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Abstract

We use twenty de novo genome assemblies to probe the speciation history and architecture of gene 

flow in rapidly radiating Heliconius butterflies. Our tests to distinguish incomplete lineage sorting 

from introgression indicate that gene flow has obscured several ancient phylogenetic relationships 

in this group over large swathes of the genome. Introgressed loci are underrepresented in low 

recombination and gene-rich regions, consistent with the purging of foreign alleles more tightly 

linked to incompatibility loci. We identify a hitherto unknown inversion that traps a color pattern 

switch locus. We infer that this inversion was transferred between lineages via introgression and is 

convergent with a similar rearrangement in another part of the genus. These multiple de novo 
genome sequences enable improved understanding of the importance of introgression and selective 

processes in adaptive radiation.

One Sentence Summary

Introgression has been a major contributor of genealogical discordance throughout Heliconius 
evolution, varying across the genome with local recombination rate, gene density, and genome 

architecture.

Adaptive radiations play a fundamental role in generating biodiversity. Initiated by key 

innovations and ecological opportunity, radiation is fueled by niche competition that 

promotes rapid diversification of species (7). Reticulate evolution may enhance radiation by 

introducing genetic variation, enabling rapidly emerging populations to take advantage of 

novel ecological opportunities (2, 3). Diverging from its sister genus Eueides ~12 My ago, 

Heliconius radiated in a burst of speciation in the last ~5 My (4). Introgression is well 

known in Heliconius, with widespread reticulate evolution across the genus (5), though this 
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has been disputed (6). Nonetheless, how introgression varies across the genome is known 

only in one pair of sister lineages (7, 8). Here, we use multiple de novo whole genome 

assemblies to improve the resolution of introgression, incomplete lineage sorting (ILS), and 

genome architecture in deeper branches of the Heliconius phylogeny.

Phylogenetic analysis

We generated 20 de novo genome assemblies for species in both major Heliconius sub-

clades and three additional genera of Heliconiini. Here we align the sixteen highest quality 

Heliconiini assemblies to two Heliconius reference genomes and seven other Lepidoptera 

genomes, resulting in an alignment of 25 taxa (9). De novo assembly provides superior 

sequence information for low complexity regions, allows for discovery of structural 

rearrangements, and improves alignment of evolutionarily distant clades (10). Other studies 

in Heliconius have shown a high level of phylogenetic discordance, arguably a result of 

rampant introgression (4, 5). We attempted to reconstruct a bifurcating species tree by 

estimating relationships using protein-coding genes, conserved coding regions, and 

conserved non-coding regions. We generated phylogenies with coalescent-based and 

concatenation approaches, using both the full Lepidoptera alignment and a restricted, 

Heliconiini-only sub-alignment. These topologies were largely congruent among analytical 

approaches, but weakly supported nodes were resolved inconsistently. These approaches 

therefore failed to resolve the phylogeny of Heliconius as a simple bifurcating tree (Fig. 1A, 

Fig. S20).

To determine whether hybridization was a cause of the species tree uncertainty, we 

calculated Patterson’s D-statistics (11) for every triplet of the 13 Heliconius species, using a 

member of the sister genus, Eueides tales, as outgroup. In 201 of 286 triplets, we observed 

values significantly different from zero based on block-jackknifing, demonstrating strong 

evidence for introgression (Fig. S53). However, these tests alone yield little quantitative 

information about admixture. We therefore used phyloNet (12) to infer reticulate 

phylogenetic networks of these species on the basis of random samples of one hundred 10 

kb windows across the alignment. For each sample, we co-estimated all 100 regional gene 

trees and the overall species network in parallel (12). To improve alignments, we analyzed 

the melpomene-silvaniform group with respect to the H. melpomene Hmel2.5 assembly (13) 

and the erato-sara group with respect to the H. erato demophoon v1 assembly (9, 14). Most 

species exhibited an admixture event at some point in their history using this method; we 

confirmed extensive reticulation among silvaniform species and discovered major gene flow 

events in the erato-sara clade. Based on these results, we propose the reticulate phylogenies 

in Fig. 1B–C.

Correlation of local ancestry with genome architecture

We next analyzed the distribution of tree topologies across the genome, again treating each 

major clade separately and using its respective reference genome. The melpomene-
silvaniform group lacked topological consensus, unsurprisingly since introgression, 

especially of key mimicry loci, is well known from this clade (15). The most common tree 

topology was found in only 4.3% of windows, with an additional 14 topologies appearing in 
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1.0–3.4% of windows (Fig. S19–Fig. S21). By contrast, we here focus on the erato-sara 
group, where two topologies dominate (Fig. 2). One (Tree 2, Fig. 2B) matched our 

bifurcating consensus topology (Fig. 1A) and a recently published tree (4), while the other 

(Tree 1) differs in that it places H. hecalesia and H. telesiphe as sisters.

Regions with local topologies discordant from the species tree may have arisen through 

introgression or ILS. In order to make within-topology locus-by-locus inferences, we 

developed a statistical test to distinguish between ILS and introgression based on the 

distribution of internal branch lengths among windows for a given three-taxon subtree, 

conditional on its topology. We call this method Quantifying Introgression via Branch 

Lengths (QuIBL). In the absence of introgression, we expect internal branch lengths of 

triplet topologies discordant with the species tree (due to ILS) to be exponentially 

distributed. However, if introgression has occurred, their distribution should have that same 

exponential component, but also include an additional component with a non-zero mode 

corresponding to the time between the introgression event and the most recent common 

ancestor of all three species (9). Like other tree-based methods, QuIBL is potentially 

sensitive to the assumption that each tree is inferred from loci with limited internal 

recombination (Fig. S75). We therefore chose small (5 kb) windows to reduce the 

probability of intra-locus recombination breakpoints.

For every triplet in the erato-sara clade, we calculate the likelihood that the distribution of 

internal branch lengths is consistent with introgression or with ILS only. We formally 

distinguish between these two models using a BIC test with a strict cutoff of ΔBIC > 10. 

Consistent with our results from D-statistics, we find that 13 of 20 triplets have evidence for 

introgression (Table S13). For example, using QuIBL on the triplet H. erato-H. hecalesia-H. 
telesiphe, we infer that 76% of discordant loci, or 38% of all loci genome-wide, are 

introgressed. Averaging over all triplets, we infer that 71% (67% with BIC filtering) of loci 

with discordant gene trees have a history of introgression, or 20% (19% with BIC filtering) 

of all triplet loci, indicating a broad signal of introgression throughout the clade (Equation 

7.7, Table S13; see (9) for additional discussion).

In hybrid populations, individuals have genomic regions that originate from different species 

and may be incompatible with the recipient genome or with their environment (16). Linked 

selection causes harmless or even beneficial introgressed loci to be removed along with 

these deleterious loci if they are tightly linked; this effect depends on the strength of 

selection and the local recombination rate (17, 18). We therefore expect introgressed loci to 

be enriched in regions where selection is likely to be weak, such as gene deserts, or in 

regions of high recombination, where harmless introgressed loci more readily recombine 

away from linked incompatibility loci.

In Heliconius, even distant species like H. erato and H. melpomene have the same number of 

broadly collinear chromosomes (13), facilitating direct comparisons among species. 

Furthermore, each chromosome in Heliconius has approximately one crossover per 

chromosome per meiosis in males (there is no crossing over in female Heliconius) (14, 19). 

Chromosomes vary in length, and chromosome size is inversely proportional to 

recombination rate per base pair (8, 13). We found a strong correlation between the fraction 
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of windows in each chromosome that show a given topology and physical chromosome 

length (Fig. 3A). Such relationships exist for all 8 trees in Fig. 2B (9), but we focus here on 

the two most common trees: Tree 1 has a strongly negative correlation with chromosome 

size (r2=0.883, t= 11.7, 18 d.f., p<0.0001) while Tree 2 (concordant with our inferred 

species tree) has a positive correlation (r2=0.726, t=6.9, 18 d.f., p<0.0001). Results from 

QuIBL indicate that 94% of windows that recover a Tree 1 triplet topology are consistent 

with introgression (Fig. S70, Table S13). The Z (sex) chromosome 21, is strongly enriched 

for Tree 2, suggesting it may harbor more incompatibility loci than autosomes. Interspecific 

hybrid females in Heliconius are often sterile, conforming to Haldane’s Rule, and sex 

chromosomes have been implicated as particularly important in generating incompatibilities 

(8, 20–24).

To test whether the pattern we observe among chromosomes is related to differences in 

recombination, we investigated the relationship between recombination rate and tree 

topology within chromosomes. Recombination rate declines at the ends of chromosomes 

(Fig. S85), and the species tree (Tree 2) is more abundant in those regions (Fig. 3B). In 

addition, when windows are grouped by local recombination rate calculated from population 

genetic data (9, 14), we observe a strong relationship with the recovered topology (Fig. 3C). 

Finally, we observe a minor enrichment of Tree 1 in regions of very low gene density, but 

this effect is weak (Fig. 3D) compared to that of recombination. Taken together, these results 

show that tighter linkage on longer chromosomes, and in lower recombination regions 

within chromosomes leads to removal of more introgressed variation in those regions. This 

very strong correlation is consistent with a highly polygenic architecture of incompatibilities 

between species.

Introgression of a convergent inversion

The topology block size distribution in the erato clade generally decayed exponentially (Fig. 

2C), but two unusually long blocks contained minor topologies: one on chromosome 2 (Tree 

3, composed of three sub-blocks) and the other on chromosome 15 (Tree 4). Our study of the 

~3 Mb topology block on chromosome 2 confirms an earlier finding of an inversion in H. 
erato (13), and we show here that its rare topology is most likely explained by ILS including 

a long period of ancestral polymorphism (Fig. S95).

The topology block on chromosome 15 is of particular interest, as it spans cortex, a genetic 

hotspot of wing color pattern diversity in Lepidoptera (25, 26). We hypothesized that this 

block could be an inversion, as in H. numata, where the P1 ‘supergene’ inversion 

polymorphism around cortex controls color pattern switching among mimicry morphs (27). 

This block recovers H. telesiphe and H. hecalesia as a monophyletic subclade, which 

together are sister to the sara clade (Fig. 2B, Tree 4). We searched our de novo assemblies 

for contigs that mapped across topology transitions. Taking H. melpomene as the standard 

arrangement, we find clear inversion breakpoints in H. telesiphe, H. hecalesia, H. sara, and 

H. demeter. Conversely, H. erato, H. himera, and E. tales all contain contigs that map in their 

entirety across the breakpoints (Fig. 4A), implying that they have the ancestral H. 
melpomene arrangement.

Edelman et al. Page 5

Science. Author manuscript; available in PMC 2020 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This chromosome 15 inversion covers almost exactly the same region as the 400 kb P1 

inversion in H. numata (25, 27, 28). However, de novo contigs from our H. numata assembly 

show that the breakpoints of P1 are close to but not identical to those of the inversion in the 

erato clade (Fig. 4A). Furthermore, in topologies for H. numata, H. telesiphe, H. erato, and 

E. tales across chromosome 15, not a single window recovered H. numata and H. telesiphe 
as a monophyletic subclade, as would be expected if the erato group inversion was 

homologous to P1 in H. numata.

We used QuIBL with the triplet (H. erato +H. telesiphe + H. sara) to elucidate the 

evolutionary history of this inversion. A small internal branch would suggest ILS while a 

large internal branch would be more consistent with introgression (Fig. 4B). The average 

internal branch length in the inversion was much longer than the genome-wide average, 

corresponding to a 79% probability of introgression (Fig. 4C). If the inversion was 

polymorphic in the ancestral population for some time, we could also recover a similarly 

long internal branch (Fig. 4B, center). We distinguish between this longer-term polymorphic 

scenario and introgression by comparing the genetic distance (Dxy) between H. telesiphe and 

H. sara, represented by T3 in Fig. 4B. Normalized Dxy (as in Fig. S95) within the inversion 

is ~25% less than in the rest of the genome. Given that this is a large genomic block, 

introgression is therefore the most parsimonious explanation for the evolutionary history of 

the inversion (Fig. 4D) (29).

Discussion

Species involved in rapid radiations are prone to hybridization due to frequent geographical 

overlap with closely related taxa. In both melpomene and erato clades of Heliconius, 
introgression has overwritten the original bifurcation history of several species across large 

swathes of the genome, a pattern also observed in Anopheles mosquitos (30). This 

observation is also consistent with genomic analysis of other rapid radiations characterized 

by widespread hybridization and introgression, including Darwin’s finches (2) and African 

cichlids (31). In other radiations, the role of introgression is less clear: in Tamias chipmunks, 

widespread introgression of mitochondrial DNA was identified, in contrast to an absence of 

evidence for nuclear gene flow (32). With few genomic comparisons available to date, it is 

perhaps too early to say whether introgression is a major feature of adaptive radiations in 

general, but evidence thus far suggests this to be the case.

Our results raise the question of why some genomic regions cross species boundaries while 

others do not. In the erato clade, we find a strong correlation between recombination rate 

and introgression probability. Similar associations with topology also exist between sister 

species in the melpomene clade (7). Associations between recombination and introgression 

in actively hybridizing populations of sword-tail fish (Xiphophorus) and monkey flowers 

(Mimulus) support the role of linked selection on a highly polygenic landscape of 

interspecific incompatibilities (18, 33, 34). Our results establish that this relationship persists 

and may indeed be strengthened with time since introgression. While hybridization is 

ongoing, many introgressed blocks are constantly reintroduced into the population. If linked 

to weakly deleterious alleles, introgressed loci will be finally purged by linked selection only 

long after introgression ceases.
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Recombination rate alone cannot account for differential introgression, so we must delve 

into specific regions to elucidate their function and relevance to speciation. It is critical, 

therefore, to have tools that can confidently identify introgressed loci, and much effort has 

gone into developing such methods (11, 35). Our test using internal branch lengths in triplet 

gene trees is based in coalescent theory and takes advantage of the discriminatory power of a 

property of gene trees not explicitly accounted for by other methods. QuIBL allows us to 

assess probability of introgression for each locus in each species triplet (8). Here, we employ 

this method to identify the evolutionary origin of a convergent inversion that has undergone 

multiple independent introgression events, and to show that genomic regions with discordant 

topologies arose mostly through hybridization. Just as sex aids adaptation within species, 

occasional introgression and recombination among species can have major long-term effects 

on the genome, contributing variation that could fuel rapid adaptive divergence and 

radiation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Phylogeny and phylogenetic networks of Heliconius show lack of support for bifurcating 
tree.
A. All nodes resolved in a majority of species trees are shown in this cladogram (heavy 

black lines), while the poorly resolved silvaniform clade is collapsed as a polytomy (Fig. 

S20). The 500 colored trees were sampled from 10 kb non-overlapping windows and 

constructed with maximum likelihood. B, C. High-confidence tree structure (black) and 

introgression events (red) are shown as solid lines. Dashed red lines indicate weakly 

supported introgression events. Grey branch ends are cosmetic. The melpomene-silvaniform 

clade is shown in B, the erato-sara clade in C. Euclidean lengths of solid black lines are 

proportional to genetic distance along the branches. Scale bars in units of substitutions per 

site. Breaks at the base in B indicate that the branch leading to H. doris has been shortened 

for display.

Edelman et al. Page 13

Science. Author manuscript; available in PMC 2020 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: Local evolutionary history in the erato-sara clade is heterogeneous across the genome.
A. Each bar represents a chromosome, in terms of the H. erato reference (14). Colored bands 

represent tree topologies of each 50 kb window; colors correspond to the topologies in B, 

with black regions showing missing data. B. The eight most common trees are shown. The 

value in the top left corner is the percentage of all 50 kb windows that recover that topology. 

C. Each histogram corresponds to the topology of the same color in B, and shows the 

distribution of the number of consecutive 50 kb windows with that topology. Arrows 

indicate long blocks in inversions.
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Fig. 3: Chromosomal architecture is strongly correlated with local topology.
Tree 1 is shown in red, and Tree 2 is shown in blue, as in Fig. 2. A. Tree 1 shows a negative 

relationship with chromosome size, while Tree 2 shows a positive relationship. Lines are 

linear regressions with chromosome 21 excluded. Numbers along top indicate chromosome 

number. B. Each chromosome was divided into 10 equally sized bins, and the occupancy of 

each topology in each bin was calculated as the number of windows that recovered the 

topology in the bin divided by the number of windows that recovered the topology in the 

chromosome. C. Windows are binned by recombination rate, and boxes show the fraction of 

each tree in each bin for each chromosome separately. Numbers above boxes are the number 

of windows in each bin. D. Boxes show the relationship of tree topology with coding 

density. Asterisk denotes significance at 5% level (paired t-test, p<0.025). In all boxplots, 

central line is median, box edges are first and third quartile, and whiskers extend to the 

largest value no further than 1.5*(inter-quartile range).
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Fig. 4: Parallel evolution of a major inversion at the cortex supergene locus.
A. Map of 1.7 Mb region on chromosome 15. Coordinates are in terms of Hmel 2.5, and 

ticks are in Mb. Tree topology colors correspond to those in Fig. 2. Genes are shown as 

black rectangles; cortex is highlighted in yellow. Each line shows the mapping of a single 

contig. Aligned sections of each contig are shown as thick bars, while unaligned sections are 

shown as dotted lines. Arrows indicate the strand of the alignment. The H. erato group 

breakpoints are shown with red vertical lines, while the H. numata breakpoints are shown 

with green vertical lines. B. Evolutionary hypotheses consistent with the topology observed 

in this inversion in the context of the previously estimated phylogenetic network. The three 
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species used in the triplet gene tree method – H. erato, H. telesiphe, and H. sara – are shown 

as black lines, while lineages not included are shown as grey lines. C. Histogram of internal 

branch lengths (T2) in windows with the topology H. erato, (H. telesiphe, H. sara). The 

inferred ILS distribution is shown as a dashed line, and the inferred introgression 

distribution is shown as a dotted line. The average internal branch length in the inversion is 

shown as a green vertical line. D. Histogram of normalized DXY (T3) between H. telesiphe 
and H. sara. Mean normalized DXY in the inversion is shown as a green vertical line
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