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Abstract
COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key
immune cell subsets change and their states during the course of COVID-19 remain unclear. We sought to
comprehensively characterize the transcriptional changes in peripheral blood mononuclear cells during the recovery
stage of COVID-19 by single-cell RNA sequencing technique. It was found that T cells decreased remarkably, whereas
monocytes increased in patients in the early recovery stage (ERS) of COVID-19. There was an increased ratio of classical
CD14++ monocytes with high inflammatory gene expression as well as a greater abundance of CD14++IL1β+

monocytes in the ERS. CD4+ T cells and CD8+ T cells decreased significantly and expressed high levels of inflammatory
genes in the ERS. Among the B cells, the plasma cells increased remarkably, whereas the naïve B cells decreased.
Several novel B cell-receptor (BCR) changes were identified, such as IGHV3-23 and IGHV3-7, and isotypes (IGHV3-15,
IGHV3-30, and IGKV3-11) previously used for virus vaccine development were confirmed. The strongest pairing
frequencies, IGHV3-23-IGHJ4, indicated a monoclonal state associated with SARS-CoV-2 specificity, which had not been
reported yet. Furthermore, integrated analysis predicted that IL-1β and M-CSF may be novel candidate target genes
for inflammatory storm and that TNFSF13, IL-18, IL-2, and IL-4 may be beneficial for the recovery of COVID-19 patients.
Our study provides the first evidence of an inflammatory immune signature in the ERS, suggesting COVID-19 patients
are still vulnerable after hospital discharge. Identification of novel BCR signaling may lead to the development of
vaccines and antibodies for the treatment of COVID-19.

Introduction
COVID-19, caused by severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2), has spread in many
countries1–3. As of April 6, 2020, SARS-CoV-2 has
affected over 1,200,000 people and killed more than
60,000 of those affected in more than 160 countries.
Following its global spread, the World Health

Organization declared it a public health emergency of
international concern4. COVID-19 shows symptoms of
fever, dry cough, fatigue, diarrhea, conjunctivitis, and
pneumonia. Some patients develop severe pneumonia,
acute respiratory distress syndrome (ARDS), or multiple
organ failure5–7. Although scientists and clinicians
worldwide have made great efforts to produce vaccines
and explored antiviral drugs8,9, there is still no specific
medicine and highly effective clinical treatment for
COVID-1910,11.
Immune system dysregulation, such as lymphopenia

and inflammatory cytokine storm, have been observed
and are believed to be associated with the severity of
pathogenic coronavirus infections, such as severe acute
respiratory syndrome coronavirus (SARS-CoV) and
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Middle East respiratory syndrome coronavirus (MERS-
CoV) infections12,13. With regard to COVID-19, recent
studies also found decreases in lymphocyte numbers and
increases in serum inflammatory cytokine levels in per-
ipheral blood5,14. However, the manner in which key
immune cell subsets change and their states during
COVID-19 have remained largely unclear. Thus, defining
these key cellular subsets and their states in COVID-19 is
a crucial step in obtaining critical insights into the
immune clearance mechanism and developing new ther-
apeutic strategies for COVID-19.
Here, we applied single-cell RNA sequencing (scRNA-

seq) to comprehensively characterize the changes in
peripheral blood mononuclear cells (PBMCs) from 10
COVID-19 patients. Our study depicted a high-resolution
transcriptome landscape of blood immune cell subsets
during the recovery stage of COVID-19. It revealed that,
compared to that in the healthy controls (HCs), mono-
cytes containing high inflammatory gene expression and
IL1β+ subsets predominated, whereas CD4+ T cells
decreased remarkably in patients in the early recovery
stage of COVID-19. We found that T and B cell clones
were highly expanded during the recovery stage in
COVID-19 patients. Furthermore, several specific BCR
changes in COVID-19 patients during the recovery stage
may be helpful for vaccine and antibody production.

Results
Study design and analysis of single immune cell profiling
in COVID-19 patients
To map the immune microenvironment of COVID-19

patients, we identified mirroring changes in the blood and
pinpointed cell-specific alterations associated with disease
severity and recovery; we then integrated scRNA-seq,
single-cell paired BCR, and single-cell paired TCR analysis
from a total of 10 COVID-19 patients in the early
recovery stage (ERS) or late recovery stage (LRS) (70,858
PBMCs). We also collected scRNA-seq data (57,238 cells)
from five healthy donors as controls (Fig. 1a and Sup-
plementary Fig. S1a–c). This dataset passed stringent
high-quality filtering. Single-cell suspensions of the
scRNA-seq samples were converted to barcoded scRNA-
seq libraries using 10x Genomics. Cell Ranger software
(version 3.1.0) was used for the initial processing of the
sequencing data.
Using t-distributed stochastic neighbor embedding (t-

SNE), we analyzed the distribution of the three immune
cell lineages, myeloid, NK and T, and B cells, based on the
expression of canonical lineage markers and other genes
specifically upregulated in each cluster (Fig. 1b, c). For
marker genes, expression values in each cell positioned in
a t-SNE are shown in Fig. 1d. We next clustered the cells
of each lineage separately and identified a total of 20
immune cell clusters.

An overview of NK and T, B, and myeloid cells in the blood
of convalescent patients with COVID-19
The immune cell compartment of patients who have

recovered from COVID-19 infection comprised all major
immune lineages. We analyzed 128,096 scRNA-seq pro-
files that passed quality control, including 36,442 myeloid
cells, 64,247 NK and T cells, and 10,177 B cells from five
HCs, five ERS, and five LRS patients. The sketchy clus-
tering analysis landscape of each subject is presented in
Supplementary Fig. S2a, and the merged image of each
group is shown in Fig. 2a. We discovered that COVID-19
patients, including ERS and LRS, demonstrated a higher
proportion of myeloid cells compared to the HCs, but
with a lower proportion of NK and T cells (Fig. 2b, c).
Interestingly, LRS patients had more B cells and NK and
T cells, but less myeloid cells, than the ERS patients
(Fig. 2b, c). Thus, these findings indicated that COVID-19
patients had decreased lymphocyte counts and increased
counts of myeloid cells in peripheral blood.
To further understand the changes in the myeloid, NK

and T, and B cells in COVID-19 patients, we conducted
differential expression gene (DEG) analysis of the NK and
T, B, and myeloid cells between the HCs and patients. The
heatmaps are shown in Fig. 2d–f. Inflammatory cytokines
and chemokines such as IL1B, CCL3, IRF1, DUSP1, JUN,
and FOS were all expressed at high levels in patients,
regardless of myeloid cells (Fig. 2d), NK and T cells (Fig.
2e), or B cells (Fig. 2f).
Collectively, our results demonstrated that myeloid cells

increased, whereas NK and T cells decreased in the per-
ipheral blood of COVID-19 patients and that the immune
cell compositions differed between the patients in the ERS
and LRS.

Myeloid cell subsets and their states in the blood of
convalescent patients with COVID-19
To further understand the changes in the monocytes in

patients in the early and late recovery stages of COVID-
19, we conducted gene expression analysis and sub-
clustered the myeloid cells into six transcriptionally dis-
tinct subsets using Uniform Manifold Approximation and
Projection (UMAP). Classical CD14++ monocytes (M1),
non-classical CD16++ (FCGR3A) CD14−/+ monocytes
(M2), intermediate CD14++ CD16+ monocytes (M3),
CD1C+ cDC2 (M4), CLEC9A+ cDC1 (M5), and pDC
(CLEC4C+CD123+) (M6) were present in the six distinct
clusters (Fig. 3a, b). We found that the compartment of
the monocyte subset differed remarkably among the HCs
and COVID-19 patients (Fig. 3c). Among the myeloid
cells, the ratio of classical CD14++ monocytes (M1)
higher in the ERS patients than in the HCs and was almost
normal in the LRS patients (Fig. 3c).
We found that COVID-19 patients had a greater

abundance of CD14++ IL1β+ monocytes and IFN-
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activated monocytes than the HCs (Fig. 3d–f). Genes
associated with CD14++ inflammatory monocytes (M1)
had high expression levels of inflammatory genes such as
IL1β, JUN, FOS, JUNB, and KLF6; chemokines, CCL4,
CXCR4; and interferon-stimulated genes, IFRD1, IRF1,
and IFI6. In contrast, anti-inflammatory genes associated
with CD14++ monocytes (M1) were downregulated in
COVID-19 patients relative to that in the HCs (Fig. 3d, e).
Notably, IL1β expression values in a UMAP with simul-
taneous contrast indicated that IL1β was upregulated in
the ERS group and decreased in the LRS patients (Fig. 3f).
This was also confirmed in the DC cluster of the ERS
group compared to that of the HCs (Supplementary Fig.
S3a, b). Next, we took the average of the inflammatory
genes for each myeloid cell scRNA-seq subset in the
COVID-19 patients versus that in the HCs (Supplemen-
tary Fig. S3c). These results demonstrated that cytokine
activation drives the expansion of monocyte populations
(especially CD14++ inflammatory monocytes) in COVID-
19-infected patients. To explore the biological significance
of the transcriptional changes in the M1 cluster, we per-
formed GO analysis with DEGs (Fig. 3g). We observed
enrichment of the pathways related to cytokine signaling
and inflammation activation, which were driven by the
upregulation of IFITM3 and IFI6 and IL1β, JUN, FOS,
JUNB, and KLF6 (Fig. 3g).
Collectively, these findings demonstrate that a dysre-

gulated balance in the monocyte populations in ERS
patients is manifested by substantially increased classical
CD14++ monocytes. Our results suggest that the classical
CD14++ monocytes increase in circulation to fuel
inflammation during SARS-CoV-2-infection.

Characterization of T and NK cell responses in the blood of
recovered COVID-19 patients
T and NK cells play critical roles in viral clearance

during respiratory infections15,16. Our clustering analysis
sub-grouped T and NK lymphocytes into 10 subsets
(Fig. 4a) based on canonical markers (Fig. 4b and Sup-
plementary Fig. S4a). NK cells highly expressed NCAM1,
KLRF1, KLRC1, and KLRD1; then, we sub-divided the NK
cells into CD56+CD16− NK cells (NK1), which expressed
high levels of CD56 and low levels of CD16; and
C56−CD16+ NK cells (NK2), which expressed high levels

of CD16 and low levels of CD56. CD4+ T cells expressed
CD3E and CD4; then, we sub-divided these cells into four
clusters: naïve CD4+ T cells (T1), which expressed high
levels of CCR7, LEF1, and TCF7; central memory CD4+

T cells (T2, CD4 Tcm), which expressed high levels of
CCR7, but more AQP3 and CD69 compared to naïve
CD4+ T cells; effector memory CD4+ T cells (T3, CD4
Tem), which expressed high levels of CCR6, CXCR6,
CCL5, and PRDM1; and regulatory T cells (T4, Treg),
which expressed FOXP3. CD8+ T cells expressed CD8A
and CD8B and were sub-divided into three clusters: naïve
CD8+ T cells (T5), which expressed high levels of CCR7,
LEF1, and TCF7, similar to naïve CD4+ T cells; effector
memory CD8+T cells (T6, CD8 Tm), which expressed
high levels of GZMK; and cytotoxic CD8+ lymphocytes
(CD8+ CTL) (T7), which expressed high levels of GZMB,
GNLY, and PRF1. Proliferating T cells (T8, Tprol) were
TYMS+ MKI67+ cells.
The composition of the T and NK cell subsets differed

significantly among the HCs and COVID-19 patients (Fig.
4c). The absolute number of CD8+T cells especially the
effector memory CD8+ T cell subgroup and NK cells
decreased in COVID-19 patients, whereas the relative
ratio of NK cells in ERS was higher than that in the HCs.
The ratio of CD4+ T cells was stable, but the composition
of the CD4+ T cell subset differed significantly between
the HCs and COVID-19 patients. Among CD4+ T cells,
the ratio of central memory CD4+ T cells was significantly
higher, whereas the ratio of naïve CD4+ T cells, Tregs and
effector memory CD4+ T cell was lower than that in the
HCs especially in ERS group. Notably, genes associated
with CD4+ T cells had relatively high expression levels of
inflammation-related genes and were significantly upre-
gulated in the COVID-19 patients (Fig. 4d). CD4+ T cells
had high expression levels of inflammatory genes,
including FOS, JUN, KLF6, and S100A8 in patients in the
ERS of COVID-19 (Fig. 4e). In contrast, anti-
inflammatory genes associated with CD4+ T cells were
downregulated in COVID-19 patients relative to that in
the HCs (Fig. 4d, e). This suggested that CD4+ T cells
were the main participants in the virus infection. Com-
parison of the DEGs in the CD4+ T cells revealed the
enrichment of genes participating in the cytokine pathway
and inflammation activation, including IFITM3 and IFI6

(see figure on previous page)
Fig. 1 Study design and analysis of single immune cell profiling in COVID-19 patients. a Schematics of the experimental design for single-cell
RNA (sc-RNA) sequencing. Peripheral blood mononuclear cells (PBMCs) were collected from COVID-19 patients and healthy controls (HCs) and then
processed via sc-RNA, sc-BCR, and sc-TCR sequencing using the 10x-Based Genomics platform. b The heatmaps show differentially expressed genes
(DEGs) upregulated in myeloid cells, NK and T cells, B cells, and other clusters of PBMCs. c t-distributed stochastic neighbor embedding (t-SNE) plot
showing myeloid cells (red), NK and T cells (blue), B cells (green), and other clusters (gray) of PBMCs identified using integrated and classification
analysis. d t-SNE projection of canonical markers, including CD14, CD1C, and FCGR3A for myeloid cells; CD3E, CD4, CD8A, and NCAM1 for NK and
T cells; and CD19 for B cells as indicated in the legend.
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and IL1B, JUN, FOS, JUNB, and KLF6 (Fig. 4f). Further
studies are needed to elucidate the IFN pathways involved
in COVID-19 pathogenesis.
TCR-seq analysis showed that T cell expansion was

obviously decreased in the ERS group than in the HC
group (Fig. 4g). Moreover, naïve or central memory
T cells showed little clonal expansion, while effector
memory T cells, terminal effector CD8+ T cells (CTLs),
and proliferating T cells showed higher expansion levels
(Fig. 4h). In addition, the most highly expanded (max-
imum) clone in the ERS group was TRAV8-6-TRAJ45:
TRAV7-8-TRBJ2-1 (Supplementary Fig. S5d). The
decreased ratio of CD8+ T cells in COVID-19 patients
may implicate the role of CD8+ T cells in virus clearance
(Fig. 4c). Moreover, the CD8+ CTL with expanded clones
also exhibited overactivated inflammation and antiviral
activity compared to those in HCs (Fig. 4i and Supple-
mentary Fig. S4b). Together, these findings show that
clonally expanded CD8+ T cells in the peripheral blood of
COVID-19 patients help control the virus. We also per-
formed DEG analysis via Seurat FindAllMarkers analysis
and found similar results in Tprol cells (Supplementary
Fig. S4c). Next, we took the average of inflammatory genes
for each NK and T cell subset scRNA-seq subset in the
COVID-19 patients versus normal RNA-seq data (Sup-
plementary Fig. S4d).

Characterization of single-cell B cells in COVID-19 patients
By projecting the gene expression data of B cells using

diffusion maps, we identified four B cell clusters using
scRNA-seq: naïve B cells (B1) expressing CD19, CD20
(MS4A1), IGHD, IGHM, IL4R, and TCL1A; memory B
cells (B2) expressing CD27, CD38, and IGHG; immature B
cells (B3) only expressing CD19 and CD20 (MS4A1); and
plasma cells (B4) expressing high levels of XBP1 and
MZB1 (Fig. 5a, b and Supplementary Fig. S5a).
In comparison with that in the HCs, the percentage of

plasma cells increased significantly in COVID-19 patients,
whereas naïve B cells decreased significantly in the
COVID-19 patients (Fig. 5c). Memory B cells and plasma
cells (MPB) might play an important role in the control of
viral infection and the development of adoptive immunity
as they synergistically work and induce specific antibodies.
Moreover, compared to that in the HCs, B cell activation-

related genes, including S100A8, IGLL5, SSR3, IGHA1,
XBP1, and MZB1 were primarily expressed in the MPB of
the ERS group (Fig. 5d). We also found similar results in
the plasma cells, the antibody-secreting cells (ASC)
(Supplementary Fig. S5b, c), suggesting a key role for ASC
in viral control. Next, we took the average of the
inflammatory genes for each B cell subset of the COVID-
19 patients versus the normal RNA-seq data (Fig. 5e). The
difference in the genes between the ERS and HCs indi-
cated enhanced B cell reaction and antibody secretion in
COVID-19 patients. GO analysis revealed that IGHA1,
XBP1, MZB1, JUN, POLR2L, and ZFP36 were over-
presented in MPBs, which suggests enhanced B cell pro-
liferation and viral transcription in COVID-19 patients
(Fig. 5f). Single-cell BCR-seq analysis indicated that the
IgA isotype was over-represented in COVID-19 patients
compared to that in the HC (Fig. 5g). This corresponded
with an increase in the levels of serum IgA, which was also
pronounced in other coronavirus infections. Moreover,
the ratio of (IgA+IgG+IgE) to (IgD+IgM) increased sig-
nificantly in the ERS patients and showed a downward
trend with recovery time (Fig. 5h).

Expanded BCR clones and biased usage of VDJ genes
observed in COVID-19 patients
Using sc-BCR-seq to assess the status of clonal expan-

sions in the blood of patients, we found that IL4R+ naïve
B cells showed little clonal expansion, whereas
CD27+CD38+ memory B cells showed the highest
expansion levels among diverse B cell subsets (Fig. 6a). At
the individual level, we found that COVID-19 patients
had significantly expanded clones compared to that in the
HCs, supporting the assumption that B cells had experi-
enced unique clonal VDJ rearrangements under SARS-
CoV-2-infection. We also found that a higher B cell
clonality consistently remained in the ERS compared with
that in the LRS patients (Fig. 6b). Moreover, quantifica-
tion of the most highly expanded (maximum) clone for
each subject showed that the ratios of the maximum
clones were higher in the ERS group than in the HCs
(Fig. 6c). To understand the functional status of expanded
cloned B cells, we performed DEG analysis between the
cloned memory B cells and the other B cells. Our results
revealed increased expression of B cell genes, including

(see figure on previous page)
Fig. 2 An overview of NK and T, B, and myeloid cells in the blood of convalescent patients with COVID-19. a The t-SNE plot shows a
comparison of the clustering distribution across HCs as well as early recovery stage (ERS) and late recovery stage (LRS) patients with COVID-19. b The
bar plot shows the relative contributions of myeloid, NK and T, and B cells by individual samples, including five HCs, five ERS patients, and five LRS
patients. c The pie chart shows the percentages of myeloid, NK and T, and B cells across HCs as well as ERS and LRS patients with COVID-19. d The
heatmap shows the DEGs of myeloid cells among the HCs and the ERS and LRS COVID-19 patients. e The heatmap shows the DEGs of NK and T cells
among the HCs and the ERS and LRS COVID-19 patients. f The heatmap shows the DEGs of B cells among the HCs and the ERS and LRS COVID-19
patients.

Wen et al. Cell Discovery            (2020) 6:31 Page 6 of 18



a

M1

M4
M3

M2

M5
M6

UMAP_1

U
M

AP
_2

CD14 FCGR3ACD1C

CLEC9A CLEC4C IL1B

d e

f

g

b

CD14 mono heatmap

IL1β expression values

Down Up
CD14 mono: ERS vs HC

ANXA1, DUSP1, EREG, FOS, IL1B, CXCL8, JUN, MCL1, NFKBIA, S100A12, CCL3

BCL2A1, PLK3, DUSP1, JUN, MCL1, BTG2, RGCC

MAP3K8, FOS, JUN, S100A8, S100A9, UBC
ANXA1, FOS, IL1B, CXCL8, JUNB, MCL1, SOCS3

DUSP1, EGR1, FOS, CXCL8, JUN

CYBA, EGR1, IL1B ,IRF1, S100A8, S100A9, CCL3, ZFP36, CD83, KLF2

CYBA, EREG, IL1B, IRF1, S100A8, S100A9, S100A12, CCL3, UBC

ANXA1, IL1B, PNP, TNFAIP3, ZFP36, CD83

ANXA1, MAP3K8, CYBA, EGR1, IL1B, CXCL8, CCL3, UBC, KLF2

ANXA1, IL1B, CXCL8, S100A8, S100A9, CCL3

Up in CD14 mono of ERS

M1: CD14

M2: CD16

M3: MED

M4: cDC2

M5: cDC1

M6: pDC

M3:
MED

HC
ERS

Expression 

c

HC                                                                                                     ERS                   LRS

Fig. 3 (See legend on next page.)

Wen et al. Cell Discovery            (2020) 6:31 Page 7 of 18



CD27, SSR4, IGHG1, MZB1, and XBP1, which further
supports the superior effector functions of the expanded
cloned B cells (Fig. 6d). Moreover, the differential genes
for expanded B cells significantly subsided over time and
reduced in LRS patients (Fig. 6d).
To study the unique changes and preference genes of

BCR in COVID-19 patients, we compared the usage of
VDJ genes in COVID-19 patients with that in the HCs.
We identified an over-representation of the IGHV3
family, especially the IGHV3-7, IGHV3-15, IGHV3-21,
IGHV3-23, and IGHV3-30 in COVID-19 patients com-
pared to that in the HCs (Fig. 6e). The preferred IGKVs
were IGKV1-17, IGKV2-28, and IGKV3-15, whereas the
preferred IGLVs were IGLV1-44, IGLV2-8, and IGLV3-27
(Fig. 6e). Moreover, the top two pairing frequencies in
ERS patients were IGHV3-23-IGHJ4 and IGHV3-7-
IGHJ6 (Fig. 6f). These cells showed IGH subunit pairing
with the IGK/L subunit encoded by IGLV1-44-IGLJ3 and
IGKV1-17-IGKJ1, respectively, which indicated expanded
states associated with SARS-CoV-2 specificity. Individu-
ally, ERS-4 and ERS-5 had the maximum clones, referring
to IGHV3-23-IGHJ4 (Supplementary Fig. S5e) and
IGHV3-7- IGHJ6 (Supplementary Fig. S5f), respectively.
In summary, an increase in clonality in COVID-19,

which was dominated by the IgA and IgM isotypes,
together with a skewed use of the IGHV gene, suggested
the contribution of SARS-CoV-2 to pathogenesis. Nota-
bly, the biased usage of dominated IGV genes, especially
the IGHV3-23 and IGHV3-7 in COVID-19 patients,
provides a framework for the rational design of SARS-
CoV-2 vaccines.

Cell-to-cell communication among immune cells in COVID-
19 patients
An established computational approach17 was used to

predict cell-to-cell interactions that may contribute to the
distinct functional state of T cells, B cells, monocytes, and
dendritic cells (DCs) in ERS and LRS (Fig. 7a, b). In ERS
COVID-19 patients, we found adaptive signals involved in
monocyte activation, proliferation, and inflammatory
signaling (Fig. 7a, b). T cells expressed genes encoding

ligands of TNFSF8, LTA, IFNG, IL17A, CCR5, and LTB
to TNFRSF8, TNFRSF1A/TNFRSF14, IFNGR1, IL-17RA,
CCR1, and LTBR, which were expressed on monocytes
and could contribute to the pro-inflammatory status.
Other T cell-monocyte interactions involved the expres-
sion of CSF2 and CSF1. T cells might activate monocytes
through the expression of CSF2 and CSF1, which bind to
CSFRs (CSFR2/1) and contribute to inflammatory storm.
A cluster of CD14+ monocytes exclusively expressed
IL1β, which was predicted to bind to IL1RAP expressed
by T cells. T cell-monocyte interaction may enhance
immune response and be exclusive to COVID-19 patients
(Fig. 7a, b). Furthermore, we found that monocytes highly
expressed the poliovirus receptor, which serves as a cel-
lular receptor for poliovirus in the first step of poliovirus
replication and induction of the NF-kappa B signaling
pathway. From the B cell-monocyte and B cell-T cell
interactions, we found that B cells could secrete a large
number of IL-6, LTA, and LTB, which are combined with
IL-6R, LTAR, and LTBR expressed in monocytes, and a
large amount of IL-6 was applied to T cells to promote the
secretion of IFN-γ, IL-1β, and other inflammatory cyto-
kines and chemokines. Thus, a cascade signature of
inflammatory monocytes with high expression of IL-6 and
their progeny were formed in the peak incidence of ERS
COVID-19 patients (Fig. 7c). These activated immune
cells may enter the circulation in the lung and other
organs in large numbers and play an immune-damaging
role. In LRS COVID-19 patients, DC ligands were pre-
dicted to interact with B and T cell receptors involved in
cell proliferation and the production of antibodies. We
discovered that the peripheral blood of LRS patients
contains a diversity of antibodies; we found that IL18-
IL18RAP, TNFSF13-TNFRSF13B, TNFSF13-TNFRSF17,
TNFSF13B-TNFRSF17, TNFSF13B-TNFRSF13B, and
TNFSF13B-TNFRSF13C were highly expressed in our
analysis of DC-B cell interaction (Fig. 7d). Thus, we
speculate that DCs produce IL-18, TNFSF13, and
TNFSF13B to promote the proliferation of B cells and
then secrete many antibodies into the blood in ERS. From
the DC-T and T cell-B cell interactions, we discovered

(see figure on previous page)
Fig. 3 Myeloid cell subsets and their states in the blood of convalescent patients with COVID-19. a Six clusters of myeloid cells were displayed
according to marker gene expression levels. Uniform manifold approximation and projection (UMAP) presentation of the heterogeneous clusters of
peripheral myeloid cells. Classical CD14++ monocytes (M1), non-classical CD16++ (FCGR3A) CD14−/+ monocytes (M2), intermediate CD14++ CD16+

monocytes (M3), CD1C+ cDC2 (M4), CLEC9A+ cDC1 (M5), and pDC (CLEC4C+CD123+) (M6). b The UAMP plot shows subtype-specific marker genes
of myeloid cells, including CD14, FCGR3A, CD1C, CLEC9A, CLEC4C, and IL-1β. c Bar chart of the relative frequencies of the six sub-clusters of myeloid
cells and three sub-clusters of monocytes across the HCs and the ERS and LRS patients. d The heatmap shows the top DEGs between COVID-19
patients and HCs in CD14++ monocytes. e Volcano plot of fold change between COVID-19 patients and HCs in CD14++ monocytes. P values were
calculated using a paired, two-sided Wilcoxon test and FDR corrected using the Benjamini–Hochberg procedure. f The UAMP plot shows that IL-1β
was highly expressed in the ERS patients vs. the LRS patients and HCs in myeloid cells. g GO BP enrichment analysis of the DEGs of CD14++

monocytes upregulated in COVID-19 patients. P value was derived by a hypergeometric test.
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that DCs produce not only IL-18 but also IL-7 to promote
the proliferation of T cells; moreover, T cells produce IL-2
to promote the proliferation and antibodies production of
B cells (Fig. 7d). Thus, cell-to-cell interactions help us to
understand why COVID-19 patients manifested high rates
of monocytes and low rates of lymphocytes and why the
proportion of lymphocytes gradually increased in the
peripheral blood of recovering patients.

Discussion
The clinical presentation of COVID-19 varies from

asymptomatic to severe ARDS. This has been similarly
observed in severe acute respiratory syndrome cor-
onavirus (SARS-CoV), Middle East respiratory syndrome
coronavirus (MERS-CoV), and influenza infections12,14. In
viral infection, it is generally accepted that host immune
responses determine both protection against viral infec-
tions and the pathogenesis of respiratory injury18,19. A
coordinated response in innate and adaptive immune cells
working in concert may lead to the rapid control of the
virus, whereas a failed immune response might lead to
viral spreading, cytokine storm, and a high mortality
rate20. Despite belonging to same group of viruses, recent
studies have highlighted differences between COVID-19,
SARS, and MERS, such as the speed of transmission,
treatment scheme, and mortality rate. Moreover, this
difference may also exist in the key immune players and
the underlying molecular mechanisms related to these
diseases. The lack of knowledge regarding the immune
impact of COVID-19 has now become a critical issue in
view of its rapid spread and the shortage of specific
therapy21. Using single-cell sequencing, we profiled the
complexity of immune populations in the blood and
analyzed 70,858 cells from 10 patients. We identified a
hyper-inflammatory response in ERS patients, which may
explain why some patients fell sick after being discharged,
and suggest that the current criteria for hospital discharge
should be re-evaluated. In addition, we identified unique
signatures of myeloid, NK and T, and B cells and pin-
pointed the changes in the epitopes of TCR and BCR. Our

findings helped elucidate the antiviral immune mechan-
isms and revealed promising opportunities for developing
immunotherapies using vaccines and neutralizing
antibodies.
Inflammation is a vital part of the immune system’s

response to COVID-19 invasion; previous and latest stu-
dies have reported significantly higher levels of inflam-
matory cytokines associated with disease severity in SARS,
MERS, and COVID-19 patients22,23. Among the various
inflammatory cells, monocytes and their subsets (includ-
ing classical, intermediate, and non-classical monocytes)
may play a critical role because they are known to fuel
inflammation24–27. In our study, compared with the HCs,
ERS patients demonstrated a significantly higher ratio of
monocytes, and these cells expressed higher levels of
inflammatory genes. Intriguingly, the ratio of classical
CD14+ monocytes was high in ERS but remained normal
in LRS. Furthermore, CD14+IL1β monocytes, which were
absent in HCs, could be observed in ERS, and they
declined in number in LRS. Notably, our cell-to-cell
interaction analysis indicated that IL1β, CSF1, IL6, and
CSF2may be associated with cytokine storm. The CD14++IL1β
subpopulation appeared to be part of the inflammatory
landscape of COVID-19, since these cells increased in
ERS stage. Virus-induced IL-1β production in monocytes
is mediated via a caspase-1 pathway. Multiple microbial
components, including viral RNA, are thought to trigger
assembly of the inflammasome and consequent caspase-1
activation28, which may give a reasonable explanation for
the presence of IL1β+ monocytes in ERS patients. Pre-
vious studies with a pathogenic influenza A virus revealed
impaired neutrophil and CD4+ T cell activation in IL-
1R1−/− mice, greatly diminished lung inflammatory
infiltrates, reduced IgM levels in both serum and at
mucosal sites and decreased activation of CD4+ T
“helpers” in secondary lymphoid tissue29, indicating IL1β
is responsible for virus-induced lung immunopathology
establishment. CD14+ IL1β is also expected to become an
important detection marker for monitoring COVID-19
disease recovery. Collectively, our data provide important

(see figure on previous page)
Fig. 4 Characterization of T and NK cell responses in the blood of recovered COVID-19 patients. a Ten sub-clusters of NK and T lymphocytes
were identified. The UMAP plot shows the clustering of T and NK cells. CD56+CD16-NK cells (NK1), C56-CD16+ NK cells (NK2), naïve CD4+ T cells (T1),
central memory CD4+ T cells (T2), effector memory CD4+ T cells (T3), regulatory T cells (T4), naïve CD8+ T cells (T5), effector memory CD8+ T cells (T6),
cytotoxic CD8+ T cells (T7), and proliferating T cells (T8). b UAMP plot showing subtype-specific marker genes of NK and T cells including CD4, CD8A,
NCAM1, CCR7, GZMK, GNLY, MKI67, FCGR3A, and IL-1β. c The bar plot shows the percentages of four sub-clusters of NK and T cells, four sub-clusters of
CD4+ T cells, and three sub-clusters of CD4+ T cells among the HCs and the ERS and LRS patients. d Heatmap of CD4+ T cells showing the DEGs
between the COVID-19 patients and HCs. e The volcano plot shows the DEGs of CD4+ T cells between the COVID-19 patients and HCs. P values were
calculated using a paired, two-sided Wilcoxon test and FDR corrected using the Benjamini–Hochberg procedure. f GO BP enrichment analysis of the
DEGs of CD4+ T cells upregulated in the COVID-19 patients. P value was derived by a hypergeometric test. g The pie plot shows the TCR clone
differences across the HCs and the ERS and LRS patients. h UAMP shows expanded TCR clones (n ≥ 2) in the ERS and LRS patients. i The volcano plot
shows the DEGs of CD8+ CTLs between the COVID-19 ERS group and HCs. P values were calculated using a paired, two-sided Wilcoxon test and FDR
corrected using the Benjamini–Hochberg procedure.
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insights into the role of monocytes in the immuno-
pathogenesis of COVID-19.
The adaptive immune system harbors the ability to

recognize and remember specific pathogens through
antibody and T cell responses30. Inducing adaptive
immunity is the aim of vaccination31. Previous SARS
studies have identified binding and neutralizing antibodies
elicited by SARS-CoV infection. Their therapeutic effect is
unclear32, although robust antibody responses could be
induced33. In COVID-19 infection, although several lines
of evidence have consistently indicated a decline in lym-
phocyte counts, the distinct immune characteristics at
single-cell resolution are unclear. Irani thevarajan et al.34

reported that in the blood of mild-to-moderate COVID-
19 hospitalized patients, the antibody-secreting cells, fol-
licular T-helper cells, activated CD4+ and CD8+ T-cells
and IgM/IgG SARS-CoV-2-binding antibodies were
increased by using flow cytometry, and they found the
changes persisted for at least 7 days following full reso-
lution of symptoms. Our scRNA-seq analysis showed that,
compared with the HCs, ERS patients who recovered less
than 7 days have a lower ratio of T and NK cells, and these
patients’ T cells express higher levels of inflammatory
genes, such as JUN, FOS, JUNB, and KLF6. Several studies
have reported that lymphopenia is a prominent part of
SARS-CoV2 infection and lymphocyte counts are useful
in predicting the severity and clinical outcomes35–37. We
found the number of NK and T cell decreased but no
significant change in B cell in COVID-19 patients espe-
cially in ERS patients. Possible reasons for it may be the
direct infection of lymphocytes by SARS-CoV2, cytokine-
mediated lymphocyte trafficking in the infected tissue or
lymphocytes exhaustion in the peripheral blood and
sequestration in the lung induced by cytokine storm35.
There may also be immune-mediated lymphocyte
destruction, bone marrow or thymus suppression, or
apoptosis38, as is reported in other virus infection, which
requires further study. In addition, high-throughput TCR
sequencing identified expanded T cell clones in ERS
patients. In LRS patients, the immunophenotype was
different. In particular, LRS patients would have an
increase in T and NK cells, with a lower expression of
inflammatory genes. We also performed a detailed

analysis of B cells in patients and identified a higher
population of plasma cells than that in the HCs. We found
that BCR contained highly expanded clones, indicating
their SARS-CoV-2 specificity. Importantly, we found
several loci unique to COVID-19 infection. The strongest
pairing frequencies, IGHV3-23-IGHJ4, indicated a
monoclonal state associated with SARS-CoV-2 specificity,
which has not been reported yet. Notably, numerous
studies have reported biased usage of VDJ genes related to
virus-specific antibodies. For example, IGHV3-30 and
IGKV3-11 have been involved in encoding primary anti-
bodies to neutralize human cytomegalovirus39,40. In
addition, IGHV3-30 and IGHV3-21 have been utilized to
isolate influenza virus antibodies and used for the pro-
duction of virus vaccines41,42. Moreover, a recent study
demonstrated that antibodies combining the IGHV3-15/
IGLV1-40 segments had superior neutralizing activities
against the Zaire Ebola virus43. In addition, we observed
lower expression of inflammatory genes in ERS patients
than in the HCs. We envision that our results will provide
direction for the development of vaccines and antibodies
for COVID-19 patients.
Interaction between immune cells may help expedite or

defer recovery from COVID-19 infection. Our cell-to-cell
prediction analysis utilizing scRNA-seq data indicated
that, in ERS patients, B cell-derived IL-6, T cell-derived
CSF1 (M-CSF), and CSF2 (GM-CSF) may promote
monocyte proliferation and activation. As a result,
monocytes may produce a larger number of inflammatory
mediators, including IL-1β and IL-6, contributing to
inflammatory storm. In LRS patients, both DCs-derived
TNFSF13 and IL-18 and T cell-derived IL-2, IL-4 may
promote B cell survival, proliferation, and differentiation.
Consequently, B cells produce numerous SARS-COV-2-
specific antibodies to clear viruses, which is in agreement
with the research of Zhou Y, et al.44 who reported CD4+

T cells are activated into T-helper (Th) 1 cells and gen-
erate GM-CSF etc. to induced inflammatory
CD14+CD16+ monocytes with high expression of IL-6
and accelerates the inflammation after 2019-nCoV
infection.
The immune system comprises a network of cells, tis-

sues and organs that mediate host defense against

(see figure on previous page)
Fig. 5 Characterization of single-cell B cells in COVID-19 patients. a Four clusters of B cells were identified. The UMAP plot shows the clustering
of B cells. Naïve B cells (B1), memory B cells (B2), immature B cells (B3), and plasma cells (B4). b UAMP plot showing subtype-specific marker genes of
B cells, including MME, IL4R, CD38, CD27, MZB1, and IGHA1. c The bar plot shows the percentages of B clusters across the HCs and the ERS and LRS
patients. d The volcano plot shows the DEGs of MPB cells between the COVID-19 patients and HCs. P values were calculated using a paired, two-
sided Wilcoxon test and FDR corrected using the Benjamini–Hochberg procedure. e The violin plot shows that MZB1, IGHG1, and IGHA1 were highly
expressed in COVID-19 patients vs. the HCs in the B cell sub-clusters. f GO BP enrichment analysis of the DEGs of MPB cells between the COVID-19
patients vs. the HCs. P value was derived by a hypergeometric test. g The bar plot shows the relative percentage of each isotype by individual sample.
h The bar plot shows the ratio of (IgA+IgG+IgE) to (IgD+IgM) among the HCs and the ERS and LRS patients. Statistical analysis used One-Way
ANOVA test. Values are mean ± SD. *P < 0.05, **P < 0.01.
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pathogens. Immune cells can be classified into distinct
types based on specific surface markers with the aid of
flow cytometry and microscopy. However, not all immune
cell types can be completely addressed by a separate
analysis of phenotypic markers, as many markers are
expressed by multiple cell lineages or are regulated dif-
ferently during inflammation. In recent years, sequencing
technology has been widely used in biological research.
On this base, scRNA-seq is used in immunological
research to seek to address previously unrecognized cel-
lular heterogeneity, and to reveal key pathways in gene
regulatory networks that predict immune function45. In
the present study, we applied single-cell technology to
comprehensively characterize transcriptional changes in
peripheral blood mononuclear cells during the recovery
stage of COVID-19. scRNA-seq is a powerful tool to
identify novel cell subsets during disease progression. In
our study, CD14+IL1β subpopulation was mapped using
this method, which uncovered the originator cells in ERS
patients. In conclusion, our study provided the first
immune atlas of patients who have recovered from
COVID-19 and identified adaptive immune dysregulation
after discharge. The clonal expansion of both T and B
cells indicated that the immune system has gradually
recovered; however, the sustained hyper-inflammatory
response for more than 7 days after discharge suggested
the need for medical observation after patients are dis-
charged from hospital. Longitudinal studies of recovered
patients in a larger cohort might help to understand the
consequences of the disease. The novel BCRs identified in
our study may advance our understanding of B cell
mechanisms and have potential clinical utility in COVID-
19 immunotherapies.

Materials and methods
Patients
Ten COVID-19 patients diagnosed with by real-time

fluorescent RT-PCR were collected in the Wuhan Han-
kou Hospital China. Patients were divided into early
recovery stage (ERS) group and late recovery stage (LRS)
group according to the days from first negative nucleic
acid transfer date to blood sampling date. We defined the
ERS group of five cases as the date of nucleic acid

turning negative to blood sampling is less than seven
days and LRS group of five cases as is more than fourteen
days. The 10 patients consisted of five males and five
females and ranged from ages 30–80 years old, with a
median of 58 years old in ERS, a median of 49 years old
in LRS and a median of 55 years old in heathy controls
(HCs). No significant differences were detected between
HCs, ERS group and LRS group. The demographic
characteristics of these patients and HCs are provided in
Supplementary Fig. S1a-c. A written informed consent
was regularly obtained from all patients. The study was
approved by the Ethics Committee of Wuhan Hankou
Hospital, China.

Quantitative reverse transcription polymerase chain
reaction
The throat swab, sputum from the upper respiratory

tract and blood were collected from patients at various
time-points after hospitalization. Sample collection,
processing, and laboratory testing complied with WHO
guidance. Viral RNA was extracted from samples using
the QIAamp RNA Viral Kit (Qiagen, Heiden, Germany)
according to the manufacturer’s instructions. SARS-
CoV-2-infected patients were confirmed by use of qRT-
PCR kit (TaKaRa, Dalian, China) as recommended by
China CDC.

Single-cell collection and scRNA-seq
The peripheral blood mononuclear cell (PBMCs) were

isolated from heparinized venous blood of patients or
healthy donors using a Ficoll-Hypaque density solution
according to standard density gradient centrifugation
methods. For each sample, the cell viability exceeded 80%.
The single-cell suspensions of scRNA-seq samples

were converted to barcoded scRNA-seq libraries using
the Chromium Single Cell 5′ Library, Gel Bead and
Multiplex Kit, and Chip Kit (10x Genomics). The
Chromium Single Cell 5′ v2 Reagent (10x Genomics,
120237) kit was used to prepare single-cell RNA libraries
according to the manufacturer’s instructions. The
FastQC software was used for quality check. The Cell
Ranger software (version 3.1.0) was used for initial pro-
cessing of the sequencing data.

(see figure on previous page)
Fig. 6 Expanded BCR clones and biased usage of VDJ genes observed in the COVID-19 patients. a The UMAP plot shows the B cell expansion
status in the HCs and the ERS and LRS COVID-19 patients. b The bar plots show the clonal expansion status of B cells in peripheral blood from each
individual sample. The number of color blocks represents the complexity of the clonal states. c Separate analysis of HC, ERS and LRS group by
percentages of maximum clones revealed an enrichment of highly expanded clones (defined as comprising 10% or more of all BCR sequences;
indicated by dotted line) in each group. None of healthy subjects had a highly expanded clone, versus four out of five patients in ERS, one out of five
patients in LRS. Values are mean ± SD. d The volcano plot shows the DEGs of expanded vs. non-expanded B cells in ERS and LRS patients. P values
were calculated using a paired, two-sided Wilcoxon test and FDR corrected using the Benjamini–Hochberg procedure. e The bar plots show specific
IGHV, IGKV, IGLV usage in the HCs and the ERS and LRS COVID-19 patients. f Heatmap showing IGH rearrangements in peripheral blood samples from
ERS group.
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ScRNA-seq data alignment and sample aggregating
We de-multiple and barcode the sample by using The

Cell Ranger Software Suite (Version 3.1.0) (https://
support.10xgenomics.com) and with command cell ran-
ger count. After getting each sample gene counts, and
aggregate them together. Finally, gene-barcode matrix of
all ten patients and five HCs was integrated with Seurat
v346 (https://satijalab.org/) and monocle347 (https://cole-
trapnell-lab.github.io/monocle3). Following criteria were
then applied to each cell, i.e., gene number between 200
and 7000. After filtering, a total of 128096 cells (13092/
10035/13624/8329/12158 cells for HCs; 5163/7685/7171/
10058/6581 cells for ERS; 3242/7895/7487/7164/8412
cells for LRS) were left for following analysis. The unique
molecular identifier (UMI) count matrix was converted to
Seurat objects using the R package Seurat v3.

Dimensionality reduction and clustering analysis
We handle the data with Log normalize before cluster

and reduction, scale data with top 5000 most variable
genes by using FindVariableFeatures function in R
package Seurat v3. Clustering and dimensionality method
mainly used in monocle3 package. For quality control, the
genes used in PCA analysis have eliminated mitochondria
(MT), and ribosomes (RPL and RPS) genes including MT-
ND3, MT-ATP8, RPS15A, RPS28, RPS21, RPS27, RPS29,
RPL36, RPL34, RPL37, RPL38, RPL39, RPL26 and et al.
with 50 principal components, and then aligned together,
followed by UMAP and t-SNE are both used after the
results of the aligned. We used the default parameters
with a shared nearest neighbor parameter optimized for
each combined dataset inside Monocle3.

Differential analysis for clusters
Seurat package FindAllMarkers in Seurat v3 was used to

perform differential analysis between the control and
disease groups of the same cell type, the function para-
meters we used in Seurat v3 are default. For each cluster,
differentially expressed genes (DEGs) were generated
relative to all of the other cells.

Gene functional annotation
Gene ontology, gene-set enrichment analysis and KEGG

pathway analyses from DEGs were performed using
Metascape webtool48 (www.metascape.org), which sup-
ports statistical analysis and visualization of functional
profiles for genes and gene clusters.

TCR and BCR V(D)J sequencing and analysis
Full-length TCR/BCR V(D)J segments were enriched

from amplified cDNA from 5′ libraries via PCR amplifi-
cation using a Chromium Single-Cell V(D)J Enrichment
kit according to the manufacturer’s protocol (10x Geno-
mics). The TCR/BCR sequences for each single T/B cell

were assembled by Cell Ranger vdj pipeline (v3.1.0),
leading to the identification of CDR3 sequence and the
rearranged TCR/BCR gene. Analysis was performed using
Loupe V(D)J Browser v.2.0.1 (10x Genomics) (https://
support.10xgenomics.com). In brief, a TCR/BCR diversity
metric, containing clonotype frequency and barcode
information, was obtained. Using barcode information,
T/B cells with prevalent TCR/BCR clonotypes were pro-
jected on a t-SNE plot.

Cell-cell interaction analysis
The cell-cell interaction analysis was based on the

expression of immune-related receptors and ligands.
The potential ligand-receptor interaction between one

set of ligand-expressing cells and another set of receptor-
expressing cells was calculated as the average of the
product of ligand and receptor expression
(respectively, from set one and two) across all single-cell

pairs:

I ¼
Xn

i

li ´
Xm

j

rj
1

m ´ n

� �

where I is the interaction score between ligand-expressing
cells in set one and receptor-expressing cells in set two, Ii
is the ligand expression of cell i in cell set one, rj is the
receptor expression of cell j in cell set two, n is the
number of cells in set one and m is the number of cells in
set two49.
The gene list contained 168 pairs of well-annotated

receptors and ligands, including cytokines, chemokines
and co-stimulators. We estimated the potential interac-
tion between two cell types mediated by a specific ligand-
receptor pair by the product of the average expression
levels of the ligand in one cell type and the corresponding
receptor in the other cell type.
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