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Abstract

Retinal microsurgery is technically demanding and requires high surgical skill with very little 

room for manipulation error. During surgery the tool needs to be inserted into the eyeball while 

maintaining constant contact with the sclera. Any unexpected manipulation could cause extreme 

tool-sclera contact force (scleral force) thus damage the sclera. The introduction of robotic 

assistance could enhance and expand the surgeon’s manipulation capabilities during surgery. 

However, the potential intra-operative danger from surgeon’s misoperations remains difficult to 

detect and prevent by existing robotic systems. Therefore, we propose a method to predict 

imminent unsafe manipulation in robot-assisted retinal surgery and generate feedback to the 

surgeon via auditory substitution. The surgeon could then react to the possible unsafe events in 

advance. This work specifically focuses on minimizing sclera damage using a force-sensing tool 

calibrated to measure small scleral forces. A recurrent neural network is designed and trained to 

predict the force safety status up to 500 milliseconds in the future. The system is implemented 

using an existing ”steady hand” eye robot. A vessel following manipulation task is designed and 

performed on a dry eye phantom to emulate the retinal surgery and to analyze the proposed 

method. Finally, preliminary validation experiments are performed by five users, the results of 

which indicate that the proposed early warning system could help to reduce the number of unsafe 

manipulation events.

I. INTRODUCTION

Retinal surgery continues to be one of the most challenging surgical tasks due to its high 

precision requirements, small and constrained workspace, and delicate eye tissue. Factors 

including physiological hand tremor, fatigue, poor kinesthetic feedback, patient movement, 
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and the absence of the maneuver force sensing could potentially lead to surgeon’s 

misoperations, and subsequently iatrogenic injury. During a general retinal surgery, the 

surgeon needs to insert small instruments (e.g. 25Ga, ϕ < 0.5mm) through the sclerotomy 

port (ϕ < 1mm) on the sclera, the white part of the eye, to perform delicate tissue 

manipulations in the posterior of the eye. The sclera continues to sustain the manipulation 

force. Any mis-operations could cause extreme scleral force leading to sclera damage. Thus, 

the manipulation safety of retinal surgery strongly depends on the surgeon’s level of 

experience and skills.

Present limitations in retinal surgery can be relieved by resorting to advanced robotic 

assistive technology. Continuing efforts are being devoted to the development of the surgical 

robotic systems to enhance and expand the capabilities of surgeons during retinal surgery. 

Two robot-assisted retinal surgeries, retinal vein cannulation and epiretinal membrane 

peeling, have been performed successfully on human patients recently [1], [2], 

demonstrating the clinical feasibility of the robotic technology for retinal microsurgery. 

Major enabling technologies for robot-assisted retinal surgery include teleoperative 

manipulation systems [3]–[6], handheld robotic devices [7], and flexible micro-manipulators 

[8]. In prior work we developed the Steady Hand Eye Robot (SHER) based on a cooperative 

control approach [9]. SHER allows the user to directly hold the tool mounted on the robot 

end-effector. The velocity of SHER follows the user input force applied on the tool handle, 

while the user’s hand tremor is damped by the robot’s stiff mechanical structure. SHER 

provides not only the steady and precise motion, but also the transparent manipulation.

Smart or otherwise responsive instruments with force-sensing capability are strategic and 

potentially useful for safe interaction between the robot and the patient. An approach for the 

development of smart instruments is to incorporate a micro sensor in the tool handle [10]. 

These prototypes were not however, able to distinguish forces applied at the tool tip while 

the tool was inserted into the eye. Therefore, our group designed and developed a family 

of ”smart” tools by separately integrating Fiber Brag Grating (FBG) sensors into the contact 

segments of the tool [11], [12]. The force-sensing tool [13] that can measure the contact 

force between tool tip and retina, between tool shaft and sclerotomy port (scleral force), is 

further developed in this work.

The aforementioned robotic devices can give passive support to the surgeons, i.e. filtering 

the hand tremor, improving the tool location accuracy, and enhance the surgeon’s tactile 

ability. However, the surgeon’s mis-operations caused by the deficiency of skills or fatigue 

cannot be actively filtered or interrupted by the existing robotic system, due to the lack of 

the information of surgeon’s next manipulation. Making prediction about the surgeon’s 

manipulation based on his/her operation history can potentially resolve the above mentioned 

problems. The predicted information can be used to identify the unsafe events that might 

occur in the near future. It could be further fed back as an early warning to the surgeon, who 

in turn reacts to the possible dangerous events in advance. The pipeline of the proposed 

method is shown in Fig. 1. The surgeon’s manipulation in a surgical task is time based, i.e., 

time series, on which Recurrent Neural Networks (RNNs) can effectively handle. Especially, 

the Long Short Term Memory (LSTM) RNNs [14] can capture long range dependencies and 

nonlinear dynamics and model varying-length sequential data, achieving state-of-the-art 
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results for problems spanning clinical diagnosis [15], image segmentation [16], and 

language modeling [17], which is applied in this work. Other standard sequential models, 

such as Kalman filters or fixed-lag smoothers and predictors, are ill-equipped to learn long-

range dependencies [15].

In this paper we focus on the sclera safety, thus the scleral force is measured and collected, 

and a short history of it is used to predict a future safe/unsafe event. The LSTM is used and 

trained to predict the scleral force status (safe and unsafe based on a preset safety force 

threshold). We choose auditory substitution to convey the predicted force status to the 

surgeon, since our previous work has proved that auditory feedback could help improve the 

surgeon’s awareness [18]. A mock retinal surgery, vessel following is designed and 

performed by five users to validate the proposed method.

II. ROBOT CONTROL METHOD DESIGN

The block diagram of the proposed method is depicted in Fig. 2, where the surgeon 

manipulates the robotic assistance via the admittance control law. Surgeon’s operative 

scleral force is collected by the force-sensing tool, it is then fed into the LSTM neural 

network. The network predicts the sclera force status n timestep ahead and provides it to the 

auditory feedback module. The dangerous force status triggers the warning alarm. Besides 

auditory substitution, the predicted information can be further used to implement the 

multivariable admittance control [13] to enable the robot actively rectify the the user’s 

misoperations, e.g., reverse moving toward the force decreasing direction.

A. Admittance Control Law

During operation both the user and the robot hold the tool, the user’s manipulation force is 

applied on the robot handle and fed as an input into the admittance control law [9] as shown 

in Eq. (2)

ẋℎℎ = αFℎℎ (1)

ẋrℎ = Adgrℎẋℎℎ (2)

where ẋℎℎ and ẋrℎ are the desired robot handle velocities in the handle frame and in the 

robot frame, respectively as shown in Fig. 3 (a), Fhh is the user’s manipulation force input 

measured in the robot handle frame, α is the admittance gain tuned by the robot pedal, Adgrh 

is the adjoint transformation associated with the coordinate frame transformation grh. grh is 

composed of rotation and translation of the frame transformation and can be written as:

grℎ =
Rrℎ prℎ
0 1

(3)

then Adgrh can be denoted as:
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Adgrℎ =
Rrℎ prℎRrℎ
0 Rrℎ

(4)

where prℎ is the skew symmetric matrix that is associated with the vector prh.

B. Force Calculation Algorithm

The force-sensing tool is designed and fabricated as shown in Fig. 4. The tool shaft is made 

of a stainless steel wire with a diameter of 0.635 mm. It is machined to contain three 

longitudinal V-shape grooves. Each groove is filled and glued with one optical fiber, and 

each fiber contains three FBG sensors (Technica S.A, Beijing, China), i.e., nine FBG sensors 

are embedded in the tool shaft in total.

The force-sensing tool can measure the sclera force independently. Considering ambient 

temperature and noise, we use the sensor reading Δsij to calculate the force defined as 

follows:

Δsij = Δλij − 1
3 ∑

j = 1

3
Δλij, (5)

where Δλij is the wavelength shift of the FBG, i = I, II is the FBG segment, j = 1,2,3 denotes 

the FBG sensors on the same segment. The sclera force exerted on the tool shaft generates 

strain in the FBG sensors, thus it contributes to the sensor reading:

ΔSi = KiMi = KiFsdi, (6)

where ΔSi = [Δsi1,Δsi2,Δsi3]T denotes the sensor reading of FBG sensors in segment i, Fs = 

[Fx,Fy]T denotes the sclera force applied at sclerotomy port, di denotes the distance from the 

sclerotomy port to FBG center at segment i along the tool shaft, Mi = [Mx,My]T denotes the 

moment attributed to Fs on FBG sensors of segment i, Ki (i = I,II) is 3 × 2 constant 

coefficient matrices, which is obtained through the tool calibration procedures.

Then the sclera force can be calculated using Eq. (6) :

Fs = MII − MI
Δl =

KII* ΔSII − KI*ΔSI
Δl (7)

where Δl = lII − lI is the constant distance between FBG sensors of segment I and II as 

shown in Fig. 4, K* is the pseudo-inverse matrices of K.

C. LSTM neural network

1) Proposed architecture: We assume that the scleral force trajectory can be captured 

through a history of time series of sensor measurements. An LSTM network is adopted to 

make future predictions based on such history. We formulate the force status prediction 

problem as a classification task. One LSTM layer and two fully connected layers are 

assembled to construct the network architecture as shown in Fig. 5. Based on our 
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preliminary study we keep a single LSTM layer because the multiple LSTM layer does not 

help to improve the prediction performance in our case. The tanh function is applied as the 

activation layer behind the LSTM layer, the sigmoid function is adopted as the activation 

layer behind the fully connected layer. The binary crossentropy is used as the loss function 

at the output layer, that is:

loss = − (ylog(p) + (1 − y)log(1 − p)) (8)

where y is the label, p is the predicted probability.

2) LSTM model: Among all different variations of LSTMs, we use the one that was 

applied in [15]. The LSTM update formula for time step t is,

ft = σ W f ⋅ ℎt − 1, xt + bf , (9)

it = σ W i ⋅ ℎt − 1, xt + bi , (10)

Ct = ϕ W C ⋅ ℎt − 1, xt + bC , (11)

Ct = ft ⊙ Ct − 1 + it ⊙ Ct, (12)

ot = σ W o ⋅ ℎt − 1, xt + bo , (13)

ℎt = ot ⊙ ϕ Ct , (14)

where ht−1 stands for the memory cells at the previous sequence step, σ stands for an 

element-wise application of the sigmoid (logistic) function, ϕ stands for an element-wise 

application of the tanh function, and ⊙ is the Hadamard (element-wise) product. The input, 

output, and forget gates are denoted by i, o, and f respectively, while C is the cell state. W 
and b are the weight and bias, respectively.

3) Training data: We design a mock retinal surgery operation, i.e., vessel following, 

based on the feedback of the clinician for collecting the scleral force. Vessel following 

incorporates the basic retinal surgery operations, it is depicted as below:

1. insert the force-sensing tool into the eyeball through the sclerotomy port;

2. adjust the eyeball’s position and orientation for best view under the microscope 

using the inserted tool;

3. locate the tool tip at the home point, then follow one vessel in a round trip 

without touching the retina surface;

4. retract the tool axially until the tip reaches the eyeball boundary.
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We collect the scleral force as the training data from 50 vessel following trials, these trails 

are performed by the same user. The network takes the scleral force history of 500 

milliseconds as the input, and produces the future force status, i.e., dangerous or safe. Jain et 

al. found that human auditory reaction time is less than 250 milliseconds [19].

We choose 500 milliseconds as the prediction gap to leave enough time for surgeon to 

respond to the early alarm. We create the training label by comparing the future forces F 
with a safety threshold Fsafe it is set as 160 mN based on our earlier study [20]. The label is 

denoted as dangerous if the duration of the dangerous forces (forces greater than 160 mN) in 

prediction period is more than 10% of the total time (500 milliseconds), that is:

label =  dangerous, 
Duration Fi > Fsafe

Total time   > 10%, i ∈ (t, t + 500) 

safe,  otℎerwise 

where t is the current timestep. As comparison, we also train the network to predict the force 

status 250 millisecond in future.

4) Hyper-parameters: Successful training critically depends on the proper choice of 

network hyper-parameters [21]. To find a suitable set of the hyper-parameters, i.e., network 

size and depth, and learning rate, we apply cross-validation and random search. We use the 

Adam optimization method [22] as the optimizer. The learning rate is set as a constant 

number 2e-5. The LSTM layer has 100 neurons, the fully connected layers have the same 

neurons. Note that for training of the network, we cannot shuffle the sequences of the dataset 

because the network is learning the sequential relations between inputs and outputs. In our 

experience, adding dropout does not help with the network performance.

The training dataset is divided into mini-batches of sequences of size 500. We use the 

popular zero-mean and unit variance input data normalization. Training is performed on a 

computer equipped with Nvidia Titan Black GPUs, a 20-cores CPU, and 128GB RAM. 

Single-GPU training takes 90 minutes on the integral data.

III. EXPERIMENTS AND RESULTS

A. Experimental setup

The experimental setup is shown as Fig. 3(a), including the robot assistant, i.e., SHER, the 

force-sensing tool, a microscope, a FBG interrogator, an eye phantom, a monitor and a 

speaker.

1) Robot assistant: SHER is used as robot assistant to provide the ”co-operation” for 

the user. It incorporates three linear motion stages, one rotation stage, and a parallel links 

mechanism. It has 5 degrees of freedom and high accuracy (translation resolution is less than 

3μm, and the rotation resolution is 0.0005 °).

2) force-sensing tool: The force-sensing tool is mounted on SHER with a quick release 

mechanism and used to collect the scleral force. It is calibrated based on Eq. (6) using a 
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precision scale (Sartorius ED224S Extend Analytical Balance, Goettingen Germany) with 

resolution of 1 mg. The sm 130–700 optical sensor interrogator (Micron Optics, Atlanta, 

GA) is used to monitor the FBG sensors within the spectrum from 1525 nm to 1565 nm at 2 

kHz refresh rate.

The calibration matrices are obtained as follows:

KI =
−0.2960 0.0518
0.1223 −0.2994
0.1736 0.2475

KII =
−0.2889 0.0551
0.1171 −0.2955
0.1718 0.2404

The tool validation experiment is carried out with the same scale to test the calibration 

results. The validation results of the calculated force and the groundtruth are shown in Fig. 

6, where the root mean square error is 2.3 mN.

3) Eye phantom: A dry eye phantom made of silicon rubber placed into a 3D-printed 

socket is used for validation. The socket is lubricated with mineral oil to produce a realistic 

friction coefficient analogous in the eye. A printed paper with several curves representing 

the retinal vessels in different colors is glued on the eyeball surface as shown in Fig. 3(b). In 

addition, a microscope (ZEISS, Germany) is utilized to provide the magnified view for users 

to observe inside the eyeball.

B. Validation experiments

The IRB approved experiments of real-time force status prediction and signaling are carried 

out to validate the proposed method. Five users participate in the experiments. The user is 

asked to hold the force-sensing tool mounted on SHER to perform the vessel following 

tasks, the network predictor predicts the future force status based on the real manipulation 

force history. The user receive auditory warning once the predicted status is dangerous, then 

he/she is expected to carry on the upcoming operations with caution (example: reducing 

manipulation speed, observing the deformation of the sclerotomy port and moving the tool 

toward the tissue recovery direction). The experiments are carried out under four conditions:

• C0: without auditory feedback.

• C1: with auditory feedback based on instantaneous scleral force, that is, the 

alarm is triggered once the current force exceeds the safety threshold.

• C2: with auditory feedback based on predicted force status 250 milliseconds 

ahead.

• C3: with auditory feedback based on predicted force status 500 milliseconds 

ahead.
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These four conditions are randomly selected during the experiments, each condition is 

repeated 5 times. To eliminate the operation bias, the user has no prior knowledge about the 

experimental condition. The network predictor runs in PYTHON at 40 Hz, while the sensing 

system runs in C++ at 200 Hz. A ”shared memory” architecture is used to transfer the actual 

scleral force data and network predictions between PYTHON and C++.

The real forces and prediction results are recorded and analyzed, one complete vessel 

following manipulation is depicted as shown in Fig. 7. To evaluate the feasibility of our 

method, we proposed three metrics as below, they are also denoted in Fig. 7:

• Metric I: unsafe force time percentage α =
T0
T , where T0 is the accumulative time 

of the unsafe force, T is the complete time of the experiment.

• Metric II: successful prediction rate β =
N0
N , where N0 is the number of the 

predicted unsafe events, N is the number of the total unsafe events in the 

experiments.

• Metric III: early warning time t. The occurring time difference between the 

predicted event and the following unsafe event.

We calculated the three metrics for each user, the results are shown in Table I, II, and III, 

respectively. The unsafe force percentage α under condition C3 is the lowest among the four 

conditions from user 1 to user 4, while the lowest α occurs under condition C2 in the case of 

user 5, but α under condition C3 is still lower than the ones under conditions C1 and C2. 

Table II shows that the network predictor captures almost all the unsafe events: 2 events are 

not detected among 132 events, the overall successful rate reaches 98.4%. The early warning 

time in Table III shows the network has the ability to detect the unsafe event in advance. 

While this preliminary study is limited to only five users, there is strong evidence that 

longer-horizon prediction could play an important role in improving safety.

IV. DISCUSSION AND CONCLUSION

Our results are based on an LSTM network trained using only one user’s manipulation data 

and then applied to the prediction of other users behavior. Even based on such simplified 

training we showed that force feedback with auditory substitution can help to reduce the 

unsafe events. Moreover, cases C2 and C3 show improved performance than C1, since the 

instantaneous warning for unsafe events does not provide sufficient time for the user to react. 

Although C2 and C3 appear to improve the sclera safety, the early warning time achieved in 

this work may still not be long enough for the user to practically react. In future, we will 

focus on improving the network’s behavior to provide the prediction information further into 

the future without significant loss of accuracy. Also, we noticed that the experiment time in 

C0 is smallest among the other three conditions, since the user needs to pause and/or adjust 

his/her manipulation once he/she obtains the warning sound in auditory feedback conditions.

Currently only the predicted sclera force is utilized and fed back directly to the user through 

auditory substitution. Future work will incorporate the predicted insertion depth together 

with the predicted sclera force to implement multiple variable admittance control, thereby to 
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enable robotic assistance itself to react to an imminent tissue damage during operation. 

Future work will carry a more in-depth analysis involving significantly larger number of 

users as well as different surgical tasks. The force-sensing tool can also measure the force at 

the tool tip, which will also be incorporated into the network training along with robot 

velocity data in future work to provide more information for robot control. In this paper we 

use model-free approach i.e., the LSTM network instead of the classic prediction method 

such as kalman filter to forecast the scleral force, as the uncertainty of users manipulation 

makes scleral force difficult to be captured and modeled. Also the simple regression method 

such as fully connected RNN is not able to capture the scleral force either in our prior 

experiments.

Retinal surgery requires delicate skill of the surgeon, any misoperations, i.e. large sclera 

manipulation force, could cause tissue damage. While previous research has focused on 

robotic devices to assist surgeons by improving manipulation accuracy and canceling hand 

tremor, there is still a need to actively detect and prevent unintentional mis-operations. Our 

proposed method to provide auditory feedback based on predicted operative force status is a 

step in this direction. The technique can also be extended to other minimally invasive 

surgeries by providing safety-critical information to improve the surgical robot control 

performance.

Our research builds upon prior work across three fields: robotics, machine learning, and safe 

surgical micro-manipulation. This work focused on a novel way to apply LSTM-based 

prediction to robot-assisted retinal surgery to enhance safety. We designed and implemented 

the network to learn the user operative behavior in a mock retinal surgery, and developed a 

new force-sensing tool to collect the user manipulation information i.e. sclera force. The 

auditory feedback based on predicted sclera force produced by the trained network model 

was implemented to signal the upcoming dangerous force status. This system can potentially 

provide safe micromanipulation that can improve the outcome of the retinal microsurgery, 

and in addition achieve safety-aware cooperative control during robot-assisted surgical 

systems. Future work will also further investigate this system in phantoms and in vivo 

experiments.
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Fig. 1: 
Overview of our approach. Tool-sclera interactive force is measured using the force-sensing 

tool. An LSTM network is used as the predictor to classify the future force into two 

categories: safe and dangerousous. The dangerousous case triggers the auditory alarm, it is 

then fed back to the surgeon.

He et al. Page 12

IEEE Int Conf Robot Autom. Author manuscript; available in PMC 2020 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: 
Safety-enhanced robot control scheme. User gets auditory feedback once the predicted force 

status at time t+n is dangerous. The predicted force is also possibly fed into the robot control 

law as depicted as dash line.

He et al. Page 13

IEEE Int Conf Robot Autom. Author manuscript; available in PMC 2020 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3: 
Experimental setup of the mock retinal surgery with (a) robotic assistance and (b) the dry 

eye model. The handle frame denoted {h} locates at the tool handle, and the robot frame 

denoted as {r} locate as the robot base. User applies maneuver forces denoted as Fhh at the 

handle.
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Fig. 4: 
force-sensing tool. (a) The depiction of the sclera force, the sclera force is the contact force 

between the sclerotomy port and the tool shaft. (b) The tool dimension. (c) The cross-section 

view of the tool shaft with three fibers.
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Fig. 5: 
The proposed LSTM neural network. The network gets input from data history with h 
timestep in past, and outputs the future force status at time t+n.
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Fig. 6: 
The validation result of the force-sensing tool. The horizontal axis represents the actual 

forces which are collected by the scale, and the vertical axis represents the calculated forces 

based on the calibration matrix. The calculation points are supposed to be located on/around 

the line of 45 °passing origin point.
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Fig. 7: 
Real time results. (a) Landscape of a complete experiment result. The unsafe force in metric 

I is denoted. (b) Magnified portion of (a). The early warning time in metric II, the unsafe 

event and predicted event in metric III are denoted.
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TABLE I:

The unsafe force time percentage α

Condition User1 User2 User3 User4 User5

C0 12.2% 12.13% 14.29% 25.7% 17.97%

C1 5.4% 7.05% 4.02% 12.45% 10.35%

C2 3.5% 6.81% 6.77% 16.86% 3.53%

C3 0.45% 3.58% 2.11% 2.87% 6.96%
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TABLE II:

The successful prediction rate β

Condition User1 User2 User3 User4 User5

C2 15/15=
100%

22/23=
95.6%

22/22=
100%

17/17=
100%

8/8=
100%

C3 4/4=
100%

12/12=
100%

10/10=
100%

8/9=
88.89%

8/8=
100%
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TABLE III:

The early warning time t

Condition User1 User2 User3 User4 User5

C2 70.67 50.23 106.87 121.07 150.71

C3 172.5 91.25 99.09 106.36 145

IEEE Int Conf Robot Autom. Author manuscript; available in PMC 2020 May 04.


	Abstract
	INTRODUCTION
	ROBOT CONTROL METHOD DESIGN
	Admittance Control Law
	Force Calculation Algorithm
	LSTM neural network
	Proposed architecture:
	LSTM model:
	Training data:
	Hyper-parameters:


	EXPERIMENTS AND RESULTS
	Experimental setup
	Robot assistant:
	force-sensing tool:
	Eye phantom:

	Validation experiments

	DISCUSSION AND CONCLUSION
	References
	Fig. 1:
	Fig. 2:
	Fig. 3:
	Fig. 4:
	Fig. 5:
	Fig. 6:
	Fig. 7:
	TABLE I:
	TABLE II:
	TABLE III:

