during replay. Intriguingly, the plasticity within cell assemblies occurs at a 

timescale of ~20 ms, consistent with the period of hippocampal gamma oscillation (Carr et 

al., 2012), the time window for synaptic plasticity (Bi and Poo, 1999), and previous reports 

of cell assembly dynamics (Harris et al., 2003).

Diversity in Plasticity across Frames Suggests that Experience-Related Strengthening in 
Cell Assemblies Is a Prime Contributor to Plasticity in Trajectory Sequences

Previous studies pooled the results from all frames of an entire sleep session (Grosmark and 

Buzsáki, 2016; Silva et al., 2015). However, we observed a large diversity across frames 

within a sleep session based on the proportion of place cells activated in the frame. The 

distributions of frames based on cell participation were non-Gaussian (Lilliefors test for 

frames in Pre-Run sleep, p < 10−3, and for frames in Post-Run sleep, p < 10−3), right 

skewed, and did not change between Pre-Run and Post-Run sleep (Kolmogorov-Smirnov 

test; p > 0.05; Figure 6A). The frames with higher proportion of place cells had longer frame 

durations, similarly for Pre- and Post-Run sleep (Wilcoxon’s rank sum test; p > 0.05; Figure 

6A, inset). When we analyzed the increase in trajectory sequential content of frames from 

Pre- to Post-Run sleep, we observed a stronger increase in sequential content in the frames 

where more than 50% of place cells were active compared with frames with lower cell 

participation (Pearson’s correlation of proportion of participating cells and difference in 

replay and preplay; R = 0.78; p < 0.05; Figure 6B and inset). We asked which of the three 

factors (firing rate, neuronal order, and short-timescale cell assembly coordination) 

contributes to this selective improvement in replay over preplay. We observed that the 

improvement in sleep-Run firing rate correlations from Pre- to Post-Run sleep was higher in 

frames with higher proportion of active place cells (Figure 6C). However, the small changes 

in neuronal order of firing with increased participation of neurons into frames remained 

similar between Pre- and Post-Run sleep (Figure 6D; see also Figures 4A–4C). Consistent 

with the proposed contribution of cell assemblies to improved trajectory replay (Figure 5), 

we found that in-frame increase in cell assembly strength at higher proportions of in-frame 

active place cells was stronger during Post- compared with Pre-Run sleep (Figure 6E). This 

increase paralleled a similar increase in the improvement in trajectory sequence score with a 

higher participation of neurons into frames (Figure 6B, inset). Indeed, the experience-related 

increase in plasticity of trajectory sequence score with higher in-frame place cell 

participation (Figure 6B, inset) was highly correlated with the increase in plasticity at the 

cell assembly level (Pearson’s correlation R = 0.92; p < 0.005), but not with changes in 

firing rate correlations of neurons in preplay and replay with Run (R = 0.29; p = 0.53) and 

temporal order of neurons (R = 0.15; p = 0.75; Figure 6F). This result provides further 

support to our proposal that an improved trajectory sequence replay over preplay occurs 

primarily due to an increase in the strength of participating cell assemblies, on the 

framework of a robust preconfigured network. The coordinated increase in cell assembly and 

sequential content was persistent in time and did not decay over the duration of our 

experiments (Figures S6 and S7F).
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DISCUSSION

We reveal hippocampal neuronal ensemble mechanisms implicated in rapid encoding, 

stabilization, and consolidation of novel sequential spatial information. First, we 

demonstrate that internally generated time-compressed neuronal sequences during sleep 

robustly preplay future place cell and trajectory sequences that rapidly encode a de novo run 

experience. We present several lines of evidence to demonstrate that preplay is a true 

neurobiological phenomenon (Figures 1, S1, S2, and S3). Second, we show that the 

navigational experience-dependent plasticity occurring in CA1 place cell sequences is 

primarily due to increased activation and temporal coordination at the millisecond timescale 

of location-depicting cellular assemblies within a framework of largely homeostatic 

temporal sequences (Figures 2, 3, 4, 5, and 6). This overall post-experience strengthening in 

the coordinated activation of neurons within cell assemblies during sleep results from an 

increased tuning of the neurons that form a cell assembly during the run behavior and from 

the recruitment of new, experience-tuned neurons into preconfigured cell assemblies. The 

overall ensemble representation of a recent experience is also strengthened by an increase in 

the number of participating cell assemblies. This strengthening in representation occurs on a 

pre-existing framework of neuronal and cell assembly sequential activation, analogous to a 

Hebbian phase sequence (Hebb, 1949), which is largely maintained from pre- to post-

experience sleep (Liu et al., 2019). The offline strengthening of multiple individual location-

depicting assemblies is the primary driver for the increase in the overall trajectory sequence 

representation in post-experience sleep. This is achieved by mainly two mechanisms, 

increased spike precision and reorganization of firing rates, which lead to an increased 

within-assembly firing of the constituent neurons. More modest post-experience changes in 

neuronal average firing rates appear to contribute mostly technically and methodologically 

to trajectory decoding but are not fully accountable for the change in trajectory 

representation during post-experience sleep (Figures 3A–3D). We thus propose that 

strengthened temporal coordination within pre-existing cell assemblies is the primary factor 

supporting rapid trajectory replay during sleep and possibly spatial memory formation 

(Figure 7).

When not fully accounted for, the complexities of the statistical assumptions underlying the 

characterization of preplay and replay phenomena can occasionally lead to conflicting 

results and interpretations (Dragoi and Tonegawa, 2013b; Grosmark and Buzsáki, 2016; 

Silva et al., 2015). Here, we present several lines of evidence using a two-feature analysis 

(Silva et al., 2015) to establish that hippocampal neuronal sequence and trajectory preplay 

precede spatial experience. We also perform an extensive analysis of some of these key 

statistical assumptions and find several statistical pitfalls in the interpretation of the space-

bin shuffle and of template matching with large cell counts per spatial bin densities data in a 

previous study, which might have contributed to the masking of preplay detection (see 

Figures S3 and S4 for details). Additional related concerns include the comparison of 

properties of time-compressed sequences across different brain states and animal locations 

(i.e., sleep preplay off running track versus awake replay on the running track at velocities 

up to 5 cm/s). We propose that the variability in observing the preplay phenomenon across 

different research groups using similar experimental protocols is largely reflective of a 
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difference in the methodological approaches to data analysis rather than in the neurobiology 

of preplay.

Earlier observations of hippocampal replay sequences in post-experience sleep suggested 

their potential role in consolidation of episodic-like memories (Lee and Wilson, 2002). 

However, as robust neuronal sequences exist before novel experiences (Dragoi and 

Tonegawa, 2011), questions regarding the experience-induced plastic changes in these 

sequences and the primary neuronal ensemble mark of novel trajectory replay and 

potentially rapid episodic-like memory formation have remained unanswered. To determine 

the effect of experience on hippocampal trajectory-depicting sequences, we directly compare 

preplay and replay during sleep using a probabilistic Bayesian framework and reveal a 

stronger replay. We next characterize which changes in hippocampal neuronal ensemble 

firing characteristics could account for this plasticity. Historically, three neuronal coding 

schemes have been implicated in experience-driven plasticity in the hippocampus and have 

been suggested to mediate temporally compressed storage of a memory: (1) long-term 

potentiation-like changes in firing rates of neurons; rate coding (Battaglia et al., 2005; 

Pavlides and Winson, 1989); (2) de novo creation of neuronal sequences (Lee and Wilson, 

2002; Silva et al., 2015), representing the sequential nature of the spatial experience 

(sequence coding); and (3) increased synchrony and coordination at millisecond-timescale of 

neurons (van de Ven et al., 2016) coherently activated during the experience (cell-assembly 

temporal coding). Theoretically, each (and a combination) of these changes could support 

the increased trajectory sequential content in the replay sequences. Our study demonstrates 

that extended neuronal sequences of firing and sequential activation of cell assemblies exist 

before the experience and that their neuronal order remains largely conserved from preplay 

to replay. This indicates that de novo experience has very limited to no significant effect in 

the overall creation of temporal sequences in the hippocampal network.

Remarkably, we observe a significant increase in the activation of cell assemblies during 

frames in post-experience sleep that best explains the increase in trajectory replay over 

preplay. We propose that a strengthening in attractor-based (Hopfield, 2010; Samsonovich 

and McNaughton, 1997; Wills et al., 2005) activation of cell assemblies, building on a robust 

pre-existing sequential temporal order of activation (Dragoi and Tonegawa, 2011; Malvache 

et al., 2016), represents the primary factor supporting trajectory learning in the 

hippocampus. Diversity in firing and plasticity of individual neurons (Dragoi et al., 2003) 

was proposed to be instrumental in orchestrating experience-related plasticity in trajectory 

replay (Grosmark and Buzsáki, 2016). Our results on the diversity in neuronal participation 

to sleep frames suggest that incorporation of additional neurons into cell assemblies active 

during sleep and their activity preferentially within frames with increased neuronal 

participation support experience-dependent plasticity in trajectory replay.

The brain regions involved in generation of hippocampal trajectory sequences in CA1 have 

not been entirely mapped. Earlier models posited that trajectory representation involves two 

different processes: (1) attractor-based auto-association within upstream CA3 networks to 

represent multimodal location-specific stimuli from noisy inputs during recall and (2) 

hetero-association, i.e., a jump from one attractor pattern to the next (Hebb, 1949; Pfeiffer 

and Foster, 2015), likely utilizing broader entorhinal-hippocampal loops to represent 
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multiple locations and/or stimuli along a sequence. Recent work, however, demonstrated that 

hippocampal and entorhinal circuits are not well coordinated during slow-wave sleep and 

that direct entorhinal input from layer 3 is dispensable for sleep replay in CA1 (O’Neill et 

al., 2017; Yamamoto and Tonegawa, 2017). We propose an alternative model in which 

preconfigured hetero-associative networks are employed to encode and later represent a de 
novo experience (Cai et al., 2016; Deguchi et al., 2011; Dragoi and Tonegawa, 2011; 

Epsztein et al., 2011; Malvache et al., 2016) on the framework of which post-experience 

strengthening of intra-hippocampal auto-associative dynamics support consolidation and 

later recall of a memory. As part of the temporal lobe associative cortex, the hippocampus 

receives and integrates multimodal information during exploratory states (Aronov et al., 

2017; Ji and Wilson, 2007; Terada et al., 2017; Wallenstein et al., 1998; Wood et al., 1999) 

and broadcasts to a large number of cortical and subcortical areas during rest and sleep 

(Dragoi et al., 1999; Khodagholy et al., 2017; Logothetis et al., 2012; Siapas and Wilson, 

1998). The robust pre-configured sequential dynamics could form the framework on which 

the experience-driven within-assembly increase in millisecond-timescale neuronal 

coordination associates and binds features from distinct upstream sensory channels to create 

and consolidate unique events within a memory episode. The role of experience-dependent 

plasticity in hippocampal circuits is the Hebbian association of the preconfigured elements 

of the network with those driven by the external world. What remains to be addressed is how 

downstream circuits read and interpret preconfigured and memory-related sequences and 

how neuronal representations underlying more complex incremental learning employ and 

modify pre-existing dynamics for mnemonic purposes.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be addressed to the Lead Contact, 

George Dragoi (george.dragoi@yale.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Five Long-Evans adult male rats (300–400 g) kept experimentally naive on a 12/12-hour 

light-dark schedule were used for these experiments. Animals were mildly food-deprived (to 

no less than 90% of their body weight) starting one week before the de novo run to increase 

their motivation for seeking reward placed at track ends. All animals were provided with ad 
libitum access to water. All experimental procedures were approved by the Yale University 

IACUC committee and were performed in accordance with NIH guidelines for ethical 

treatment of animals.

METHOD DETAILS

Surgical procedures—Under isoflurane anesthesia, 3 rats were implanted with 32-

tetrode independently moveable microdrives (tetrodes split between the left and right dorsal 

hippocampus) and 2 rats were implanted with two Neuronexus 64 channel silicon probe 

octatrodes, one over each side of the dorsal hippocampus area CA1, attached to miniature 

moveable microdrives as described earlier (Dragoi and Tonegawa, 2013b). The animals were 

handled before and after electrode implantation. After recovery from surgery, the electrodes 
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were gradually lowered until the CA1 pyramidal layer of the hippocampus was reached on 

each side. After obtaining stable recordings from a population of neurons, the behavioral 

experiment was initiated.

Behavioral experiment—The behavioral experiment consisted of a Pre-Run sleep 

session, followed by a de novo Run session (Run 1) on a linear track, a Post-Run sleep 

session, and a second Run session on the same track (Run 2), all in the same room and the 

same day. Sleep sessions were recorded as animals slept in a small rectangular ‘sleep box’ 

with high opaque walls for 2–4 h. Pre-Run sleep occurred before the linear tracks were 

introduced into the room and after which the animals were exposed to a 1.5 m-long novel 

linear track placed into the room while animals were ending their Pre-Run sleep session in 

the box. Up until the beginning of the de novo Run session, the animals were kept naive to 

seeing and running on linear tracks. Chocolate sprinkles were provided as food reward at the 

ends of the track only. The Run session lasted for 30–45 min and the animals ran 30–50 laps 

on the track. This was followed by another sleep session (Post-Run sleep) in the same sleep 

box. Following familiarization with the linear track during Run 1, after the Post-Run sleep 

session ended the animals ran a second session on the same linear track, Run 2. To increase 

the likelihood of sleep, the behavioral experiments were performed in the light phase of the 

day (when rats are more likely to sleep).

Electrophysiological recordings—Recordings were performed via a multiplexed 

lightweight cable that connected a head-mountable amplifier with a 128-channel Neuralynx 

digital recording system (DigiLynx). The position of the animal was monitored continuously 

using an overhead camera that tracked two LEDs separated by 1.5 cm built into the 

headstage amplifier. Wideband LFP (1–6000 Hz), > 50 microvolts threshold-crossing 

putative spike waveforms (600–6000 Hz), LEDs position and a video of the experiment were 

recorded using the Neuralynx recording system. The multiplex cable was attached to sliding 

pulleys to allow the free movement of the animal during the experiment. After the behavioral 

experiments, the animals were transcardially perfused with 0.9% saline followed by 4% 

paraformaldehyde and the brains were harvested. The brains were sectioned and Nissl-

stained with Cresyl violet to confirm the recording sites were in the pyramidal layer of the 

dorsal CA1 area of the hippocampus.

Preprocessing and unit isolation—Manual clustering of the putative units was 

performed using Xclust3 software as reported before (Dragoi and Tonegawa, 2013b), where 

the amplitude of detected spike waveforms on different adjacent recording sites, along with 

inter-spike interval, and cross-correlations were used to separate putative units. Putative 

pyramidal units were distinguished from interneurons using autocorrelations, average rate 

and spike width (Dragoi and Tonegawa, 2013b). Only well-isolated putative pyramidal units 

were used for further analysis. The position of the animal during the behavioral experiment 

was extracted using the 2 LEDs, any brief missing position samples were linearly 

interpolated.

Place cell characterization—The number of spikes during animal movement (velocity 

exceeding 5cm/s) in non-overlapping 1 cm bins were counted and smoothed by a 5 cm 
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Gaussian kernel. This vector was divided by the occupancy (time spent at a speed above 5 

cm/s, smoothed by a 5 cm Gaussian kernel) to determine the firing rate map on the track. 

Pyramidal neurons with a peak firing rate exceeding 1 Hz were considered as place cells as 

described earlier (Dragoi and Tonegawa, 2013b).

Detection of frames during slow-wave sleep—Candidate epochs for sequence 

analysis, called frames, were detected during slow-wave sleep periods in the sleep box 

determined based on continuous animal immobility (velocity below 1 cm/s for at least 5 

minutes) and low theta/delta ratio (below 2, after Hilbert transform for respective 

frequencies, 6–12 Hz for theta and 1–4 Hz for delta, and smoothed with a 5 s Gaussian) to 

exclude epochs of rapid-eye movement sleep. In addition, sharp-wave ripples were detected 

using a Hilbert transform and frames containing a ripple event (175–225 Hz) were separated 

and used to test the robustness of our results. For these slow-wave sleep periods, the 

combined population activity of all putative pyramidal neurons in 1 ms bins was calculated 

and convolved by a Gaussian kernel of 15 ms. Periods when the population activity 

exceeded 2 standard deviations above the mean of the population activity, lasted between 

100 ms and 800 ms and contained activation of at least 5 distinct neurons were considered as 

frames and used for sequence analysis.

Bayesian decoding of location and trajectories—To decode location and trajectories 

based on ensemble neural activity, we employed a memoryless Bayesian decoding algorithm 

(Davidson et al., 2009; Zhang et al., 1998) as described below.

According to Bayes’ theorem:

Pr(loc |spk) = Pr(loc)Pr(spk | loc)
Pr(spk) = Pr(loc)Pr(spk | loc)

∑j = 1
L Pr locj Pr spk | locj

(1)

where Pr(loc | spk) is the posterior conditional probability of location given spikes, Pr(loc) is 

the prior probability of location, Pr(spk | loc) is the probability of spikes given a location, 

Pr(spk) is the probability of spikes, locj is the jth location on the track out of a total of L 
locations.

Assuming that spikes follow Poisson distributions and that place cells are statistically 

independent (Zhang et al., 1998):

Pr(spk | loc) = ∏
i = 1

n
Pr spi | loc = ∏

i = 1

n τfi(loc) spi

spi!
e−τfi loc

(2)

Therefore, inserting equation (2) into (1) gives:

Pr(loc |spk) = Constant(τ, spk)Pr(loc) ∏
i = 1

n
fi(loc)spi e−τ∑i = 1

n fi loc
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where Constant(τ, spk) is a normalization factor, such that ∑i = 1
Pn Pr loci |spk = 1, fi loc , 

fi(loc) is the value of the smoothed averaged firing of the ith neuron at location l, spi is the 

number of spikes fired by the ith neuron in the time bin being decoded, τ is the duration of 

the time bin (0.25 s for active behavior on the track and 0.02 s for sleep frames) and n is the 

total number of neurons. Pr(loc), the prior for location, was set as uniform across the track.

First, to validate the memoryless Bayesian decoder, the activity of all neurons active on the 

track was binned in 0.25 s non-overlapping time bins during active behavior (velocity > 5 

cm/s).

For each time bin, during the run session, the difference between the location with the 

maximum decoded probability and the actual location of the animal was considered as the 

error in decoded location.

During sleep, frames were divided into 20 ms bins. The virtual location of the animal based 

on this binned neural activity was determined via the above Bayesian decoding approach.

Each direction of movement on the linear track was independently analyzed.

Weighted correlations—To determine the sequential content in a frame, a linear 

correlation between time and location was computed, weighted by the associated posterior 

probabilities, r(loc,t; Pr).

Initially, the weighted mean was computed for location (mloc):

mloc(loc; Pr) = ∑
i = 1

T
∑

j = 1

L
Prijlocj/ ∑

i = 1

T
∑

j = 1

L
Prij

followed by computation of weighted mean for time (mt) in similar fashion. This was 

followed by computing the weighted covariance (covar):

covar loc, t; Pr =
∑i = 1

T ∑j = 1
L Prij locj − mloc loc; Pr ti − mt t; Pr

∑i = 1
T ∑j = 1

L Prij

And finally, the weighted correlation (r):

r loc, t; Pr = covar loc, t; Pr
covar loc, loc; Pr covar t, t; Pr

where locj is the jth spatial bin, ti is the ith temporal (20ms) bin in the frame, Prij is the 

Bayesian posterior probability for the jth spatial bin at the ith temporal bin, T is the total 

number of temporal bins and L is the total number of spatial bins. Note that ∑j = 1
L Prij = 1

and ∑i = 1
T ∑j = 1

L Prij = T .
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Maximum jump distance—In order to study if trajectory sequences exhibited large 

jumps (discontinuities in trajectory sequences) during the frames, the peak decoded virtual 

location was computed for each bin. The maximum of the differences between peak decoded 

locations in consecutive bins was considered as the maximum jump distance for a particular 

frame as described earlier (Silva et al., 2015).

Shuffled datasets—To reveal if each frame exhibited a significant trajectory sequence, 

the properties of sequences (absolute weighted correlation and maximum jump distance) 

were compared to two shuffled (null) datasets for each frame. The decoded probability 

vector for each time bin of the frame was circularly shifted by a random amount between 1 

and track length minus 1. This circular shift shuffle was performed for each bin 

independently (space bin shuffle) as described and used earlier (Grosmark and Buzsáki, 

2016; Silva et al., 2015). This shuffle randomizes any sequential structure across time bins 

but maintains the structure of decoded probabilities within a bin (for the most part; see 

manuscript for statistical issues with this shuffle). Second, a more conservative shuffle was 

performed, involving a permutation of the time bins within a frame (time bin shuffle) as 

described and used earlier (Foster, 2017; Grosmark and Buzsáki, 2016).

Two-feature P value matrix for simultaneous study of weighted correlations 
and maximum jump distance—In order to more rigorously quantify the properties of 

trajectory sequences, we simultaneously studied weighted correlations and maximum jump 

distances of frames, as in (Silva et al., 2015). Briefly, increasing or decreasing thresholds for 

absolute weighted correlations and absolute maximum jump distance, respectively, were 

applied to frames within a particular sleep session, and the proportion of frames passing both 

thresholds were calculated. The same method was employed to compute the proportion of 

shuffles passing these criteria as described earlier (Silva et al., 2015). To determine if the 

proportion of frames in the data significantly exceeded the proportions observed in shuffled 

datasets, the number of shuffled datasets (n = 500) with lower proportions than the real sleep 

was divided by the total number of shuffles. This value was subtracted from 1 to get a P 

value. The P value matrix was plotted to determine the profile of thresholds at which the real 

data exceeded shuffled datasets using these two properties of sequences. The thresholds for 

these properties were > 0 to > 0.9 and < 0.1 to < 1 (for absolute weighted correlations and 

absolute maximum jump distance respectively), with a difference of 0.1 between successive 

thresholds. A frame with a high absolute weighted correlation and low maximum jump 

distance is considered a robust trajectory experience representing the experience.

Poisson surrogate datasets—Poisson surrogate datasets were generated to determine if 

the significant sequential structure within Pre-Run sleep frames (or Post-Run sleep frames) 

was an artifact observed due to differences in hippocampal firing rates. For each sleep, the 

average firing rate of a cell was computed across all frames. Random spiking activity 

following a Poisson process was generated with the same average firing rate for that cell. 

This process was repeated for all cells. The resulting surrogate frames were used for 

sequence analysis.
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Weighted circular shift space bin shuffle—Our results reveal that Pre-Run sleep has 

significantly higher sequential structure than the Poisson data (Figure 1F) refuting the 

possibility that preplay is simply due to inhomogeneities in firing rates across neurons. This 

finding prompted us to hypothesize that the circular space-bin shuffle employed in a 

previous study might not have conserved essential data characteristics, which would have led 

to the masking of preplay (Silva et al., 2015). In order to test this hypothesis, we first 

directly compared the space-bin shuffle of Pre-Run sleep and the space-bin shuffle of firing-

rate matched Poisson (i.e., sPre-Run versus sPoisson). This comparison revealed that the 

sPre-Run dataset has significantly higher sequential structure than sPoisson (Figure S3D). 

These differences between Pre-Run sleep, Poisson, and their respective shuffles were also 

observed when weighted correlations alone were quantified and compared directly; this 

further confirms the significance of preplay and reveals the statistical unreliability of this 

shuffle type. We next sought to determine any essential properties of the data that might not 

be conserved in the shuffles, but would be maintained in the Poisson datasets, which could 

have led to the conclusions of (Silva et al., 2015). On inspection, we observed two such 

potentially relevant key properties of the data. First, the posteriors within the 20 ms time bin 

within sleep frames preferentially decode adjacent locations over others in the spatial 

domain (i.e., decoding field). As the space bin shuffle circularly shifts these posteriors, it can 

divide the spatially-compact decoding field contained within a time bin into two fields 

situated at the opposite edges of the finite spatial environment (Figure S3E left, red arrows 

mark the ‘edge effect’, Figure S4 for illustration), see also (Foster, 2017). This edge effect, a 

result of using the space bin shuffle procedure, can result in systematic errors and reductions 

in weighted correlations specifically in the shuffled distributions. Second, we observed that 

the mean decoded posteriors of spatial locations along the track can be highly non-uniform 

across the track for the Pre-Run and Poisson frames, while they become uniform in the 

space-bin shuffled datasets (Figure S3E left; mean decoded probabilities across track, Pre-

Run versus sPre-Run: p < 10−10, Kolmogorov-Smirnov test). This non-uniformity in 

decoded location during sleep reflects and potentially results from the well-known non-

uniformity in the distribution of place cells, which tend to cluster around rewards and goals 

located at track ends (Grosmark and Buzsáki, 2016; Hollup et al., 2001). These observations 

led us to hypothesize that the lack to preserve the non-uniformity in the decoded locations in 

the space-bin shuffles together with the edge effect contributed significantly to the 

reductions in the observed strength of sPoisson data-sets (Figure S3C).

To confirm that the lack of preservation of these two key data properties in the shuffles can 

lead to spurious results, we developed a ‘corrected space-bin shuffle’ (i.e., csPre-Run and 

csPoisson) for which the probability distribution of locations within frames approaches that 

of the highly non-uniform Pre-Run and Poisson datasets (Figure S3F left; see S4 for 

illustration of the shuffle development). First, the maximum decoded location in each bin 

within the frames of csPre-Run/csPoisson was shifted, weighted by the mean decoded 

posteriors across the track, to conserve non-uniformity in these shuffles. Second, the 

decoding field surrounding the maximum decoded location was prevented from being 

divided at the ends of the track to mitigate the edge effect (Figure S3F; mean decoded 

posteriors across the track in Pre-Run versus csPre-Run: p < 10−10, Kolmogorov-Smirnov 

test). To minimize edge effects (the peak decoded locations split across the opposite ends of 
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the finite track), this peak was not shifted to within 10 cm of the ends of the virtual track 

(empirically set based on the degree of smoothing applied to the place fields). Note that this 

shuffle does not destroy the structure of activity within the time bin but shifted circularly by 

a certain amount (a pseudorandom function of the average peak decoded locations). This 

procedure conserved the non-uniformity in the real data to a great extent in the shuffles in 

some animals, while in others was not able to do so; as each time bin might have multiple 

decoded spatial probability peaks comparable in size, this method would not account for the 

non-primary peaks. This shuffle is a conservative version of the aforementioned space bin 

shuffle.

Compared with this corrected space-bin shuffle, Pre-Run preplay, but not Poisson data, 

exhibit significantly higher sequential structure (Figure S3F middle/right; compare with 

Figure S3E middle/right). Consistent with this observation, the degree to which csPre-Run 

approached the non-uniformity observed in the Pre-Run sleep correlated with how strong 

Pre-Run data were in comparison with their corresponding Poisson datasets (R = 0.52; p = 

0.02; Figure S3G). Overall, our results demonstrate that preplay is a robust, significant 

phenomenon and that the apparent similarity between Pre-Run (i.e., preplay) and Poisson 

datasets described by (Silva et al., 2015) might be contributed largely by two statistical 

oversights. First, the indirect comparison of the Pre-Run/preplay and the Poisson datasets 

merely reveals how similar their differences from their matched space-bin shuffles were, but 

largely misses the significant difference between them, which is revealed here by the direct 

Pre-Run and Poisson datasets comparison (Figure 1F). Second, the use of space-bin shuffle, 

which fails to preserve crucial properties of the frames, masks the detection of sequential 

structure of Pre-Run sleep/preplay, which appear similar to that of Poisson datasets (Figures 

S3E–S3G).

Neuronal sequence order using template matching—To determine neuronal 

sequence order, for each place cell, the location on the track where it had the highest firing 

rate was determined. A template constituting order of activation in space of the place cells 

was constructed for each running direction (at a spatial bin size of 2 cm for consistency with 

previous reports). This was done by sorting the cells according to the location of their peak 

firing along the animal’s trajectory (Diba and Buzsáki, 2007; Dragoi and Tonegawa, 2013b). 

During frames, the center of mass for each place cell was used, and a Spearman correlation 

was computed between the ranked orders of activation in the Run template and their order of 

activation in time within the sleep frame. The IDs of the cells were shuffled (500 shuffles), 

and the same method used to compute the rank order correlation for them. When computing 

significance of overall preplay and replay sequences, correlation of all frames with both 

spatial templates were compared with the group of all one thousand shuffles (500 for each 

spatial template and frame) using Wilcoxon’s ranksum test. For each of the two spatial 

templates (one for each direction of movement), if a frame had a correlation exceeding 

97.5th percentile or less than 2.5th percentile (for reverse sequences), it was considered a 

sequence with significant temporal order.

Simulations to study the effect of cell density/spatial bin on the template 
matching method—We ran a simulation to test and reveal the sensitivity of the results of 
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template matching method to the binning of the data. We hypothesized that datasets with 

larger number (e.g., ~120) of simultaneously recorded neurons (Silva et al., 2015) impose 

constraints on analyses using the existing statistical methods for template matching, which 

were originally developed and validated for smaller datasets, and would thus need to be 

amended. The impact of cell density, i.e., average number of place cells with peak firing 

location in the same spatial bin, on temporal order in sleep was studied by simulating place 

cell sequences and sleep frames. To simulate the relationship between sleep activity and the 

run sequence, a virtual sequence of 120 place cells were assigned bins by random sampling 

without replacement, this sequence was considered the target run sequence. Then a 120×120 

transition matrix was generated, in which the elements corresponding to cell transition in 

target run sequence were set to 1 while other elements were 0. Random noise was added to 

the matrix. For each simulated sleep, 15,000 sleep frames were generated by weighted 

sampling from place cells, in which the weight is the corresponding element in transition 

matrix. There were 10% to 15% of place cells in each frame. Then the correlation of 

simulated run sequence with simulated sleep frames was calculated (Spearman correlation). 

The amount of random noise was adjusted to make the correlation value of simulated 

activity as close as possible to the correlation value of run sequence and sleep frames in 

actual recording data. To test the impact of cell density, a group of run sequences were 

generated by using different bin size. For example, 2 cell/bin corresponding to using 60 bins 

for 120 cells. When multiple cells were in one bin, their order was sorted by their cell ID. 

The correlation of simulated sleep and run sequences with different bin size were calculated 

and the deviation of correlation value from chance level was evaluated.

Proportion of significant sequence events—The proportion of significant sequences 

were calculated by comparing the weighted correlation of each individual frames with its 

respective shuffles. If the weighted correlation was above the 97.5th percentile or below the 

2.5th of percentile (for reverse sequences) of the shuffled distributions, it was considered a 

significant sequence. The proportion was calculated by dividing the number of such frames 

by the total frames in that sleep.

Sequence score—Weighted correlations are influenced by various additional properties 

of the frame including but not limited to number of cells, number of time bins, number of 

spikes etc., see (Grosmark and Buzsáki, 2016) for further details. Therefore, we computed a 

sequence score to account for such differences across frames. The sequence score is defined 

as the Z-score of the absolute weighted correlation of a frame relative to the absolute 

weighted correlations of the shuffled distributions, and is computed as follows:

rZ = r − mean r sℎuffled
std r sℎuffled

Simultaneous graded thresholding of sequence score and normalized 
maximum jump distance—The normalized jump distance was the percentile (expressed 

between 0 to 1), of the maximum jump distance of a spiking event relative to that in the 

corresponding shuffles. Eight thresholds were set for sequence score and normalized jump 
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distance to ensure appropriate sampling at all thresholds, ranging from −3 to 4 for sequence 

score and 0.125 to 1 for normalized maximum jump distance.

Equalizing net firing rate analysis—To study the effect of firing rate on sequences, the 

average firing rate of each cell across all frames was calculated in the sleep. The firing rates 

were significantly higher in the Post-Run sleep compared to the Pre-Run sleep. Spikes were 

randomly dropped from the Post-Run sleep until the average firing rates were equal to that 

of the Pre-Run sleep. One-hundred such down-sampled datasets were generated (and 

subsequently 500 time-bin shuffles for each down-sampled dataset). Sequence analysis on 

these down-sampled datasets were performed and the properties of sequences compared to 

that of Pre- and Post-Run sleep sequences.

Equalizing firing rates and firing rate correlations—To study the effect of 

experience on activity of individual neurons, we computed the mean firing rate of the 

neurons across all sleep frames in a session. This firing rate distribution was correlated with 

the peak firing rate distribution of the neurons during run to study the similarity in firing rate 

distributions across the population in sleep and run. Subsequently, we selectively and 

randomly down-sampled spikes from each cell until their firing rates within Pre-Run and 

Post-Run sleep frames were equal. Specifically, spikes from cells exhibiting increased firing 

rates within Post-Run sleep frames were randomly down-sampled from Post-Run sleep 

frames, while spikes from cells exhibiting reductions after experience were down-sampled 

from the Pre-Run sleep frames until firing rates matched for each neuron within frames in 

the two sleep sessions. The procedure also equalized the correlations of the distribution of 

firing rates to the Run.

Cell assembly detection and activation—The procedure for cell assembly detection 

was adapted from (Peyrache et al., 2009). Briefly, the activity of place cells during active 

behavior in the Run session was divided into 20 ms bins and Z-scored:

zi, t =
spki, t − μspki

σspki

where spki,t was the spike count of neuron i in bin t, and μspki and σspki were the mean and 

standard deviation of neuron i’s spike counts across bins, respectively. Each direction was 

analyzed separately. The above Z-scoring was performed to prevent bias toward high firing 

neurons.

Next, we let Z be the n (number of neurons) by M (number of time bins) matrix with 

element (i,t) equal to zi,t. For this matrix, comprising of the z-scored binned activity of the 

population of cells, cell assemblies were identified as follows:

First, a principal component analysis (PCA) was performed on matrix Z:

∑
j = 1

n
λjpjpjT = 1

nZZT
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where pj is the jth principal component with corresponding eigenvalue λj, and 1
nZZT  is the 

correlation matrix of Z, while Z⊤ is the transposed version of Z. To estimate the number of 

significant assemblies in the data, the Marcenko-Pastur law (Peyrache et al., 2009) was used. 

This law states that for a n by M matrix whose elements are independent and identically 

distributed random variables with zero mean and unit variance, all eigenvalues are 

asymptotically bounded to the interval 1 − n/M 2, 1 + n/M 2 , i.e., when n, M approach 

infinity such that M/n converges to a finite positive value. This suggests that if the firing rate 

of the neurons is independent from each other, then none of the eigenvalues is expected to 

exceed λmax = 1 + n/M 2. Therefore, only principal components with eigenvalues 

exceeding λmax were considered as significant cell assemblies. In order, to study the 

activation strength during the sleep, the activity during sleep was similarly binned at 20 ms 

for each cell, and subsequently Z-scored. The weights of the significant principal 

components were used to calculate the activation strength as follows. A projection matrix, 

Pk, was constructed from each weight vector by taking the outer product of that weight 

vector. The diagonal entries of this projection matrix were set to zero to prevent high 

expression strength caused by the activity of single neurons. This projection matrix was 

quadratically multiplied to the instantaneous normalized firing rate of the neurons to get the 

activation strength of each significant assembly.

Ac t = z t TPcz t

where Ac(t) is the activation strength of cell assembly c at time t and z(t) is a vector 

containing the normalized firing rate of all the neurons at time t.

In order to study cell assembly activation strengths with in preplay/replay sequences, cell 

assembly activity in frames-only was used for further analysis. The maximum assembly 

activation strength for each assembly during each frame was calculated. A threshold of 5 

(Peyrache et al., 2009) and a minimum activation of two cells within that time bin were used 

to detect significant cell assemblies.

Properties of cell assemblies and neurons within cell assemblies—Within each 

frame, the number of cell assemblies with activation strength above 5 (arbitrary units) and 

containing a minimum of 2 active neurons (to avoid detecting instances of activation with 

one active cell only) were considered as significant cell assemblies (Peyrache et al., 2009). 

These were used for further analysis. For each significant cell assembly, the bin with the 

maximum activation strength was considered as an ‘epoch of cell assembly activation’. The 

number of significant cell assemblies per frame and the proportion of frames with significant 

cell assembly activations were computed. This analysis was conducted separately for all 

frames and for the significant frames only.

Although the distribution of weights of the contributing neurons to a cell assembly lacked 

any multimodality, we nonetheless divided it into two categories to compare the properties 

of neurons belonging to various parts of the distribution. Neurons with weights 2 or more 

standard deviations above the mean were considered as high contributors for that cell 
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assembly (HC), while the remaining neurons were considered as non-high contributors (non-

HC).

Temporal score of cell assembly sequences—To study if temporal ordering of cell 

assemblies within a frame was changed by an experience, we developed a method to study 

temporal order of cell assemblies, similar to (Almeida-Filho et al., 2014). The times of peak 

activation of significant cell assemblies in each frame were found. If two assemblies were 

activated in the same 20 ms bin, the cell assembly with higher activation was chosen for 

further analysis (the results did not change if the other one was chosen; data not shown). 

Following this, the peak activation of each cell assembly on the track was found. The order 

of assemblies’ activation on the track, in space, was correlated with their order of activation 

in the frame, in time, for the common cell assemblies (Spearman’s Rank Order correlation; 

R). The cell assembly IDs were shuffled 500 times, and a similar correlation was computed 

for those shuffles. This analysis was restricted to frames with 5 or more significant cell 

assemblies. The temporal score (TS) for each cell assembly sequence was the Z-score of the 

correlation of that cell assembly sequence relative to its respective shuffles.

TSz = abs R − mean abs R sℎuffled
std abs R sℎuffled

Partitioning sleep based on the proportion of place cells in frames—The 

proportion of active place cells (peak firing rate > 1Hz) out of all recorded place cells was 

calculated for each frame. Frames were further partitioned based on this proportion into 

‘sleep brackets’ and various properties of the frames were compared between Pre-Run sleep 

and Post-Run sleep for each sleep bracket. The range for each bracket was a non-

overlapping 10%. The difference between Pre-Run sleep and Post-Run sleep for these 

properties (firing rate correlations with Run, correlation of neuronal order of sequences with 

Run, cell assembly strength) were correlated with sequence score across the sleep brackets 

to determine if the observed differences between Post-Run and Pre-Run sleep could be 

explained by any of these 3 factors. As we observed an increase in difference in firing rate 

correlations between Post-Run sleep and Pre-Run sleep in frames with lower cell proportion 

brackets, we also only studied these lower brackets (< 50%). The correlation between 

differences in firing rate correlations and sequential content remained non-significant (R = 

−0.12; p = 0.84). For illustration purposes, a moving window was used with 1% increments 

of 20% brackets.

Neuronal order score—The neuronal order score was computed by Z-scoring the 

Spearman’s Rank Order correlation of neuronal sequences (using the template matching 

method), by their respective shuffles.

Cross-validation in an independent dataset—The main results on preplay were 

successfully cross-validated using the same data analysis tools in a comparable independent 

data-set collected from 4 adult Long-Evans male rats, collected by (Grosmark and Buzsáki, 

2016). This dataset is publicly available on the CRCNS - Collaborative Research in 

Computational Neuroscience data sharing website at http://crcns.org/NWB. This dataset had 
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a similar experimental protocol, with one notable difference: the electromyography-verified 

slow-wave sleep sessions were performed in a separate room from the one of Run sessions, 

and the animals were pre-trained in a different room on a cheeseboard maze task similar to 

(Dupret et al., 2010).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests—Part of the statistical analysis was performed using permutation tests 

and Monte Carlo sampling methods. In addition, non-parametric statistical tests (Wilcoxon’s 

ranksum test or the Wilcoxon’s signed rank test) were performed unless otherwise stated. 

When multiple comparisons were performed, the appropriate corrections were performed. 

Most statistical tests were performed with the frame as the individual unit of analysis (Pre-

Run sleep number of frames = 38220 versus Post-Run sleep number of frames = 17637; 

Table S2). Additionally, tests were performed with individual direction of an animal as the 

unit of analysis (n = 10). In the remaining cases, when the number of samples varied, the 

number of samples are presented in the Figure legends. All statistical tests with P values less 

10−10 are presented as p < 10−10. Data are presented as mean ± standard error of the mean 

(SEM) unless otherwise stated.

DATA AND CODE AVAILABILITY

All the data are available in the manuscript or the supplementary material. The reported data 

are archived on file servers at Yale Medical School.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Preconfigured patterns robustly preplay future place cell sequences and 

trajectories

• Plasticity in trajectory replay is supported by increased cell assembly 

coordination

• Rate and temporal order coding do not fully account for plasticity in replay

• Plasticity in replay is mainly expressed in epochs with large neuronal 

participation
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Figure 1. Robust Preplay of Future De Novo Run Trajectory during Pre-Run Sleep
(A) Schematic of the experiment. An extended Pre-Run sleep was followed by a de novo 
Run session on a linear track (experimentally naive animals) followed by another sleep 

session (Post-Run sleep) and by a second run (Run 2) on the same track.

(B) Representative place cell sequences during de novo Run in one animal.

(C) Decoded animal location on the linear track in a representative lap during de novo Run 

based on ensemble neuronal activity using a memoryless Bayesian decoding algorithm.

(D) Representative preplay frames during Pre-Run sleep.

(E–G) Two-feature p value matrices testing significance of Pre-Run (n = 38,820 frames) 

versus time-bin shuffle, tPre-Run (E), Pre-Run versus five hundred rate-matched Poisson 

surrogate datasets (F), and Poisson dataset (n = 38,820 frames) versus its shuffle, tPoisson 

(G).

(H) Comparison of weighted correlations (n = 38,820 frames) of all Pre-Run sleep, tPre-

Run, Poisson, and tPoisson data. Note that tPre-Run, Poisson, and tPoisson data have similar 

(overlapping) cumulative distributions of weighted correlations.
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Figure 2. Temporally Compressed Replay Represents Run Trajectory Stronger than Preplay 
during Sleep
(A) Representative trajectory preplay (in Pre-Run sleep) and replay (in Post-Run sleep) at 

comparable frame durations using Bayesian decoding.

(B) Comparison of multiple features of trajectory preplay (n = 38,820 frames) and replay (n 

= 17,637 frames). (Left to right) Proportion of significant events, significant absolute 

weighted correlations, and sequence scores are shown (black bar: difference between Post- 

and Pre-Run sleep frames). **p < 0.01, ***p < 0.001. Data are represented as mean ± SEM.

(C) p value matrix of comparisons of sequence scores and normalized maximum jump 

distances between Pre- and Post-Run sleep frames depiction of de novo Run trajectories.

(D) Trajectory representation using Bayesian decoding is contributed by multiple types of 

neural codes: firing rate “R,” order of neurons into extended sequences “O,” and 

coordination of neurons into cell assemblies at millisecond timescales “C,” left. (Middle) 

Replay is inferred as an experience-related plastic transformation of preplay reflected at the 

level of the 3 neural codes (R, O, and C). (Right) Graphical representation of experience-

induced changes in firing rates (ΔR), coordination of neurons (ΔC), and neuronal order (DO) 

is shown.
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Figure 3. Contribution of Changes in Firing Rates to the Improvement of Trajectory 
Representation from Pre-Run to Post-Run Sleep
(A) Firing rates of neurons increase from Pre-Run sleep (Preplay) to Post-Run sleep 

(Replay).

(B) Sequence scores of random down sampling of neuronal firing rates from Post-Run sleep 

into Pre-Run sleep levels (ReplayDS) demonstrate that experience-related changes in overall 

firing rates are not sufficient to account for the observed differences between trajectory 

replay and preplay.

(C and D) ReplayDS sequence scores are similar to the original replay scores (C) and are 

higher than the preplay scores (D). p values are from 100 independent rank sum tests.

(E) Firing rates within frames change from Pre- to Post-Run sleep variably across neurons. 

(Inset) Overall correlation of firing rates between sleep frames and Run increases from Pre- 

to Post-Run sleep.

(F) Equalization of firing rates (EF) and sleep-Run correlations (100 iterations, inset) 

between Pre-Run (PreplayEF) and Post-Run (ReplayEF) sleep frames after down-sampling 

spikes from neurons with increased firing rates in specific Pre- and Post-Run sleep sessions.

(G) Preplay and replay sequence scores before and after equalization of firing rates. (Inset) 

Graphical representation of equalization in firing rates between Preand Post-Run sleep is 

shown.

(H) p values of comparisons between sequence scores in PreplayEF and ReplayEF (100 

iterations).

For (A), (B), (F), and (G): ***p < 0.001, ns = not significant. Data are represented as mean 

± SEM.
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Figure 4. Temporal Order of Neuronal Firing within Trajectory Sequences Is Preserved from 
Pre- to Post-Run Sleep (Template Matching Method)
(A and B) Significant temporal order preplay during Pre-Run sleep (A) and replay during 

Post-Run sleep (B) of place cell sequences in Run for frames with at least 15 cells (template 

matching method). (Insets) Area under curve (AUC) (preplay, A, or replay, B, minus shuffle) 

for frames with 6 or more cells. Similar proportions and AUCs are obtained for frames with 

a minimum of 6–15 neurons (data not shown).

(C) Significance of preplay and replay and their similarity in strength are maintained across 

a wide range of within-frame number of participating place cells. p values reflect 

comparisons of preplay with its shuffle (blue), replay with its shuffle (green), and preplay 

with replay (red).

(D) Graphical representation of the lack of change in temporal order of neuronal firing from 

Pre- to Post-Run sleep frames with regard to Run.

For (A) and (B): ***p < 0.001.
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Figure 5. Experience-Dependent Changes in Neuronal Properties of Cell Assemblies from Pre- to 
Post-Run Sleep
(A) Cell assemblies detected during Run sessions represent discrete locations along an 

animal’s trajectory through the linear environment.

(B) Representative example of a cell assembly activated on the track (left, bottom); colors 

and color bar depict activation strengths during Run. Histogram (left, top) depicts counts of 

activation across multiple laps on the track. (Middle) Weights of neurons contributing to this 

cell assembly are shown. Note that three neurons (yellow) are high contributors (HCs) to this 

cell assembly. (Right, top) Place fields of the HC neurons to this cell assembly are shown. 

(Right, bottom) Weights of all neurons (blue) and HC neurons (red) to cell assemblies are 

shown. Lines depict median (black) and mean (red) weights.

(C) Number of HC neurons within each cell assembly during Run (n = 82 assemblies).

(D) Cofiring (left) and place field similarity (right) of HC neuronal pairs belonging to a cell 

assembly are significantly higher than those of pairs of non-HC and HC-non-HC neurons.

(E) Millisecond-timescale activation of cell assemblies within frames increases from Pre- (n 

= 38,220 frames) to Post-Run sleep (n = 17,367 frames). (Inset) Average activation of cell 

assemblies at different sequence scores of trajectory sequences is shown.

(F) Proportion of significant cell assemblies activated within a frame increases from Pre- (n 

= 38,220) to Post-Run sleep frames (n = 17,367).

(G) Temporal order of cell assembly sequences is similar during Pre- and Post-Run sleep.
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(H) Within-cell assembly firing rate of HC neurons (n = 208 neurons) increases from Pre-

Run to Post-Run sleep. (Inset) Firing of HC neurons at increasing thresholds of activation 

strengths is shown.

(I) Proportion of HC neurons activated within a significant cell assembly activity increases 

from Pre- (n = 62,055 events) to Post-Run sleep (n = 31,376 events). (Inset) Distribution of 

differences in cell assembly activation from Pre- to Post-Run sleep is shown.

(J) Tuning of HC neurons to their respective cell assemblies increases from Pre- (n = 50,284 

events) to Post-Run sleep (n = 26,632 events).

(K) Dispersion of spikes of HC neurons outside their respective cell assemblies decreases 

from Pre- (n = 91,058 events) to Post-Run sleep (n = 41,840 events). Note that only spikes 

outside the cell assembly activation epoch were considered.

(L) Cell assembly activation after equalizing firing rates and rate correlations is higher in 

Post- (ReplayEF) compared to Pre-Run sleep (PreplayEF). (Inset) Graphical representation 

of the dominant contribution of changes in cell assembly strength to improved replay is 

shown.

For (D)–(L): ***p < 0.001, ns = not significant. Data are represented as mean ± SEM.
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Figure 6. Preferred Improvement in Trajectory Representation in Post-Run Sleep Frames with 
More Participating Place Cells Is Related to Increases in Cell Assembly Content, but Not Firing 
Rate or Neuronal Order
(A) Distribution of frames in Pre- and Post-Run sleep as a function of proportion of place 

cells active within frames. (Inset) Frames where more place cells are active have longer 

duration.

(B) Sequence scores in Pre- and Post-Run sleep as a function of proportion on place cells in 

frames. (Inset) Difference in sequence scores between Post- and Pre-Run sleep as a function 

of proportion of place cells in frames is shown.

(C–E) Difference in firing rate correlations (C), neuronal order (D), and cell assembly 

strength (E) between Post- and Pre-Run sleep as a function of proportion of place cells in 

frames.

(F) Correlations of the difference between firing rate correlations (green, from C), neuronal 

order (blue, from D), and cell assembly strength (red, from E) with the difference in 

sequence score from (B) inset between Post- and Pre-Run sleep as a function of proportion 

of place cells in sleep frames. Data in (B) inset and (C)–(E) are presented as difference in 

means ± SE of the difference in means.

*p < 0.05, **p < 0.01, ***p < 0.001, ns = not significant.
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Figure 7. Model of Neuronal Ensemble Dynamics Supporting Improved Trajectory Replay
(A) (Top) Cartoon model of hippocampal ensemble activity before (Pre-Run sleep, one 

frame) and after (Post-Run sleep, one frame) a de novo spatial experience (Run, cell 

assembly sequence) proposed to underlie episodic-like spatial memory formation. Colored 

circles depict different significant cell assemblies (multi-neuronal millisecond-timescale 

coactivation patterns) across sleep and run as detected based on their activity during Run. 

Letters depict significantly active cell assemblies; variable size of circles during sleep 

depicts activation strength. Vertical dash lines within sleep frame mark periods of significant 

activation of each assembly identified based on their activity during Post-Run sleep. 

(Bottom) Spikes of individual neurons are depicted by short vertical lines color coded 

according to the cell assembly they belong to during Run.

(B) Schematic depicting confirmed (observed) and unconfirmed (not observed) phenomena 

proposed to underlie representation of de novo spatial experience by compressed neuronal 

ensemble dynamics during sleep.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Isoflurane Zoetis ANADA # 200–070

Grip cement Teets denture material N/A

Carprofen Norbrook 55529-131-11

Experimental Models: Organisms/Strains

Rat: Long-Evans Charles River https://www.criver.com/

Software and Algorithms

MATLAB R2015b MathWorks https://www.mathworks.com/

Xclust3 Wilsonlab https://github.com/wilsonlab/mwsoft64

Data acquisition software Neuralynx Cheetah

Other

128 Channel Digital Amplifier Neuralynx Digilynx

12.7 μm tungsten wires Kanthal PX000004

Silicon Probes Neuronexus Buz-64
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