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Abstract

Type 2 diabetes (T2D) is characterized by persistent hyperglycemia despite hyperinsulinemia, 

affects more than 400 million people worldwide, and is a major cause of morbidity and mortality. 

Insulin resistance, of which ectopic lipid accumulation in the liver [nonalcoholic fatty liver disease 

(NAFLD)] and skeletal muscle is the root cause, plays a major role in the development of T2D. 

Although lifestyle interventions and weight loss are highly effective at reversing NAFLD and 

T2D, weight loss is difficult to sustain, and newer approaches aimed at treating the root cause of 

T2D are urgently needed. In this review, we highlight emerging pharmacological strategies aimed 

at improving insulin sensitivity and T2D by altering hepatic energy balance or inhibiting key 

enzymes involved in hepatic lipid synthesis. We also summarize recent research suggesting that 

liver-targeted mitochondrial uncoupling may be an attractive therapeutic approach to treat 

NAFLD, nonalcoholic steatohepatitis, and T2D.
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INTRODUCTION

Diabetes mellitus is a major health issue that has reached epidemic proportions worldwide 

due to rapid urbanization, unhealthy eating, and a sedentary lifestyle (1). The International 
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Federation Atlas (2018) estimates that over 415 million people have been diagnosed with 

diabetes, a figure that, by 2040, is projected to rise to more than 625 million (1). Of the three 

major types of diabetes, type 2 diabetes (T2D) is far more common than either type 1 

diabetes or gestational diabetes, accounting for almost 90% of cases (2). The increasing 

prevalence of diabetes follows the spread of an epidemic of obesity, the single most 

important contributor to the pathogenesis of T2D. Indeed, by 2050, almost 90% of people in 

the United States are projected to be overweight or obese (3), and one in three are expected 

to have T2D (4). The tremendous costs of these related epidemics with regard to morbidity 

and mortality, as well as the financial costs of approximately $150–190 billion in medical 

spending (5, 6) and more than $4 billion in lost productivity (7) annually, demand the 

development of new approaches to prevent and treat T2D.

While progressive loss of pancreatic islet β-cell function is ultimately responsible for the 

progression from normoglycemia to hyperglycemia, insulin resistance predates β-cell 

dysfunction and plays a major role in the pathogenesis of T2D (8). After a carbohydrate-rich 

meal, glucose is primarily stored as glycogen in the muscle and liver (9, 10). Decreased 

insulin action in these organs leads to fasting and postprandial hyperglycemia (9, 10), the 

hallmarks of T2D and major risk factors for long-term microvascular (retinopathy, 

nephropathy, and neuropathy) and macrovascular (cardiovascular disease) complications 

(11). As such, current therapy for T2D relies mainly on the following approaches intended to 

reduce hyperglycemia(12): lifestyle modifications, which include the adoption of a healthy 

diet, increased physical activity, and healthy body weight maintenance (13); metformin, 

which acts to reduce hepatic gluconeogenesis and hepatic glucose production (HGP) (14, 

15); sulfonylureas (and related insulin secretagogues), which increase insulin secretion from 

pancreatic islets (16); sodium– glucose cotransporter (SGLT2) inhibitors, which block 

glucose reabsorption in the proximal renal tubule (17); incretin mimetics, which stimulate 

insulin secretion, delay gastric emptying, and suppress appetite (18); peroxisome 

proliferator-activated receptor-γ (PPARγ) agonists (thiazolidinediones), which enhance 

adipocyte lipid storage (19), decrease ectopic lipid accumulation in liver and skeletal muscle 

(19), and improve liver and muscle insulin sensitivity (19–21); α-glucosidase inhibitors, 

which interfere with gut glucose absorption; and insulin itself (22), which suppresses 

glucose production and increases glucose utilization (23). Unfortunately, these agents have 

met with limited success due to reduced efficacy, limited tolerability, and significant 

mechanism-based side effects (Table 1). Thus, new approaches to treat the root cause of T2D 

are needed.

Developing better treatment strategies requires a comprehensive understanding of the 

pathogenesis of T2D, in which insulin resistance plays an important role. In this review, we 

provide a brief overview of the pathogenesis of insulin resistance and how it is related to the 

development of new treatments for T2D. Additionally, we highlight several therapeutic 

strategies that have been developed to enhance insulin sensitivity by altering energy balance 

or inhibiting lipid synthesis. While several diabetes medications have also been studied as 

potential treatments for nonalcoholic fatty liver disease (NAFLD), the hepatic manifestation 

of insulin resistance, we refer readers to two recent reviews that discuss this in greater detail 

[by Samuel & Shulman (24) and Alkhouri et al. (25)]. Lastly, we examine the potential 
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therapeutic utility of liver-targeted mitochondrial uncoupling, which would represent a new 

class of agents for the treatment of NAFLD, nonalcoholic steatohepatitis (NASH), and T2D.

PATHOPHYSIOLOGY OF TYPE 2 DIABETES

Although the pathophysiological mechanisms of T2D are not fully understood, there is 

compelling evidence that insulin resistance plays a major role in its development. Indeed, 

cross-sectional and longitudinal studies demonstrate that insulin resistance occurs 10–20 

years before the onset of T2D and that it is the best predictor of whether an individual will 

become diabetic (26, 27). Insulin resistance arises when nutrient availability and demands 

can no longer be balanced and is present in multiple tissues, including skeletal muscle, liver, 

adipose tissue, kidney, gastrointestinal tract, vasculature, and brain (8). In the muscle, insulin 

resistance is manifested by impaired glucose uptake following ingestion of a carbohydrate-

rich meal and results in postprandial hyperglycemia (28), which in turn can be attributed to 

decreased insulin-stimulated muscle glycogen synthesis (29) due to decreased insulin-

stimulated glucose transport (30). Hepatic insulin resistance is characterized by an inability 

of insulin to stimulate hepatic glycogen synthesis and suppress HGP under postprandial 

conditions. In T2D patients, increased rates of HGP, due to increased rates of hepatic 

gluconeogenesis, contribute to both fasting and postprandial hyperglycemia (31). Recent 

studies have implicated increased rates of white adipose tissue lipolysis, due to macrophage-

induced white adipocyte inflammation, as a major factor responsible for the increased rates 

of hepatic gluconeogenesis in T2D via increased hepatic acetyl-CoA content (derived from 

increased fatty acid delivery), allosteric activation of pyruvate carboxylase, and increased 

conversion of glycerol to glucose by a substrate push mechanism (32). Collectively, 

alterations in insulin responsiveness in these tissues place a major stress on the pancreatic β-

cells to increase insulin secretion in an attempt to offset the defect in insulin action (33). As 

the disease progresses, however, β-cells begin to fail, and a vicious cycle ensues involving 

gluco- and lipotoxicity and, possibly, factors other than the β-cells, causing a further decline 

in insulin secretion, worsening of hyperglycemia, and overt T2D (Figure 1).

Ectopic lipid accumulation in the liver (NAFLD) and muscle (intramyocellular lipid) has 

been identified as a root cause of insulin resistance in these tissues (29, 34–39). Under 

conditions of overnutrition, bioactive lipid metabolites accumulate and cause cellular 

dysfunction and insulin resistance. While several lipid metabolites have been proposed to 

play a causal role in insulin resistance (40), a substantial body of work supports the role of 

diacylglycerol (DAG) accumulation and novel protein kinase C (PKC) activation in 

impairing insulin action in liver and skeletal muscle (Figure 2). Specifically, intrahepatic and 

intramyocellular DAG promote increased PKCε translocation in liver and PKCθ 
translocation in skeletal muscle, increasing the phosphorylation of insulin receptor threonine 

1160 in liver (41) and serine 1101 in skeletal muscle (42, 43) and impairing insulin signaling 

and action in liver (41, 44–88) and muscle (42, 43, 50, 51, 60, 68, 69, 78, 80, 88–109).

Evidence demonstrating a causal role for ectopic lipids in driving insulin resistance and T2D 

comes from studies showing that short-term caloric restriction, yielding minimal changes in 

body weight, reverses NAFLD and normalizes hepatic insulin sensitivity in obese humans 

(110, 111) and rodents (112). Although modest weight loss is highly effective at reversing 
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T2D, with diabetes remission rates comparable to those of bariatric surgery (110, 113–119), 

weight loss is difficult to sustain, with approximately 70–95% of those who lose significant 

weight subsequently regaining it (120–123).

NOVEL AND EMERGING TARGETS TO IMPROVE INSULIN SENSITIVITY

Novel therapeutics aimed at reducing ectopic lipids and improving insulin sensitivity may be 

of great benefit for the treatment of T2D. In particular, several strategies have been 

developed to influence ectopic lipid deposition by broadly altering energy balance or 

inhibiting key enzymes involved in lipid synthesis (24). In this section, we highlight one 

nonpharmacological approach (bariatric surgery) and two pharmacological targets currently 

under clinical development [fibro-blast growth factor 21 (FGF21) and acetyl-CoA 

carboxylase (ACC)] for the treatment of T2D. We also discuss the potential use of liver-

targeted mitochondrial uncoupling agents to treat NAFLD, NASH, and T2D and present our 

view on what will be needed to generate liver-targeted mitochondrial uncouplers that are 

appropriate for clinical use.

Bariatric Surgery

Recently, bariatric surgery has emerged as an effective treatment option for obesity, NAFLD, 

and T2D (124, 125), resulting in long-term sustained weight loss with significant 

improvements in glycemic parameters (30% decrease in endogenous glucose production), 

histological features in NAFLD, insulin resistance, and cardiovascular disease risk factors 

[40% decrease in very low-density lipoprotein (VLDL) production] (126, 127). These 

beneficial effects likely relate, at least in part, to weight loss, although an improved incretin 

effect (115) and forced reduction in caloric intake [leading to a reduction in hepatic acetyl-

CoA content, glycogenolysis, and DAG–PKCε activation (128)], may contribute to the 

improvements in glycemic control. Nonetheless, longer-term studies have demonstrated that 

the metabolic effects of bariatric surgery persist for an extended period; Schauer et al. 

showed that surgery improved diabetes control over a 5-year period (129). However, a study 

of a larger cohort of patients undergoing sleeve gastrectomy, the most common bariatric 

procedure in the United States (130), found weight regain at 3–5 years after surgery and 

relapse of diabetes in a significant number of patients (131). As such, while bariatric surgery 

can greatly reduce weight and resolve T2D, it may not be appropriate for all patients.

FGF21

FGF21, a distinctive member of the FGF family that functions as an endocrine hormone, is a 

key mediator of energy homeostasis and lipid and glucose metabolism (132). Circulating 

FGF21 is predominantly derived from the liver but is also found in the gut, brain, adipose 

tissue, muscle, and pancreas (133). FGF21 may coordinate the metabolic shift from the fed 

to fasted states and regulates hepatic ketogenesis, gluconeogenesis, and adipose lipolysis 

(133, 134). Liver-specific knockout of FGF21 causes glucose intolerance in high-fat diet 

(HFD)-fed mice (135), whereas mice overexpressing FGF21 are resistant to diet-induced 

obesity and have enhanced glucose tolerance (136). While FGF21 appears to exert its 

antidiabetic effects through multiple tissues (132), recent pharmacological studies in rodents 

have shown that exogenous FGF21 normalizes glucose and lipid homeostasis by increasing 
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cellular energy expenditure independently of brown adipose tissue activation (69, 137). In 

particular, these improvements were associated with a reduction in liver and muscle 

triglycerides, DAGs, and novel PKC (nPKC) translocation in the liver and muscle (69). 

FGF21 has also been shown to improve β-cell function (possibly secondary to the reversal of 

systemic insulin resistance) and survival in T2D mice (138).

Although FGF21 levels are positively associated with obesity and insulin resistance (139), 

preclinical and clinical studies suggest that pharmacological supplementation may be 

beneficial. Analogs in clinical trials (LY2405319, PF-052313023, and BMS-986036) have 

yielded mixed results. LY2405319 was tested in obese patients with T2D in a 28-day proof-

of-concept trial and reduced body weight, reduced plasma insulin concentrations, and 

decreased the low-density lipoprotein (LDL) to high-density lipoprotein cholesterol ratio 

compared to baseline (140). Despite this, its effect on fasting plasma glucose concentrations 

was not as robust as anticipated based on prior studies in rodent and monkey models of T2D 

(141, 142); only modest dose-dependent reduction in plasma glucose was observed (140). In 

addition to LY2405319, PF-052313023, a long-acting FGF21 analog, also showed 

therapeutic promise. Specifically, PF-052313023 treatment decreased body weight and 

improved the lipid profile in rodents, monkeys, and patients with T2D. Unfortunately, 

PF-052313023 treatment produced dose-dependent changes in bone turnover markers (143), 

raising concern over the long-term use of this FGF21 analog to treat T2D patients. A recent 

phase 2 study with a pegylated analog of FGF21 (BMS-986036) has shown the most 

promise. In patients with NAFLD, NASH, and T2D, once-weekly injections decreased liver 

fat, serum transaminases, plasma triglycerides, and LDL cholesterol without any significant 

adverse events, paving the way for longer phase 3 studies (144). However, BMS-986036 did 

not significantly alter plasma glucose concentrations or HbA1c after 12 weeks of treatment 

(144). Future studies are therefore warranted to determine the long-term beneficial and 

potential adverse effects of FGF21 administration in T2D patients.

Acetyl-CoA Carboxylase Inhibition

Another therapeutic option to reduce ectopic lipids and improve insulin sensitivity is through 

inhibition of ACC. ACC catalyzes carboxylation of acetyl-CoA into malonyl-CoA, which is 

the rate-limiting step in fatty acid synthesis and primary regulator of mitochondrial fatty acid 

oxidation (145). ACC1, a primarily cytosolic isoform of ACC, is highly expressed in liver 

and adipose tissue and catalyzes the first committed step in de novo lipogenesis (145). The 

mitochondria membrane– bound ACC2 is expressed in oxidative tissues, such as the muscle 

and heart, and produces localized malonyl-CoA, which inhibits carnitine 

palmitoyltransferase I and the transfer of long-chain CoAs into the mitochondria for fatty 

acid oxidation (146). Thus, ACC is an intriguing therapeutic target to reduce lipid storage by 

simultaneously modulating fatty acid synthesis and oxidation (147).

Several rodent and human studies have shown favorable impact of ACC inhibition on 

NAFLD, NASH, and T2D. In a diet-induced rat model of obesity, antisense oligonucleotide 

(ASO)-mediated reduction of hepatic ACC1 and ACC2 resulted in marked reductions in 

hypertriglyceridemia, hepatic triglyceride, and DAG content and the reversal of hepatic 

insulin resistance, which was associated with a reduction in PKCε activation (62). 
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Additionally, a novel liver-specific allosteric inhibitor of ACC1 and ACC2 (ND-630) is 

currently being developed for the treatment of NASH and has recently been shown to reduce 

hepatic steatosis and improve dyslipidemia in rodent models of obesity with no adverse 

effects (148). Moreover, ND-630 improved glucose metabolism in high-sucrose diet–fed, 

HFD-fed and Zucker diabetic fatty rats (148). However, these results are not generalizable to 

all ACC inhibitors; Bourbeau & Bartberger demonstrated that long-term inhibition of ACC 

markedly increased fasting plasma glucose and worsened glucose intolerance in a diet-

induced mouse model of obesity (149). In addition, we have recently observed that long-

term allosteric inhibition of ACC significantly increased basal rates of glucose production, 

most likely due to increases in hepatic acetyl-CoA content and allosteric activation of 

pyruvate carboxylase (150). More concerning, allosteric inhibitors currently under 

development for the treatment of NAFLD and NASH (MK-4074 and GS-0976) were 

associated with a significant increase in fasting plasma triglyceride concentrations, despite a 

significant reduction in hepatic steatosis (151–153). Subsequent studies in mice and rats 

demonstrated that the hypertriglyceridemia was mediated by a reduction in hepatic 

polyunsaturated fatty acids and disequilibrium in nuclear hormone receptor signaling that 

increased hepatic VLDL secretion and reduced systemic triglyceride clearance (150, 151). 

Interestingly, cotreatment with a PPARα agonist reduced the hypertriglyceridemia 

associated with ACC inhibition, suggesting that ACC inhibitors may be a viable treatment 

option if given in conjunction with fibrates (150, 151). However, given that cardiovascular 

disease is the leading cause of death in T2D patients (154), additional studies are crucial to 

determine the therapeutic potential of ACC inhibition for the treatment of T2D.

Liver-Targeted Mitochondrial Uncouplers

Liver-targeted hepatic mitochondrial uncoupling, whereby the mitochondrial proton gradient 

is dissipated, thereby dissipating stored energy (fat) in the liver (155), has recently gained 

increasing attention as a potential therapeutic approach to burn fat and combat the life- and 

health-limiting consequences of T2D. The first mitochondrial uncoupler, 2,4-dinitrophenol 

(DNP), was originally used as a component of explosives during World War I (156, 157). 

After it was observed that many of the workers who handled this compound lost weight, 

researchers began to investigate the possibility of using DNP as a weight loss drug, and 

studies by multiple groups demonstrated the efficacy of this approach in obese humans 

(158–161). The drug was available as an over-the-counter medication and was widely taken 

for weight loss in the United States, but reports of toxic effects, including several deaths, led 

to its withdrawal from the market by the US Food and Drug Administration in 1938 (162). 

Despite the withdrawal from the US market, Russian soldiers continued to take DNP to stay 

warm on the Eastern Front during the frigid winters of World War II (163), and DNP is 

currently obtained illegally over the Internet and taken by body builders and individuals 

trying to lose weight (162, 164–175).

Rodent studies have provided ample evidence for the potential of tissue-targeted 

mitochondrial uncoupling to improve whole-body glucose and lipid metabolism in vivo. 

Overexpression of uncoupling proteins 1 or 3 in skeletal muscle has been shown to lower 

body weight (176–182) and improve insulin sensitivity in HFD-fed rodents (177, 178, 181). 

Pharmacologic mitochondrial uncoupling is similarly effective at reversing diet-induced 

Goedeke et al. Page 6

Annu Rev Pharmacol Toxicol. Author manuscript; available in PMC 2020 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



obesity and insulin resistance: Five days of treatment with low doses of DNP reduced weight 

gain, reduced hepatic steatosis, reduced DAG–PKCε activation, and improved hepatic 

insulin sensitivity in HFD-fed rats (183).

Like DNP, thyroid hormone has long been considered a potential therapeutic agent for the 

treatment of obesity because of its ability to increase mitochondrial respiration (184–186). 

However, studies examining the impact of thyroid hormone on glucose metabolism have 

yielded mixed results, with some investigators suggesting that treatment of euthyroid 

subjects with exogenous thyroid hormone improves glucose metabolism (187–189), but 

others reporting no impact (190, 191) or a deleterious effect (192) on metabolism. More 

problematic, treatment with supraphysiologic concentrations of thyroid hormone has been 

documented to cause deleterious side effects such as tachycardia, cardiomyopathy, and 

sarcopenia (193–196).

However, new approaches leveraging thyroid hormone action specifically in the liver have 

proved beneficial. In particular, the liver-selective, cytochrome P450–activated prodrug 

MB07811 markedly reduced hepatic steatosis and plasma lipids in rats (197) and was well 

tolerated and efficacious at reducing LDL cholesterol and triglycerides in patients with mild 

hypertriglyceridemia (198). In 2016, Finan et al. used a novel glucagon–T3 hybrid molecule 

to target T3 to the liver and showed that it markedly increased energy expenditure, fat mass, 

and plasma lipids independent of food intake (199). Importantly, this compound also 

reduced hepatic lipids and improved glucose tolerance without causing cardiac or bone 

toxicity (199), thereby suggesting that liver-specific thyroid hormone may be a therapeutic 

option for the treatment of obesity-associated ectopic lipid and insulin resistance.

Next-generation mitochondrial uncouplers.

Several novel mitochondrial and tissue-targeted chemical uncouplers have recently been 

developed (Table 2). In 2010, Skulachev and colleagues discovered that synthesized 

plastoquione derivatives, SkQ1 and C12TPP, potentiate fatty acid–induced uncoupling of 

respiration and oxidative phosphorylation in mitochondria isolated from rat liver (200). 

While SkQ1 was further investigated as a potential treatment for Alzheimer’s disease (201), 

mitochondria-targeted C12TPP was shown to abolish diet-induced obesity in mice by 

reducing food intake and increasing resting metabolic rate and fatty acid oxidation (202). 

Similarly, Rhodamine 19 butyl ester (C4R1), a short-chain alkyl derivative of Rhodamine 

19, dose-dependently reduced food intake, body weight, and fat mass in HFD-fed mice 

(203).

In addition to systemic mitochondrial uncouplers, novel tissue-specific uncoupling agents 

are also being developed, including the small molecule compounds C1 and CZ5. Acute 

administration of C1 increased AMPK activity and fat oxidation in chow-fed mice, while 

chronic C1 treatment reduced hyperglycemia and improved glucose tolerance in diabetic 

db/db mice (204). CZ5 treatment also reduced body weight and improved glucose and lipid 

metabolism in HFD-fed mice by increasing whole-body energy expenditure and reducing 

energy uptake (205). Lastly, niclosamide ethanolamine (NEN), an anthelmintic drug that 

uncouples the mitochondria, has recently emerged as a potential therapeutic agent for 

obesity-associated insulin resistance. By increasing energy expenditure, NEN reduced 
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fasting plasma glucose and improved glucose and insulin tolerance in mice with diet-

induced obesity (206). A related compound, niclosamide piper-azine, may also hold similar 

promise for treatment of obesity-associated insulin resistance (207), although the weight-

lowering effects of these next-generation chemical uncouplers, despite being an on-target 

effect of mitochondrial uncoupling, may limit their utility in clinical practice.

Liver-targeted mitochondrial uncouplers.

Systemic mitochondrial uncoupling agents (e.g., DNP) have a narrow therapeutic window 

due to the on-target effects of these agents to promote hyperthermia. Our group examined 

whether the therapeutic index could be significantly increased by targeting a mitochondrial 

uncoupler to the liver. In this regard, we developed a liver-targeted mitochondrial uncoupling 

agent, DNP–methyl ether (DNPME), which both prevented and reversed diet-induced 

hepatic insulin resistance without affecting body weight (51). Surprisingly, despite its liver 

specificity, DNPME also decreased intramyocellular ectopic lipid content and reversed 

muscle insulin resistance in HFD-fed rats due to reduced hepatic VLDL export. Targeting 

DNP to the liver improved its toxic to effective dose ratio 50-fold, in association with 

marked reductions in peak plasma DNP concentrations relative to standard DNP 

administration. Based on these data, we hypothesized that the toxicity of DNP is related to 

its peak (Cmax) concentrations, whereas its efficacy is related to the area under the curve of 

DNP exposure throughout the day. Consistent with that hypothesis, adding an extended-

release coating to DNP to generate a controlled-release mitochondrial protonophore 

(CRMP) increased the toxic to effective dose ratio even further, with a ratio of toxic to 

effective dose 200-fold higher than that of nontargeted DNP(50). We demonstrated that, akin 

to DNPME, CRMP (by virtue of its first pass uptake by the liver following ingestion) is a 

liver-targeted mitochondrial uncoupler (208) that is able to reverse insulin resistance, hepatic 

inflammation, and hepatic fibrosis in rodent models of T2D, NASH, and lipodystrophy (50, 

51, 60). The reversal of hyperglycemia and hepatic insulin resistance by CRMP was 

attributed to increased fat oxidation exclusively in the liver, with reductions in hepatic 

triglycerides, DAGs, and PKCε translocation as well as reductions in hepatic acetyl-CoA 

content and pyruvate carboxylase activity (50). Moreover, CRMP treatment also lowered 

hepatic VLDL export, thereby reducing intramyocellular ectopic lipid (DAG) content, 

reducing PKCθ activity, and reversing muscle insulin resistance. Overall, these 

improvements in liver and muscle insulin resistance, caused by reductions in ectopic lipid in 

liver and skeletal muscle, as well as in hepatic acetyl-CoA leading to reductions in pyruvate 

carboxylase activity and gluconeogenesis, produced a reversal of liver inflammation, 

fibrosis, and diabetes in rodent models of NASH and T2D (50) (Figure 3).

Similarly, via the same mechanisms, CRMP administration in a mouse model of severe 

lipodystrophy (fatless A-ZIP/F1 mice) reversed hepatic insulin resistance, hepatic 

inflammation, and diabetes, lowering fasting plasma glucose by approximately 75 mg/dl and 

fasting plasma insulin by approximately 75% (60). Taken together, these data suggest that 

CRMP or other liver-targeted mitochondrial protonophores with a similarly high ratio of 

toxic to effective dose represent an attractive class of agents for potential use to resolve 

NAFLD and its downstream consequences, including NASH, liver fibrosis, insulin 

resistance, and T2D.
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CONCLUSIONS

T2D and its downstream sequelae, including an increased risk of end-stage vascular 

dysfunction and cardiovascular disease, are well known to reduce the quality and duration of 

life. Unfortunately, current treatments have had limited success and do not address a major 

contributor to T2D: ectopic lipid-related insulin resistance. Over the past years, our 

understanding of the pathogenesis of insulin resistance and T2D has improved, and 

accordingly, new pharmacological targets have emerged. Unfortunately, the development 

and successful use of new treatments have proved to be challenging due to the complexity of 

insulin resistance and the presence of multiple feedback loops that make it difficult to 

predict the consequences of a particular intervention (209). For example, liver-specific 

inhibition of ACC increased plasma triglycerides via the derepression of nuclear receptor 

signaling as a means of compensating for reduced hepatic lipids (151). Moving forward, 

identifying therapeutic targets for blocking biochemical pathways involved in glucose and 

lipid metabolism may prove to be difficult in practice. Therefore, we propose that promoting 

increased hepatic cellular energy expenditure through the use of liver-targeted mitochondrial 

uncoupling agents may hold more promise. Indeed, animal studies suggest that liver-targeted 

mitochondrial uncoupling has a wide therapeutic index and can safely reverse NAFLD, 

NASH, liver fibrosis, and diabetes in rodent models of NASH, cirrhosis, and T2D (50, 51, 

60, 206, 207). Liver-targeted mitochondrial agents are now being developed by several 

pharmaceutical companies, and studies in humans will be required to determine whether this 

approach can safely reverse the related epidemics of NAFLD, NASH, and T2D.
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SUMMARY POINTS

1. Ectopic lipid (DAG) accumulation in skeletal muscle promotes muscle insulin 

resistance by activation of PKCθ, leading to impaired insulin signaling.

2. Ectopic lipid (DAG) accumulation in liver promotes hepatic insulin resistance 

by activation of PKCε, leading to increased insulin receptor threonine 1160 

phosphorylation, which leads to decreased insulin receptor tyrosine kinase 

activity.

3. Increased hepatic acetyl-CoA content promotes increased rates of hepatic 

gluconeogenesis and fasting hyperglycemia in T2D by allosteric activation of 

pyruvate carboxylase.

4. Several agents aimed at reducing ectopic lipid accumulation in the liver by 

promoting increased hepatic fat oxidation, inhibiting hepatic lipid synthesis, 

or increasing hepatic mitochondrial energy expenditure are currently under 

development for the treatment of NAFLD, NASH, and T2D.

5. Liver-targeted mitochondrial uncoupling has been shown to reverse liver and 

muscle insulin resistance and diabetes in rodent models of NAFLD and T2D 

by decreasing hepatic acetyl-CoA content and DAG–nPKC activation in liver 

and skeletal muscle.

6. Liver-targeted mitochondrial uncoupling has been shown to safely reverse 

NAFLD, NASH, liver fibrosis, and T2D in rodent models of these diseases.
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Figure 1. 
Pathogenesis of hyperglycemia in T2D. Uncontrolled hyperglycemia is a hallmark of T2D 

and is a major risk factor for long-term microvascular and macrovascular complications. 

While the progressive loss of pancreatic islet β-cell function is ultimately responsible for the 

progression from normoglycemia to hyperglycemia, insulin resistance predates β-cell 

dysfunction and plays a major role in the pathogenesis of T2D. In the muscle, insulin 

resistance is manifested as impaired glucose uptake following ingestion of a carbohydrate-

rich meal and results in postprandial hyperglycemia. In the liver, insulin resistance is 

characterized by the inability of insulin to stimulate hepatic glycogen synthesis and suppress 

hepatic glucose production under postprandial conditions. In parallel, inappropriate 

increases in adipose tissue lipolysis (due to increases in inflammation) can drive hepatic 

gluconeogenesis through increases in hepatic acetyl-CoA content, allosteric activation of 

PC, and increased conversion of glycerol to glucose. Initially, the β-cell compensates for 

alterations in tissue insulin responsiveness by increasing insulin secretion; however, over 

time, this compensatory mechanism fails and β-cell mass declines, causing a further 

reduction in insulin secretion, worsening of hyperglycemia, and overt T2D. Abbreviations: 

FA, fatty acid; PC, pyruvate carboxylase; T2D, type 2 diabetes.
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Figure 2. 
The role of ectopic lipids in insulin resistance. Under conditions of overnutrition or defective 

adipocyte fatty acid metabolism, lipids can be redistributed from eutopic sites (adipose 

tissue) to ectopic storage sites (liver and muscle) and lead to impaired insulin signaling, 

insulin resistance, and T2D. Lipid-induced hepatic insulin resistance may result from 

activation of the DAG–PKCε axis and the consequent inhibition of INSR signaling through 

inhibitory phosphorylation of INSR at Thr1160. This leads to impaired insulin stimulation of 

hepatic glycogen synthesis, impaired transcriptional upregulation of de novo lipogenic 

genes, and impaired transcriptional downregulation of gluconeogenic genes. Skeletal muscle 

insulin resistance, caused by increases in intramyocellular ectopic lipid, impairs insulin-

stimulated glucose transport and glycogen synthesis through the activation of the DAG–

PKCθ axis and the consequent inhibition of the PI3K pathway through inhibitory 

phosphorylation of IRS1. Abbreviations: DAG, diacylglycerol; FA, fatty acid; FAO, fatty 

acid oxidation; INSR, insulin receptor; IRK, insulin receptor kinase; IRS1, insulin receptor 

substrate 1; LCCoA, long-chain CoA; PI3K, phosphoinositide 3-kinase; PKC, protein kinase 

C; Ser/Thr, serine/threonine; T2D, type 2 diabetes; TAG, triglyceride; Thr1160, threonine 

1160.
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Figure 3. 
Therapeutic potential of liver-targeted mitochondrial uncouplers for the treatment of T2D. 

Promoting increased hepatic cellular energy expenditure through the use of liver-targeted 

mitochondrial uncoupling agents (such as DNP analogs, DNPME, and CRMP) holds 

therapeutic promise for the treatment of NAFLD, NASH, and T2D. By increasing fat 

oxidation exclusively in the liver, DNPME and CRMP lower hepatic triglycerides, DAGs, 

and PKCε translocation, which increases hepatic insulin sensitivity. Liver-targeted 

mitochondrial uncoupling also increases TCA cycle flux, which reduces hepatic acetyl-CoA 

content, PC activity, and gluconeogenesis; collectively, this leads to reduced fasting and 

postprandial hyperglycemia. Moreover, DNPME and CRMP also lower hepatic VLDL 

export, thereby reducing muscle DAG content, reducing PKCθ activity, and reversing 

muscle insulin resistance. Overall, these improvements in liver and muscle insulin resistance 

can reverse diabetes in rodent models of NASH and T2D and suggest that liver-targeted 

mitochondrial uncoupling agents may be a therapy for the treatment of T2D in humans. 

Abbreviations: CRMP, controlled-release mitochondrial protonophore; DAG, diacylglycerol; 

DNP, 2,4-dinitrophenol; DNPME, DNP–methyl ether; INSR, insulin receptor; NAFLD, 

nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; PC, pyruvate 

carboxylase; PKC, protein kinase C; T2D, type 2 diabetes; TCA, tricarboxylic acid; 

Thr1160, threonine 1160; VLDL, very low-density lipoprotein.
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Table 1

Current pharmacological agents for T2D

Class of 
medication Representative agents Mechanism of action

Glycemic 
efficacy (% 

HbAlc 
reduction)

CVD risks and 
benefits Side effects

Biguanide Metformin Insulin sensitizer; ↓. HGP 
and gluconeogenesis

↓ 1–2% ↓ CVD risk 
factors; ↓ MI 
and coronary 
deaths

GI and lactic acidosis

Sulfonylureas Glimepiride, glipizide, 
glyburide

↑ Insulin secretion ↓ 1–2% ↑ CVD risk Hypoglycemia

SGLT2 
inhibitors

Canagliflozin, 
Dapagliflozin, 
Empagliflozin

↓ Glucosuria; ↓ 
glucotoxicity

↓ 0.5–0.7% ↓ Blood 
pressure; 
improved lipid 
profile

Ketoacidosis, genital 
mycosis, bone 
fractures

Incretin 
mimetics

GIP, GLP-1 
(Liraglutide, Exenatide, 
Dulaglutide)

↑ Insulin secretion; ↓ 
glucagon secretion; delayed 
gastric emptying; ↑ satiety

↓ 0.5–1.5% ↓ CVD risk Nausea, vomiting, 
pancreatitis

TZDs Rosiglitazone, 
pioglitazone

Insulin sensitizer; ↑ 
adipocyte function; ↓ 
ectopic lipid accumulation; 
↑ β-cell function

↓ 0.5–1.4% ↑ CVD risk Weight gain, bladder 
cancer, bone fractures

α-Glucosidase 
inhibitors

Acarbose, voglibose, 
miglitol

↓ Carbohydrate absorption ↓ 0.8% ↓ CVD risk Diarrhea, abdominal 
pain, nausea, 
vomiting

Insulin Short acting: humulin R, 
novolin R Intermediate 
acting: isophane Long 
acting: Lantus, Levemir, 
Tresiba Rapid acting: 
Lispro, Aspart, Apidra

↓ HGP; ↑ glucose uptake ↓ 1–2.5% Neutral Hypoglycemia, 
weight gain

Abbreviations: CVD, cardiovascular disease; GI, gastrointestinal; GIP, gastric inhibitory polypeptide; GLP-1, glucagon-like peptide 1; HbA1c, 
hemoglobin A1c; HGP, hepatic glucose production; MI, myocardial infarction; SGLT2, sodium–glucose cotransporter; T2D, type 2 diabetes; TZD, 
thiazolidinedione.
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