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Abstract

Given the major role of the mitochondrion in cellular homeostasis, dysfunctions of this organelle may lead to several
common diseases in humans. Among these, maternal diseases linked to mitochondrial DNA (mtDNA) mutations are
of special interest due to the unclear pattern of mitochondrial inheritance. Multiple copies of mtDNA are present in a
cell, each encoding for 37 genes essential for mitochondrial function. In cases of mtDNA mutations, mitochondrial
malfunctioning relies on mutation load, as mutant and wild-type molecules may co-exist within the cell. Since the mu-
tation load associated with disease manifestation varies for different mutations and tissues, it is hard to predict the
progeny phenotype based on mutation load in the progenitor. In addition, poorly understood mechanisms act in the
female germline to prevent the accumulation of deleterious mtDNA in the following generations. In this review, we
outline basic aspects of mitochondrial inheritance in mammals and how they may lead to maternally-inherited dis-
eases. Furthermore, we discuss potential therapeutic strategies for these diseases, which may be used in the future
to prevent their transmission.
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Introduction

The mitochondrion gained its deserved reputation in
cell biology due to its role as the cellular powerhouse, with
most of the adenosine triphosphate (ATP) in eukaryotic cells
being supplied by this organelle (Wallace, 2013). However,
mitochondria play several functions in the cell that far ex-
ceed the role in ATP generation. These are linked with buff-
ering of Ca+2 levels, innate immunity, apoptosis and bio-
genesis of iron-sulfur clusters (Yasukawa et al., 2009; Naon
and Scorrano 2014; Stehling et al., 2014). Moreover, mito-
chondria closely interact with other organelles such as the
endoplasmic reticulum (ER) and regulate several pathways
in the cell (de Brito and Scorrano, 2009; Betz et al., 2013;
Chen et al., 2014; Carreras-Sureda et al., 2017; Xu et al.,
2017). As a result, perturbations in mitochondrial function
may dramatically disturb cellular homeostasis, resulting in
several common diseases in humans (Bach et al., 2003; Chen
et al., 2007, 2010; Schaefer et al., 2008; Misko et al., 2012;
Schon et al., 2012; Sebastian et al., 2012; Eschbach et al.,

2013; Payne et al., 2013; Schneeberger et al., 2013; Parey-
son et al., 2015; Ramírez et al., 2017).

Amongst mitochondria-associated diseases, those pri-
marily linked to mitochondrial DNA (mtDNA) mutations
have been a topic of great interest given their severe outcome
and unclear pattern of inheritance (Craven et al., 2017).
However, mtDNA mutations can also associate with nuclear
mutations, leading to common diseases in humans such as
cancer, diabetes, Alzheimer, and Parkinson (Wallace 2011;
Schon et al., 2012; Stewart and Chinnery 2015). Thereby, re-
cent findings have associated obesity with mitochondrial
dysfunction in oocytes and increased risk of metabolic dis-
eases in offspring (Wu et al., 2015; Saben et al., 2016). In
mammals, mitochondria are uniparentally transmitted by fe-
males (Sutovsky et al., 1999). Thus, maternal mitochondria
are replicated during early embryogenesis to colonize so-
matic and germline tissues (St John, 2019). As a result, mito-
chondrial abnormalities present in oocytes can be perpetu-
ated and lead to disease in offspring (Payne et al., 2013;
Saben et al., 2016; Craven et al., 2017; Wei et al., 2019). In
this review, we outline basic aspects of mitochondrial trans-
mission in mammalian germline and how they may lead to
maternally inherited diseases. Furthermore, we discuss po-
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tential therapeutic strategies for these diseases, which may
be used in the future to prevent their transmission.

Basic aspects of mitochondria

Mitochondria are double-membrane organelles with
two distinct compartments, the inter-membrane space and
the matrix. Most enzymes taking part in oxidative phos-
phorylation of energetic molecules (i.e., sugars, fats and pro-
teins), including those of the Krebs cycle, are located in the
mitochondrial matrix. The energy extracted from these mol-
ecules is then used by three (I, III and IV) out of four com-
plexes imbedded in the inner mitochondrial membrane to
pump H+ from the matrix to the inter-membrane space. This
creates a difference in electric potential (the mitochondrial
membrane potential – ��m). In turn, a fifth complex (V)
phosphorylates ADP into ATP using the electrochemical en-
ergy derived from the H+ return to the matrix.

Mitochondria harbor their own genome, the mtDNA,
which in mammals is ~16.5-kb long and encodes for 13
mRNAs, 2 rRNAs, and 22 tRNAs. These genes are essential
for ATP synthesis in mitochondria as the 13 mtDNA-en-
coded proteins play key roles in complexes I, III, IV, and V
of the electron transport chain. However, nearly 1,200 dif-
ferent proteins are present in mitochondria (i.e., complexes I
to V are composed of ~80 proteins), most of which are en-
coded in the nucleus, translated in the cytoplasm and im-
ported by mitochondria. Proteins regulating mtDNA
replication, transcription and repair are similarly derived
from the nucleus. Therefore, although mtDNA-encoded pro-
teins are essential for ATP production in mitochondria, the
nucleus exerts a broader role in regulating mitochondrial
function (Garesse and Vallejo, 2001; Scarpulla, 2002; Bat-
tersby et al., 2003).

Hundreds to thousands of mitochondria are present in
each cell (Wassarman and Josefowicz, 1978; Jansen and De
Boer, 1998; Motta et al., 2000). These are, albeit, not iso-
lated from each other. Actually, through repeated cycles of
fusion and fission, mitochondria exchange membranes, sol-
utes, metabolites, proteins, RNAs, and mtDNAs, resulting in
electrically coupled organelles. The balance of fusion to fis-
sion also regulates mitochondrial number, morphology,
transport, function, and turnover, which is collectively
known as mitochondrial dynamics (Mishra and Chan, 2014).
Both, fusion- and fission-deficient cells exhibit mitochon-
drial heterogeneity and dysfunction (Eura et al., 2003; Chen
et al., 2003, 2005; Ishihara et al., 2009; Udagawa et al.,
2014; Wakai et al., 2014), supporting the importance of
these events to mitochondrial health. In keeping with this,
fragmentation of the mitochondrial network has been associ-
ated with a low bioenergetic state (i.e., in oocytes), while its
elongation implies a high bioenergetic yielding, such as that
of liver, muscle, and brain (Bach et al., 2003; Zorzano et al.,
2015; Schrepfer and Scorrano 2016).

Several proteins regulate mitochondrial fission, with
the Dynamin-related protein 1 (DRP1) being the best charac-
terized (Ishihara et al., 2009). DRP1 is a cytosolic protein
that is recruited to mitochondria by multiple receptors, in-

cluding mitochondrial fission factor (MMF), mitochondrial
dynamic proteins of 49 kDa (MID49) and 51 kDa (MID51),
and fission 1 (FIS1) (Mishra and Chan, 2014; Schrepfer and
Scorrano 2016). In turn, the optic atrophy 1 (OPA1) regu-
lates inner membrane fusion and cristae remodeling (Oli-
chon et al., 2002, 2003; Cipolat et al., 2004; Griparic et al.,
2004; Pernas and Scorrano 2016), whereas mitofusins 1
(MFN1) and 2 (MFN2) regulate outer membrane fusion
(Chen et al., 2003, 2005, 2007, 2010; Ishihara et al., 2004;
Schrepfer and Scorrano, 2016). Mitochondrial fusion is initi-
ated by homo and heterotypic interaction of MFN1 and
MFN2 from two adjacent organelles (Ishihara et al., 2004;
Schrepfer and Scorrano, 2016). Given that MFN2 is present
on the ER membrane, it also regulates ER-mitochondria
tethering (de Brito and Scorrano, 2008). This connection,
known as ER mitochondria-associated membranes
(MAMs), has been shown to play an essential role in the reg-
ulation of ER, mitochondrial, and cellular functions (Ngoh et

al., 2012; Hamasaki et al., 2013; Schneeberger et al., 2013;
Muñoz et al., 2014; Carreras-Sureda et al., 2017; Pathak and
Trebak, 2018). MFN2 downregulation is associated with de-
creased expression of subunits of the Krebs cycle and elec-
tron transport chain, reduced oxygen consumption, lower
��m, and increased reactive oxygen species (ROS) (Santel
and Fuller, 2001; Yasukawa et al., 2009; Ngoh et al., 2012;
Wakai et al., 2014; Filadi et al., 2015; Schrepfer and Scor-
rano, 2016). These effects of MFN2 seem to be more evident
in muscle, liver and hypothalamic neurons, tissues in which
expression of MFN2 is enhanced (Chen et al., 2007; Chen et

al., 2010; Schneeberger et al., 2013; Schrepfer and Scorrano
2016). MFN2 expression has also been inversely linked with
ER stress, insulin signaling and diabetes (Bach et al., 2003;
Mingrone et al., 2005; Sebastian et al., 2012; Schneeberger
et al., 2013; Zorzano et al., 2015; Sarparanta et al., 2017).

Mitochondria in female germ cells

The earliest stages of embryogenesis are characterized
by rapid cell division (i.e., cleavage) that gives rise to blas-
tocysts. During these stages, the embryo relies on maternal
factors inherited from the oocyte (i.e., mRNAs, proteins and
mitochondria), as the embryonic genome is transcriptionally
inactive. Also, in agreement with the “embryo silent” hy-
pothesis, mitochondria show low activity during these stages
to protect embryonic cells from oxidative damage (Leese,
2012). At the blastocyst stage, increased protein synthesis
and blastocoel expansion is accompanied by upregulation of
mitochondrial activity in cells that give rise to extraem-
bryonic tissues (i.e., the trophectoderm) (Trimarchi et al.,
2000; May-Panloup et al., 2005; Hashimoto et al., 2017; St
John, 2019). Activation of mitochondrial function is post-
poned, however, in the inner cell mass that originates the em-
bryo proper. Mitochondrial architecture and function seem
to remain underdeveloped in cells committed with germline
specification, and mtDNA replication is only resumed with
primordial germ cell (PGC) differentiation (Wassarman and
Josefowicz, 1978; Motta et al., 2000; Cree et al., 2008; Wai
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et al., 2008; St John et al., 2010; Floros et al., 2018; Chiaratti
et al., 2018; St John, 2019).

Among the hundreds of cells in the developing fetus,
PGCs originate from a few dozen located at the basis of
allantois. Yet, after migration to the genital ridge, PGCs pro-
liferate quickly to generate in females millions of oogonia
(Leitch et al., 2013). After entering meiosis, these primary
oocytes receive a cover layer of somatic pre-granulosa cells,
giving rise to primordial follicles still during fetal life. These
follicles constitute the ovarian reserve that females carry
throughout their reproductive life (Oktem and Urman,
2010). After puberty, the ovary provides an adequate envi-
ronment for follicle growth and maturation (Clarke, 2017).
During this period, the oocyte stockpiles several molecules
that are required later during embryogenesis. This includes a
~1,000-fold increase in mitochondria (Jansen and De Boer,
1998; Cree et al., 2008; Wai et al., 2008; St John, 2019),
which accounts for the largest mitochondrial content
amongst all cells in mammals. In spite of this, mitochondria
display several characteristics that suggest they are imma-
ture and low functional in oocytes (Arhin et al., 2018). In
fact, oocytes lacking the pyruvate dehydrogenase E1 alpha 1
(PDHA1), a key gene required for mitochondrial activity,
successfully develop during most part of oogenesis and are
ovulated (Johnson et al., 2007). Thus, although mitochon-
dria do play an essential role during the final steps of oocyte
development, the “embryo silent” hypothesis likely extends
to oogenesis too (Arhin et al., 2018). Accordingly, somatic
cells surrounding the oocyte (i.e., cumulus cells) provide the
oocyte with several energetic molecules, including amino
acids, cholesterol, pyruvate, AMP, and ATP (Su et al., 2007,
2009; Sugiura et al., 2007). Moreover, the adenosine salvage
pathway seems to be a key source of ATP, giving it can be
generated from abundant amounts of cyclic AMP (cAMP)
present in oocytes (Scantland et al., 2014).

If mitochondria are not highly active in oocytes, why
are they present in massive amounts before fertilization?
This can be, at least, partially explained by downregulation
of mitochondrial biogenesis during early embryogenesis;
mitochondria are segregated among hundreds of embryonic
cells without any increase in number up to the time of em-
bryo implantation (Pikó and Taylor, 1987; Thundathil et al.,
2005; Cree et al., 2008; Wai et al., 2008; St John, 2019).
Therefore, a threshold number of mitochondria is necessary
in oocytes to assure that every embryonic cell will inherit a
minimum complement of mitochondria (Chiaratti and Mei-
relles, 2010; Wai et al., 2010). In keeping with this idea,
extensive fragmentation of the mitochondrial network in
oocytes allows for efficient segregation of mitochondria dur-
ing early embryogenesis (Ashley et al., 1989; Cree et al.,
2008; Ferreira et al., 2010; Lee et al., 2012b). Upregulation
of pro-fission proteins (i.e., DRP1) and downregulation of
MFN2 likely supports mitochondrial fragmentation during
oogenesis (Udagawa et al., 2014; Machado et al., 2018; Hou
et al., 2019; Zhang et al., 2019b). However, oocytes do re-
tain fusion competence, as loss of DRP1 leads to mitochon-
drial elongation (Udagawa et al., 2014). Moreover, MFN1 is

required for oocyte growth and ovulation; MFN1 loss im-
pairs oocyte-somatic cell communication, disrupting
folliculogenesis (Machado et al., 2018; Hou et al., 2019;
Zhang et al., 2019a,b).

Mitochondrial diseases originated from mtDNA
mutations

Diseases caused by mutations in mtDNA are mostly
severe and affect ~1 in 4,300 people all over the world
(Schaefer et al., 2008). In addition, almost every person (in-
cluding healthy people) carries very low levels of mutant
mtDNA (Payne et al., 2013) that may be passed down to fol-
lowing generations and associate with late-onset diseases,
such as Parkinson disease, Alzheimer disease, and common
cancers (Poulton et al., 2010; Wallace, 2011; Schon et al.,
2012; Gorman et al., 2015; Stewart and Chinnery, 2015).
With rare exceptions (Luo et al., 2018), mitochondria are in-
herited exclusively from the mother (Wallace and Chalkia,
2013). This uniparental pattern of inheritance is explained
by the presence of several thousand mitochondria in the ovu-
lated oocyte, against only dozens in the sperm (Wai et al.,
2010). Additionally, the early embryo actively eliminates
paternal mitochondria introduced into the oocyte during fer-
tilization (Sutovsky et al., 1999; Rojansky et al., 2016). Al-
though it is not clear why sperm mitochondria are excluded
from the developing embryo, their elimination is in agree-
ment with the “embryo silent” hypothesis, as sperm mito-
chondria are elongated, contain well-developed cristae and
are highly active (Sutovsky et al., 1999; Ford, 2004; Ruiz-
Pesini et al., 2007; Wai et al., 2010; Rojansky et al., 2016).

Mutations in mtDNA are much more frequent than in
the nuclear DNA (Johnson and Johnson, 2001), which was
initially thought to be explained by mtDNA proximity to
ROS generation sites; the mitochondrial genome is attached
to the inner mitochondrial membrane, close to complexes in-
volved with the electron transport chain (Wallace, 2005).
However, there is now data supporting that most mtDNA
mutations originate from replication errors of the mtDNA
polymerase (Kauppila et al., 2017). In humans, mice, and
flies, for instance, transition mutations, which are indicative
of replication errors, are more common than transversions,
which often result from oxidative damage (Tomas, 1993;
Zheng et al., 2006; Kennedy et al., 2013; Itsara et al., 2014).
In fact, the machinery of DNA repair in the mitochondrion
does not seem to be as effective as in the nucleus (Vermulst
et al., 2008; Maynard et al., 2009; Kazak et al., 2012;
Muftuoglu et al., 2014). Thus, intense replication of mtDNA
during oogenesis makes it prone to replication errors (Wai et

al., 2008; Mahrous et al., 2012; Wei et al., 2019).
The existence of a DNA repair machinery inside mito-

chondria is well established, but not fully characterized
(Scheibye-Knudsen et al., 2015). Most genes encoding for
factors involved in this machinery are shared with the nu-
cleus; alternative variants of these genes allow for the pro-
tein to be targeted either to the nucleus or the mitochondrion
(Muftuoglu et al., 2014; Scheibye-Knudsen et al., 2015).
The best-known pathway of DNA repair in mitochondria is
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base excision repair (BER). Yet, several other enzymes in-
volved with mismatch repair (MMR), non-homologous end
joining (NHEJ), and direct repair have been reported in mi-
tochondria (Maynard et al., 2009, 2010; Ruhanen et al.,
2010; Halsne et al., 2012; Kazak et al., 2012; Sharma et al.,
2014; Scheibye-Knudsen et al., 2015). Moreover, although
homologous recombination (HR) has not been proved to
contribute with mtDNA repair (Kazak et al., 2012; Hags-
tröm et al., 2014; Scheibye-Knudsen et al., 2015), mitochon-
dria do import RAD51, one of the most prominent enzymes
of HR (Sage et al., 2010; Chen, 2013). RAD51 has also been
linked with mtDNA synthesis under replicative stress (Sage
and Knight, 2013), and in oocytes RAD51 is required for mi-
tochondrial function (Kim et al., 2016).

Given that most cells contain several mtDNA mole-
cules, a de novo mutation creates a condition termed hetero-
plasmy, characterized by the co-existence of two or more
mtDNA genotypes (i.e., wild-type and mutant mtDNAs)
within the same cell or organelle. Heteroplasmy commonly
protects the cell, as most mtDNA mutations are recessive.
Unless the mutation level exceeds a critical threshold neces-
sary to cause a biochemical defect (i.e., above 60-90%), the
mutation effect will be masked by wild-type molecules
(Schon et al., 2012; Aanen et al., 2014; Haig, 2016). In addi-
tion, a mechanism known as the mitochondrial genetic bot-

tleneck (Hauswirth and Laipis, 1982; Olivo et al., 1983;
Hauswirth et al., 1984; Jenuth et al., 1996; Burgstaller et al.,
2018) acts in the germline to rapidly re-establish homo-
plasmy (i.e., the presence of a single mtDNA genotype).
This mechanism is based on the absence of mtDNA replica-
tion during early embryogenesis, which forces wild-type and
mutant mtDNAs to segregate. Also, few cells among the
hundreds present in the embryo differentiate into PGCs, re-
sulting in a sampling effect that efficiently selects one
mtDNA genotype to populate the following generation (Ste-
wart and Chinnery, 2015; Burgstaller et al., 2018). However,
the selected genotype can be either wild-type or mutant, gen-
erating genetic variability to be put to test at the cellular,
organismal, or population level (Figure 1).

Mutations in mtDNA may vary considering their ef-
fect on mitochondrial function from neutral to deleterious.
Among deleterious mutations, those affecting tRNA are the
most frequent in humans. This is counter-intuitive though, as
tRNA genes account for only 10% of the total coding capac-
ity of mtDNA (Schon et al., 2012). However, in comparison
with protein-coding genes, tRNA mutations are considered
to be less severe, as higher levels (above 90%) are required
to cause a biochemical defect (Yoneda et al., 1995). This
finding is in agreement with several works that have pro-
vided evidence in support of purifying selection acting in
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Figure 1 - Mitochondrial kinetics in the female germline. Throughout germline development, the number of mitochondrial DNA (mtDNA) molecules per
cell varies from 105 - 106 in mature oocytes (before fertilization), 102 - 103 in primordial germ cells (PGCs) and 105 - 106 back to mature oocytes. This vari-
ation in copy number accounts for the mitochondrial genetic bottleneck, which forces segregation of mtDNA molecules. In line with this, the mitochon-
drial network is fragmented in oocytes, allowing efficient partitioning of mitochondria among hundreds of cells until embryonic implantation. In addi-
tion, only few cells in the embryo differentiate into PGCs, supporting a sampling effect towards selection of a single mtDNA genotype to populate the
future oocyte.



germ cells against deleterious mtDNA mutations (Rand,
2008) (Figure 2). For instance, Stewart and colleagues have
shown that mice with a burden of mtDNA mutations are less
likely to transmit to offspring non-synonymous changes in
protein-coding genes (Stewart et al., 2008). In contrast, syn-
onymous substitutions in protein-coding genes and muta-
tions in tRNAs and rRNAs were present at higher levels
(Stewart et al., 2008). Similar observations have been re-
ported for flies, mice, and humans (Sato et al., 2007; Fan et

al., 2008; Freyer et al., 2012; Sharpley et al., 2012; Hill et

al., 2014; Ma et al., 2014; Li et al., 2016; Floros et al., 2018;
Wei et al., 2019), suggesting a conserved mechanism of pu-
rifying selection was established early during evolution. Ac-
cordingly, Lieber et al. (2019) recently reported that mito-
chondrial fragmentation is required to drive selective
removal of deleterious mtDNA during early oogenesis in
Drosophila. Fragmentation likely enhances association be-
tween mitochondrial genotype and phenotype, favoring one
genotype over another (Aanen et al., 2014; Haig, 2016).
Nonetheless, at least in Drosophila, this mechanism does not
rely on autophagic elimination of mutant mtDNA. Instead,
mitophagic proteins enable preferential replication of wild-

type mtDNA to outcompete their mutant counterparts (Hill
et al., 2014; Ma et al., 2014; Lieber et al., 2019).

In spite of the mounting evidence in support of a filter
against mutant mtDNA in the female germline, this is not a
resolved issue. Actually, there are conflicting data arguing
against this filter, which has been generating much debate
over the topic (Burr et al., 2018). Other questions involving
the issue are: i) why would purifying selection be restricted
to germline? ii) can one manipulate selection to avoid the ac-
cumulation of mutant mtDNA in somatic tissues? Whilst
these questions remain unresolved, it is very likely that the
purifying selection behaves differently for different mtDNA
mutations and different nuclear genetic backgrounds.

Transmission of metabolic diseases linked to
mitochondria dysfunction

Obesity and type II diabetes are currently recognized
as the most endemic diseases in the human population. The
frequency of these syndromes is increasing over the years;
currently, nearly half of worldwide population suffers from
obesity (Barnett, 2019; Blüher, 2019). Obesity and type II
diabetes share similar metabolic alterations and are believed

Mitochondrial disease inheritance 5

Figure 2 - Mitochondrial DNA inheritance in somatic and germ cells. Different mitochondria in a single somatic cell (A) are interconnected by constant
events of fusion and fission, allowing them to share membranes, solutes, metabolites, proteins, RNAs and DNA (mitochondrial DNA – mtDNA). Hence,
when a mutation in mtDNA arises, it can rapidly spread throughout the mitochondrial network. In this case, mutant (red circles) and wild-type (green cir-
cles) mtDNAs may co-exist, which is known as heteroplasmy. In comparison, homoplasmic mitochondria contain a single mtDNA genotype, either mu-
tant or wild-type. Unless the mutation level exceeds a critical threshold necessary to cause a biochemical defect (i.e., above 60-90%; red mitochondria),
the mutation effect will be masked by wild-type molecules (green mitochondria with both mutant and wild-type mtDNA). In germ cells (B),
downregulation of fusion likely minimizes heteroplasmy within mitochondria, enhancing selection at the organellar level (i.e, stronger association be-
tween mitochondrial genotype and phenotype). In addition, decreased fusion leads to mitochondrial fragmentation, enhancing mtDNA segregation
among embryonic cells. Hence, decreased levels of mtDNA in primordial germ cells (PGCs) makes possible selection at the cellular level (i.e., stronger
association between mitochondrial genotype and cellular phenotype). Thus, as a result of selection against deleterious mutations, mature oocyte from the
next generation may contain lower levels of mutant mtDNA.



to be highly correlated (Volaco et al., 2018). Transmission
of these diseases to the following generations can occur
through both parents, yet the maternal contribution has been
shown to be larger (Shankar et al., 2008; Jungheim et al.,
2010; Rattanatray et al., 2010; Ruager-Martin et al., 2010;
Luzzo et al., 2012). In humans, for instance, offspring body
mass index (BMI) correlated through three generations with
maternal but not paternal BMI (Murrin et al., 2012). Like-
wise, maternal overnutrition in mice leads to offspring that
are glucose intolerant and present increased cholesterol and
body fat (Jungheim et al., 2010). These alterations can last
up to the third generation, even when pups are fed a regular
diet (Saben et al., 2016). Although epigenetic alterations in
the nucleus play a major role in the regulation of these ef-
fects (Agarwal et al., 2018; Wang et al., 2018), other mater-
nal factors have also been taken into account (Wu et al.,
2015; Saben et al., 2016).

Among the factors that contribute with maternal trans-
mission of metabolic diseases, mitochondria are a main can-
didate giving their maternal-exclusive inheritance. In fact,
mitochondrial defects in somatic tissues have been associ-
ated with obesity, diabetes and cardiovascular disease (Silva
et al., 2000; Sarparanta et al., 2017; Ferey et al., 2019). For
instance, mtDNA mutations impacting mitochondrial func-
tion and ATP production link with abnormal insulin release
and �-cell development, insulin resistance, and diabetes
(Poulton et al., 1998; Silva et al., 2000; Kaufman et al.,
2015). In this context, Tanaka et al. (2002) demonstrated
that single nucleotide polymorphisms in mtDNA (mtSNPs)
may result in decreased energy expenditure, leading to obe-
sity. Moreover, several studies have associated mtSNPs with
type II diabetes and obesity (Rivera et al., 1999; Fuku et al.,
2002; Okura et al., 2003; Guo et al., 2005). These mtSNPs
can be located in genes coding for rRNAs, tRNAs, mRNAs
(i.e., MT-CYB or MT-ATP6), and even in the non-coding re-
gion of mtDNA, the D-loop. Similarly, it was recently de-
scribed that several mtDNA mutations in tRNAs lead to
polycystic ovarian syndrome and metabolic alterations
(Ding et al., 2018), both closely related to type II diabetes
and obesity. Altogether, these findings provide evidence that
mtDNA mutations may underpin maternal transmission of
metabolic diseases.

Apart from mtDNA mutations, mitochondrial damage
in oocytes has also been linked with increased risk of meta-
bolic diseases in offspring. Obesity leads to increased lipid
content in the follicular fluid, cumulus cells, and oocytes,
which in turn damage organelles such as mitochondria and
the ER (Wang et al., 2009; Wu et al., 2010; Fullston et al.,
2015; Ruebel et al., 2017). Impaired ER function can lead to
activation of the unfolded protein response (UPR) and Ca+2

release, further disrupting mitochondrial function (i.e., de-
creased ��m and increased ROS) and oocyte homeostasis
(Wu et al., 2010, 2015; Luzzo et al., 2012; Hou et al., 2016).
Besides impacting oocyte competence and fertility (Wu et

al., 2015; Pasquariello et al., 2019), these mitochondrial ab-
normalities can be passed down to the following genera-
tions, increasing their risk to develop metabolic diseases

(Saben et al., 2016). Hence, mice born to pregnant females
under a high-fat/high-sucrose diet have impaired peripheral
insulin signaling which associates with abnormal mitochon-
drial function and dynamics in skeletal muscle up to the third
generation (Saben et al., 2016). Similar mitochondrial ab-
normalities were present in oocytes from the first and second
generations, even though these were fed a regular diet (Sa-
ben et al., 2016). Therefore, apart from epigenetic alterations
in the nucleus, mitochondria also contribute with the meta-
bolic programing resulting from maternal overnutrition.
Given that epigenetic marks in mtDNA regulate expression
of this genome (Kobayashi et al., 2012; Sun et al., 2013;
Sirard, 2019), it remains to be investigated whether these can
also explain maternal transmission of metabolic diseases.

Treatment options for preventing mitochondrial
disease transmission

Due to the poor understanding of the mechanisms reg-
ulating transmission of mitochondria-related diseases, there
are few treatment options available to prevent their inheri-
tance to the following generations (Craven et al., 2017).
With respect to non-genetic alterations in mitochondria, the
oocyte might benefit from treatments performed before fer-
tilization, during the in vitro maturation. The idea is to ex-
pose the oocyte for a period of ~24 h to drugs such as
L-carnitine, rosiglitazone, salubrinal, or BGP-15, which po-
tentially enhance mitochondria activity, decrease lipid con-
tent, and mitigate ER stress. In fact, treatments involving one
or more of these drugs have been shown to mitigate the de-
fects in the oocyte and the next generation (Wu et al., 2010,
2015; Dunning and Robker, 2012; Liang et al., 2017). How-
ever, a major challenge in making these treatments available
is to overcome the side effects of in vitro maturation (Loner-
gan and Fair, 2016; Yang and Chian, 2017). Given this is a
critical period of oocyte development, which encompasses
meiotic resumption from prophase I (dictyate) to metaphase
II, any perturbation in oocyte homeostasis may lead to mis-
segregation of chromosomes and aneuploidy (Greaney et al.,
2017; Danadova et al., 2017). In addition, in vitro maturation
on its own leads to metabolic alterations that mimic those of
oocytes from obese donors (i.e., mitochondrial dysfunction
and increased lipid content), potentially impacting the next
generation (Farin et al., 2006; Li et al., 2014; del Collado et

al., 2017a; del Collado et al., 2017b; Wang et al., 2018).
Thus, these alternatives are not currently available in hu-
mans.

An alternative option to treat oocytes harboring mito-
chondria abnormalities, particularly those caused by
mtDNA mutations, is known as mitochondrial replacement
therapy (MRT; Figure 3). This method involves replacement
of abnormal mitochondria in the oocyte by functional ones
provided by a donated oocyte (Wolf et al., 2017). More spe-
cifically, ovulated oocytes at the metaphase-II stage are col-
lected from both the patient and a “healthy” donor not con-
taining mitochondrial abnormalities. With the aid of a
micromanipulation set, the spindle from the donated oocyte
is replaced by the patient’s spindle. The resulting oocyte
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containing the patient’s spindle and donated mitochondria is
then fertilized to allow development to term. Provided that
the large majority of mitochondria is replaced by donated
ones, MRT has virtually the potential to prevent transmis-
sion of mitochondrial diseases. Yet, ~1% of mitochondria
from the patient’s oocyte are transferred along with the spin-
dle. This level can be even higher (up to 4%) when pronu-
clear zygotes are used instead of metaphase-II oocytes,
which can lead in ~15% of cases to a reversal back to the pa-
tient’s mtDNA (Hyslop et al., 2016; Kang et al., 2016). Al-
though hard to explain, rapid mtDNA segregation and bot-
tleneck during preimplantation development might account
for these quick shifts in mtDNA genotype (Lee et al., 2012a;
Freyer et al., 2012). Alternatively, it has been proposed that a
specific population of mtDNA is tagged in oocytes (i.e.,
from spindle-surrounding mitochondria) for replication dur-
ing early development (Wolf et al., 2017). No matter the
mechanism underlying these unexpected results, they high-
light the need for careful studies before the clinical practice
of MRT (Wolf et al., 2017; Craven et al., 2018).

With the advances in genome editing technologies, an-
other potential strategy to prevent transmission of mitochon-
drial abnormalities is the targeted elimination of mutant
mtDNA in oocytes or early embryos (Figure 3). As a proof of
concept, Reddy et al. (2015) used mitochondrial-targeted re-
striction endonucleases (mito-TALENs) to selectively elim-
inate mutant mtDNA in mice and humans. Although this
strategy proved efficient, ~10% of targeted molecules (i.e.,
mutant mtDNA) were left in oocytes, embryos and offspring
produced after the use of mito-TALENs. Moreover, given
that the mtDNA is not replicated during early embryogenesis
(Pikó and Taylor, 1987; Thundathil et al., 2005; Cree et al.,
2008), the use of mito-TALENs resulted in mtDNA-deple-
ted embryos (Reddy et al., 2015). Although in the newborns
the content of mtDNA was normal (Reddy et al., 2015), the
lower levels of mtDNA (and likely of mitochondria too) in
oocytes and embryos could lead to poorer developmental
rates (Wai et al., 2010). Based on these uncertainties, mito-
TALENs are not currently taken as a viable alternative to
prevent transmission of mtDNA-linked diseases (Wolf et al.,
2017).

Mitochondrial disease inheritance 7

Figure 3 - New technologies for preventing inheritance of mitochondrial diseases. The mitochondrial replacement therapy (MRT; A) proposes the re-
placement of a patient’s mitochondria in oocytes by donor mitochondria. Towards that, mature oocytes arrested at the metaphase-II stage are collected
from the patient and a donor. While the patient’s oocytes are supposed to contain mutant (red) mitochondrial DNA (mtDNA), donor oocytes should con-
tain only wild-type (green) mtDNA. Next, the spindle is removed from the patient’s oocyte (donor karyoplast) to be injected into the donor oocyte from
which the spindle was previously removed (donor cytoplast). Fertilization of the reconstructed oocyte should lead to a blastocyst, which can be used for
embryonic stem cell (ESC) derivation. Although MRT allows transplantation of karyoplast with minimal carryover (~1%) of mutant mtDNA, recent data
have provided evidence of a reversal in ESCs back to 100% mutant mtDNA (Hyslop et al., 2016; Kang et al., 2016). An alternative strategy to MRT is the
nuclease-mediated elimination of mutant mtDNA (B), which relies on the use of mitochondrial-targeted restriction endonucleases (mito-TALENs).
These nucleases are designed to selectively cut mutant mtDNA, but not wild-type molecules. However, ~10% of targeted molecules were shown to be left
uncut in newborns after use of mito-TALENs (Reddy et al., 2015).



Final considerations

Mitochondrial abnormalities have been linked with
maternal transmission of important diseases in humans.
Among these, mtDNA mutations in oocytes can be transmit-
ted to the following generations and cause severe diseases.
In addition, maternal obesity damages mitochondria in oocy-
tes, leading to poor fertility and increased risk of metabolic
diseases in offspring. Understanding how mitochondrial ab-
normalities are established and transmitted are of fundamen-
tal importance to mitigate their incidence in the human
population. Moreover, treatment options involving manipu-
lation of oocytes and early embryos are currently under con-
sideration and may become available in the future to prevent
transmission of mitochondria-associated diseases.
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