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ABSTRACT Positive selection causes beneficial alleles to rise to high frequency, resulting in a selective sweep of the diversity
surrounding the selected sites. Accordingly, the signature of a selective sweep in an ancestral population may still remain in its
descendants. Identifying signatures of selection in the ancestor that are shared among its descendants is important to contextualize the
timing of a sweep, but few methods exist for this purpose. We introduce the statistic SS-H12, which can identify genomic regions
under shared positive selection across populations and is based on the theory of the expected haplotype homozygosity statistic H12,
which detects recent hard and soft sweeps from the presence of high-frequency haplotypes. SS-H12 is distinct from comparable
statistics because it requires a minimum of only two populations, and properly identifies and differentiates between independent
convergent sweeps and true ancestral sweeps, with high power and robustness to a variety of demographic models. Furthermore, we
can apply SS-H12 in conjunction with the ratio of statistics we term H2Tot and H1Tot to further classify identified shared sweeps as hard
or soft. Finally, we identified both previously reported and novel shared sweep candidates from human whole-genome sequences.
Previously reported candidates include the well-characterized ancestral sweeps at LCT and SLC24A5 in Indo-Europeans, as well as
GPHN worldwide. Novel candidates include an ancestral sweep at RGS18 in sub-Saharan Africans involved in regulating the platelet
response and implicated in sudden cardiac death, and a convergent sweep at C2CD5 between European and East Asian populations
that may explain their different insulin responses.
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ALLELES under positive selection increase in frequency in
a population toward fixation, causing nearby linked

neutral variants to also rise to high frequency. This process
results in selective sweeps of the diversity surrounding se-
lected sites, and these sweeps can be hard or soft (Hermisson
and Pennings 2005, 2017; Pennings and Hermisson
2006a,b). Under hard sweeps, beneficial alleles exist on a sin-
gle haplotype at the time of selection, which rises to high
frequency with the selected variants. In contrast, soft sweeps
occur when beneficial alleles are present on multiple haplo-
types, each of which increases in frequency with the selected
variants. Thus, individuals carrying the selected alleles do not

all share a common haplotypic background. The signature of
a selective sweep, hard or soft, is characterized by elevated
linkage disequilibrium (LD) on either side of the beneficial
mutation, and elevated expected haplotype homozygosity
(Maynard Smith and Haigh 1974; Sabeti et al. 2002;
Schweinsberg and Durrett 2005). Thus, the signature of a se-
lective sweep decays with distance from the selected site as
mutation and recombination erode tracts of sequence iden-
tity produced by the sweep, returning expected haplotype
homozygosity and LD to their neutral levels (Messer and
Petrov 2013).

Various approaches exist to detect signatures of selective
sweeps in single populations, but few methods can identify
sweep regions shared across populations, and these methods
rely primarily on allele frequency data as input. Existing
methods to identify shared sweeps (Bonhomme et al. 2010;
Fariello et al. 2013; Racimo 2016; Cheng et al. 2017; Librado
et al. 2017; Peyrégne et al. 2017; Johnson and Voight 2018)
leverage the observation that study populations sharing
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similar patterns of genetic diversity at a putative site under
selection descend from a common ancestor in which the
sweep occurred. Such approaches therefore infer a sweep
ancestral to the study populations from what may be coinci-
dental (i.e., independent) signals. Moreover, many of these
methods require data from at least one reference population
in addition to the study populations, and, of these, most may
be misled by sweeps in their set of reference populations.
These constraints may therefore impede the application of
these methods to study systems that do not fit these model
assumptions or data requirements.

Identifying sweeps common to multiple populations pro-
vides an important layer of context that specifies the branch of
a genealogyonwhicha sweep is likely tohaveoccurred. In this
way, the timing and types of pressures that contributed to
particular signals among sampled populations can become
clearer. For example, identifying sweeps that are shared
ancestrally among all populations within a species highlights
the selective events that contributed to their most important
modern phenotypes. On a smaller scale, methods to identify
shared sweeps can be leveraged to distinguish signatures of
local adaptation in particular populations (Librado and
Orlando 2018). In contrast, single-population tests would
provide little information about the timing and therefore rel-
ative importance of detected sweeps. More generally, tests
tailored to the detection of sweeps within samples drawn
from multiple populations are likely to have higher power
to detect such events than are tests that do not account for
sample complexity (Bonhomme et al. 2010; Fariello et al.
2013), underscoring the usefulness of multi-population
approaches.

Accordingly, thebreadthof questions that canbeaddressed
using shared sweep approaches covers a variety of topics and
organisms. Among the most fundamental examples of local
adaptation seen ancestrally in related populations are those
related to diet and metabolism, which can reflect important
responses to changes in nutritional availability. An example of
such adaptation is the shift toward eating rice in East Asian
populations (Cheng et al. 2017). Supplementing this idea,
characterizing the attributes of shared sweeps in related pop-
ulations can uncover the number of adaptive events under-
lying an observed phenotype, such as the number of times
selection for reduced insulin sensitivity among cave-dwelling
populations of the fish Astyanax mexicanus has occurred
(Riddle et al. 2018), or whether convergent resistance to in-
dustrial pollutants seen in populations of the flowerMimulus
guttatus derives from ancestral standing variation (Lee and
Coop 2017). Increasingly, the availability of ancient genomes
is allowing for the construction of time transect datasets
(Lindo et al. 2016; Librado et al. 2017) that can be used
not only to lend support to hypotheses generated from mod-
ern data, but also to infer the point in time at which a shared
sweep may have emerged. Such sweeps may have important
implications for understanding domestication events
(Librado et al. 2017; Pendleton et al. 2018), the emergence
of particular cultural traits, such as human fishing and

farming practices (Chaplin and Jablonski 2013; Snir et al.
2015; Marciniak and Perry 2017), and the complex relation-
ships between modern populations such as those of South
Asia described in Metspalu et al. (2011).

To address the constraints of current methods, we devel-
oped SS-H12, an expected haplotype homozygosity-based sta-
tistic that detects shared selective sweeps from a minimum of
two sampled populations (see Materials and Methods). Be-
yond simply detecting shared sweeps, SS-H12 uses haplotype
data to classify sweep candidates as either ancestral (shared
through common ancestry) or convergent (occurring inde-
pendently; Figure 1). SS-H12 is based on the theory of H12
(Garud and Rosenberg 2015; Garud et al. 2015)—a summary
statistic that measures expected homozygosity in haplotype
data from a single population. H12 has high power to detect
recent hard and soft selective sweeps due to its unique for-
mulation. For a genomic window containing I distinct hap-
lotypes, H12 is defined as

H12 ¼ ðp1 þ p2Þ2 þ
XI

i¼3

p2i ; (1)

where pi is the frequency of the ith most frequent haplotype,
and p1 $ p2 $⋯$ pI. The two largest haplotype frequencies
are pooled into a single value to reflect the presence of at
least two high-frequency haplotypes under a soft sweep.
Meanwhile, the squares of the remaining haplotype frequen-
cies are summed to reflect the probability of drawing two
copies of the third through Ith most frequent haplotypes at
random from the population. Thus, H12 yields similar values
for hard and soft sweeps. The framework of the single-pop-
ulation statistic also distinguishes hard and soft sweeps using
the ratio H2/H1 (Garud and Rosenberg 2015; Garud et al.
2015), where H1 ¼ PI

i¼1p
2
i is the expected haplotype homo-

zygosity, and where H2 ¼ H12 p21 is the expected haplotype
homozygosity omitting the most frequent haplotype. H2/H1
is small under hard sweeps because the second through Ith
frequencies are small, as the beneficial alleles exist only on
a single haplotypic background. Accordingly, H2/H1 is larger
for soft sweeps (Garud et al. 2015), and can therefore be used
to classify sweeps as hard or soft, conditioning on an elevated
value of H12.

Using simulated genetic data, we show that SS-H12 has
highpower todetect recent shared sweeps inpopulationpairs,
displaying a similar range of detection to H12. Additionally,
we demonstrate that SS-H12 correctly differentiates between
recent ancestral and convergent sweeps, generally without
confusing the two. Furthermore, we extended the application
of SS-H12 to an arbitrary number of populations K (see
Materials andMethods), finding once again that our approach
classifies sweeps correctly and with high power. Moreover,
the SS-H12 approach retains the ability to distinguish be-
tween hard and soft shared sweeps by inferring the number
of distinct sweeping haplotypes (seeMaterials and Methods).
Finally, our analysis of whole-genome sequences from global
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human populations recovered previously identified sweep
candidates at the LCT and SLC24A5 genes in Indo-European
populations, corroborated recently characterized sweeps that
emerged from genomic scans with the single-population ap-
proach (Harris et al. 2018), such as RGS18 in African and
P4HA1 in Indo-European populations, and uncovered novel
shared sweep candidates, such as the convergent sweeps
C2CD5 between Eurasian populations and PAWR between
European and sub-Saharan African populations.

Materials and Methods

Constructing SS-H12

Here, we formulate SS-H12 using the principles of H12
applied to a sample consisting of multiple populations.
SS-H12 provides information about the location of a shared
sweep on the phylogenetic tree relating the sampled popula-
tions. SS-H12 is computed from multiple statistics that quan-
tify the diversity of haplotypeswithin each population, aswell
as within the pool of the populations, therefore making use of
the haplotype frequency spectrum and measures of shared
haplotype identity to draw inferences. Consider a pooled
sample consisting of haplotypes from K ¼ 2 populations, in
which a fraction g of the haplotypes derives from population
1 and a fraction 12 g derives from population 2. For the
pooled sample, we define the total-sample expected haplo-
type homozygosity statistic H12Tot within a genomic window
containing I distinct haplotypes as

H12Tot ¼ ðx1 þ x2Þ2 þ
XI

i¼3

x2i ; (2)

where xi ¼ gp1i þ ð12 gÞp2i, x1 $ x2 $⋯$ xI, is the fre-
quency of the ith most frequent haplotype in the pooled pop-
ulation, and where p1i and p2i are the frequencies of this
haplotype in populations 1 and 2, respectively. That is, xi,
p1i, and p2i refer to the same haplotype, indexed according
to its frequency in the pooled sample. The value of H12Tot is
therefore large at the genomic regions of shared sweeps be-
cause the overall haplotypic diversity at such loci is small,
reflecting the reduced haplotypic diversity of component
populations.

Next, we seek to define a statistic that classifies the
putative shared sweep as ancestral or convergent between
the pair of populations. To do this, we define a statistic
fDiff ¼

PI
i¼1ðp1i2p2iÞ2, which measures the sum of the

squared difference in the frequency of each haplotype be-
tween both populations. fDiff takes on values between 0, for
population pairs with identical haplotype frequencies, and 2,
for populations that are each fixed for a different haplotype.
The former case is consistent with an ancestral sweep sce-
nario, whereas the latter is consistent with a convergent
sweep—though we caution that genetic drift can also pro-
duce extreme values of fDiff , which is unlikely to be problem-
atic provided test populations are closely enough related.

From the summary statistics H12Tot (based on the haplo-
type frequency spectrum) and fDiff (quantifying shared hap-
lotype identity), we now define SS-H12, which measures the
extent to which an elevated H12Tot is due to shared ancestry.
First, we specify a statistic that quantifies the shared sweep,
H12Anc ¼ H12Tot 2 fDiff . The value of H12Anc lies between21
for convergent sweeps, and 1 for ancestral sweeps, with a typ-
ically negative value near 0 in the absence of a sweep. H12Anc
is therefore easy to interpret because convergent sweeps on
nonidentical haplotypes cannot generate positive values, and
ancestral sweep signals that have not eroded due to the ef-
fects of recombination and mutation cannot generate neg-
ative values. Because a sufficiently strong and complete
sweep in one population (divergent sweep; Figure 1) may
also generate negative values of H12Anc with elevated mag-
nitudes distinct from neutrality, we introduce a correction
factor that yields SS-H12 by dividing the minimum value of
H12 between a pair of populations by the maximum value.
This modification allows SS-H12 to overlook spurious signals
driven by strong selection in a single population by reducing
their prominence relative to true shared sweep signals. Ap-
plying this correction factor yields SS-H12, which is com-
puted as

SS‐H12 ¼ H12Anc3
min

�
H12ð1Þ;H12ð2Þ

�

max
�
H12ð1Þ;H12ð2Þ

�; (3)

where H12ð1Þ and H12ð2Þ are the H12 values for populations
1 and 2, respectively. The correction factor has a value close
to 1 for shared sweeps of either type, but a small value for
divergent sweeps. Thus, the corrected SS-H12 is sensitive
only to shared sweeps, while maintaining a small magnitude
value under neutrality. We note that the performance of
SS-H12 is dependent upon the size of the sample, requiring
sufficient captured haplotypic diversity to distinguish sweeps
from the neutral background, similarly to H12 and other
haplotype-based methods. Therefore, while our analyses
concern large simulated and empirical sample sizes around
n ¼ 100 per population, we expect that n ¼ 25 per popula-
tion will provide enough resolution to detect sweeps given
a similar, broadly mammalian demographic history (Harris
et al. 2018).

We now extend SS-H12 to diploid unphased multilocus
genotype (MLG) data as SS-G123. Results for SS-G123 experi-
ments appear in the subsection Detection and classification of
shared sweeps from unphased data. The ability to analyze
MLGs is important because haplotype data are often unavail-
able for nonmodel organisms. To generate MLGs from our
original unphased data, we manually merged an individual’s
two haplotypes into a single MLG. In this way, we were able
to directly assess the effects of phasing on our inferences.
MLGs are character strings, as are haplotypes, but, in contrast
to a haplotype, each character within the MLG may take one
of three values representing a homozygous reference, homo-
zygous alternate, or heterozygous genotype. The definition of
SS-G123 is analogous to that of SS-H12:
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SS‐G123 ¼ G123Anc3
min

�
G123ð1Þ;G123ð2Þ

�

max
�
G123ð1Þ;G123ð2Þ

�; (4)

where G123 is the MLG equivalent of H12 (Harris et al.
2018) computed as G123 ¼ ðq1 þ q2 þ q3Þ2 þ

PJ
j¼4q

2

j
(for J

distinct MLGs and q1 $ q2 $⋯$ qJ). G123ð1Þ and G123ð2Þ

are G123 computed in populations 1 and 2, respectively,
G123Anc¼G123Tot2gDiff , G123Tot¼ðy1þy2þy3Þ2þ

PJ
j¼4y

2
j ,

and gDiff ¼
PJ

j¼1ðq1j 2 q2jÞ2; note that yj ¼ gq1j þ ð12gÞq2j.
Finally, we note that both the haplotype- and MLG-based
approaches are compatible with an arbitrary number of sam-
pled populations K, and demonstrate this in Part 1 of the
Supplemental Note.

General simulation parameters

We first tested the power of SS-H12 (phased haplotypes) and
SS-G123 (unphased MLGs) to detect shared selective sweeps
on simulatedmultilocus sequence data.Wegenerated all data
as haplotypes using the forward-time simulator SLiM 2 (ver-
sion 2.6; Haller and Messer 2017), which follows a Wright-
Fisher model (Hartl and Clark 2007) and can reproduce
complex demographic and selective scenarios. For the first
set of experiments (“power simulations” of Table 1), we sim-
ulated population pairs following human-inspired parame-
ters (Takahata et al. 1995; Nachman and Crowell 2000;
Payseur and Nachman 2000; Narasimhan et al. 2017;
Terhorst et al. 2017). To account for the variation in

recombination rates across natural genomes, we drew recom-
bination rates r at random from an exponential distribution
with maximum truncated at 3r (Schrider and Kern 2017;
Mughal and DeGiorgio 2019). We created the joint demo-
graphic history for simulated two-population models from
empirical whole genome polymorphism data (1000
Genomes Project Consortium et al. 2015) using smc++ (ver-
sion 1.13.1; Terhorst et al. 2017). The populations in our
models were the CEU—Utah residents with northern and
western European ancestry—paired with either the GIH, Gu-
jarati Indians from Houston, or the YRI, Yoruba individuals
from Ibadan in Southern Nigeria (Table 1). We additionally
examined the performance of our approach to detect shared
sweeps in a generalized mammalian model (Table 2, first
row) for samples drawn from K 2 f2; 3; 4; 5g populations to
determine the effect of sampling more than two populations.
We describe this in detail in Part 1 of the Supplemental Note.

Our smc++ protocol was as follows: we first extracted
polymorphism data separately for a subset of ns ¼ 27 indi-
viduals from each study population from the source VCF file
using the function vcf2smc, selecting two individuals uni-
formly at random to be distinguished individuals within their
sample. Distinguished individuals are used to compute the
conditional site frequency spectrum during each round of
model optimization (Terhorst et al. 2017). During the con-
version step, we also masked out regions with missing data
using the accessibility masks provided by 1000 Genomes

Figure 1 Model of a two-population phylogeny for
which SS-H12 detects recent shared sweeps. Here,
an ancestral population splits in the past into two
modern lineages, which are sampled. Each panel
displays the frequency trajectory of a haplotype
across the populations. Under neutrality, there is
high haplotypic diversity such that many haplotypes,
including the reference haplotype (blue), exist at
low frequency. In the ancestral sweep, the reference
haplotype becomes selectively advantageous (turn-
ing orange) and rises to high frequency prior to the
split, such that both modern lineages carry the same
selected haplotype at high frequency. The conver-
gent sweep scenario involves different selected hap-
lotypes independently rising to high frequency in
each lineage after their split. Under a divergent
sweep, only one sampled lineage experiences
selection.
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Project Consortium et al. (2015). Following this, we generated
each model with the estimate function, choosing a thinning
parameter of 1000log10ns. Using model estimates for the
component populations jointly with polymorphism data
extracted for samples containing individuals from both pop-
ulations (ns ¼ 27 for each for a total of 54), we generated
models for population pairs.

Simulations generated under all aforementioned schemes
lasted for an unscaled duration of 20N generations. This con-
sisted of a burn-in period of 10N generations to produce
equilibrium levels of variation in which the ancestor to the
sampledmodern populations wasmaintained at sizeN ¼ 104

diploids (Messer 2013), and another 10N generations during
which population size was allowed to change (in the case of
two-population experiments). We note that population split
events occurred within the latter 10N generations of the sim-
ulation. As is standard for forward-time simulations (Yuan
et al. 2012; Ruths and Nakhleh 2013), we scaled all param-
eters by a factor L ¼ 20 to reduce simulation runtime, di-
viding the population size and duration of the simulation
by L, and multiplying the mutation and recombination rates,
as well as the selection coefficient (s), where applicable, byL.
Thus, scaled simulations maintained the same expected lev-
els of genetic variation as would unscaled simulations.

Selection experiment procedures

Across our simulation scenarios, we examined three classes of
sweeps, consisting of ancestral, convergent, and divergent.
For ancestral sweeps,we introduced a selected allele to one or
more randomly drawn haplotypes in the ancestor of all sam-
pled populations (i.e., more anciently than any population
split), which ensured that the same selective event was
shared in the histories of the populations. This meant ances-
tral sweeps were constrained to occur at selection time tmore
ancient than the root time t of the set of sampled populations.
For convergent sweeps, we simultaneously introduced the
selected mutation independently in each extant population
at the time of selection, after the split had occurred. Finally,
divergent sweeps comprised scenarios in which the sweep
event occurred in fewer than all sampled populations, such
that at least one did not experience a sweep, but at least one
did experience a sweep. Accordingly, convergent and diver-
gent sweeps were defined as those for which t was more re-
cent than the root time t of the set of sampled populations.
Across all simulations, we conditioned on the maintenance of
at least one copy of the selected allele in any affected pop-
ulation after its introduction.

To generate distributions of SS-H12 and SS-G123 for
power analysis, we scanned 100 kb of sequence data from
simulated individuals using a sliding window approach, as in
Harris et al. (2018). Although sweep footprints are likely
to extend much farther than 100 kb (Gillespie 2004;
Hermisson and Pennings 2017), we chose our sequence
length in order to focus on haplotype frequency distortions
surrounding the epicenter of the sweep, which necessarily
contains the genomic window of maximum signal on which

we base inferences. Moreover, the use of a larger simulated
region is likely to downwardly bias the ratio of true positives
to false positives by providing a greater possibility of gener-
ating SS-H12 values of large magnitude by chance under
neutrality. We demonstrate this effect in Supplemental Ma-
terial, Figure S2 by simulating 1 Mb sequences following the
same protocol as for the 100 kb sequences, and see little
overlap in their jSS‐H12j distributions. Trends in power
would nonetheless remain similar, but, with this in mind,
and considering that SS-H12 does not make use of polymor-
phism data lying outside of the analysis window, we deter-
mined that our choice of a 100 kb simulated region was
appropriate for our present purposes.

We computed statistics in 20 (CEU-YRI) or 40 kb (CEU-
GIH and generalized mammalian models) windows, advanc-
ing the window by increments of 1 kb across the simulated
chromosome for a total of 61 (CEU-GIH, generalized) or
81 (CEU-YRI) windows. For each replicate, we retained the
value of SS-H12 or SS-G123 from the window of maximum
absolute value as the score. We selected window sizes suffi-
ciently large to overcome the effect of short-range LD in the
sample, which may produce a signature of expected haplo-
type homozygosity resembling a sweep (Garud et al. 2015).
We measured the decay of LD for SNPs in neutral replicates
separated by 1–100 kb at 1-kb intervals using mean r2 and
found that LD falls below half its original value, on average,
at our chosen window sizes. In practice, it is important to
choose window sizes that satisfy such a constraint to control
against false positives. Our choice of window sizes here also
matched those for empirical scans. For all parameter sets, we
generated 103 sweep replicates and 103 neutral replicates
with identical numbers of sampled populations, sample sizes,
and split times.

Overall, our chosen experimental protocols across perfor-
mance evaluation experiments comprisedabroad spectrumof
sweeps (Table 1 and Table 2). We varied selection strength
and start time, as well as population split time, which we
expect has covered relevant models for hypothesized selec-
tive sweeps in recent human history (Przeworski 2002;
Sabeti et al. 2007; Beleza et al. 2012; Jones et al. 2013;
Clemente et al. 2014; Fagny et al. 2014). Our primary goal
was to evaluate the ability of SS-H12 and SS-G123 to identify
hard selective sweeps from a de novo mutation and soft
sweeps from selection on standing genetic variation, for both
strong ðs ¼ 0:1Þ and moderate ðs ¼ 0:01Þ strengths of selec-
tion. These settings were equivalent to those from the exper-
imental approach of Harris et al. (2018) for single-population
statistics, and correspond to scenarios for which those statis-
tics have power under the specific mutation rate, recombina-
tion rate, effective size, and simulated sequence length we
tested here. For all selection scenarios, we placed the bene-
ficial allele at the center of the simulated chromosome, and
introduced it only once, constraining the selection start time,
but not the selection end time. For hard and soft sweeps, we
allowed the selected allele to rise in frequency toward fixa-
tion, but with no guarantee of reaching fixation. Indeed, most
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s ¼ 0:01 simulations did not reach fixation under our param-
eters for sweeps more recent than t ¼ 2500 generations be-
fore sampling, while most s ¼ 0:1 simulations have fixed by
the time of sampling for all parameter sets. To specify soft
sweep scenarios, we conditioned on the selected allele being
present in the population on n ¼ 4 or 8 distinct (scaled) hap-
lotypes at the start of selection, without defining the number
of selected haplotypes remaining in the population at the
time of sampling, as long as the selected allele was not lost.

Classifying sweeps as hard or soft

The SS-H12 approach can distinguish shared sweeps as hard
or soft, conditioning on the value of the expected homozy-
gosity ratio statistic, H2Tot=H1Tot This ratio derives from H2/
H1 of Garud et al. (2015) and is computed similarly, but using
pooled population frequencies. We define H1Tot ¼

PI
i¼1x

2
i

and H2Tot ¼ H1Tot 2 x21, with xi defined as in Equation 2.
Likewise, for MLGs, we have the ratio G2Tot=G1Tot, with
G1Tot ¼

PJ
j¼1y

2
j and G2Tot ¼ G1Tot 2 y21 (see explanation of

Equation 4). As with the single-population statistic, the
H2Tot=H1Tot and G2Tot=G1Tot ratios are larger for soft sweeps
and smaller for hard sweeps, following the same logic (see
Introduction). A larger sample size is necessarily required to
properly classify sweeps as hard or soft because hard and soft
sweeps resemble each other to a greater degree than sweeps
and neutrality. As with the single-population approach
(Harris et al. 2018), we expect that a minimum of n � 100
haplotypes per population is sufficient to resolve harder
sweeps from softer sweeps under demographic histories com-
parable to that of humans.

As in Harris et al. (2018), we employed an approximate
Bayesian computation (ABC) approach to demonstrate the
ability of SS-H12 (SS-G123), in conjunction with the
H2Tot=H1Tot ðG2Tot=G1TotÞ statistic, to classify shared
sweeps as hard or soft from the inferred number of sweep-
ing haplotypes n (Table 1, “hard/soft classification”). Hard
sweeps derive from a single sweeping haplotype, while soft
sweeps consist of at least two sweeping haplotypes. Whereas
the single-population approach (Garud and Rosenberg 2015;
Garud et al. 2015; Harris et al. 2018) identified hard and soft
sweeps from their occupancy of paired ðH12; H2=H1Þ val-
ues, we presently use paired ðjSS‐H12j; H2Tot=H1TotÞ and
ðjSS‐G123j; G2Tot=G1TotÞ values to classify shared sweeps.
We defined a 1003 100 grid corresponding to paired
ðjSS‐H12j; H2Tot=H1TotÞ or ðjSS‐G123j; G2Tot=G1TotÞ val-
ues with each axis bounded by [0.005–0.995] at increments
of 0.01, and assigned themost probable value of n to each test
point in the grid.

We define themost probable n for a test point as themost
frequently observed value of n from the posterior distribu-
tion of 53 106 sweep replicates within a Euclidean dis-
tance of 0.1 from the test point. For each replicate, we
drew n 2 f0; 1; . . . ; 16g uniformly at random, as well as
s 2 ½0:005; 0:5� uniformly at random from a log-scale.
Across ancestral and convergent sweep scenarios forK ¼ 2 sam-
pled sister populations, we generated replicates for the CEU-GIH

and CEU-YRI models. Thus, an understanding of the de-
mographic history of study populations is required to clas-
sify sweeps as hard or soft (this is also true when
evaluating the significance of candidate results; see
Empirical analysis procedures). As previously, ancestral
sweeps were more ancient than t, while convergent
sweeps were more recent. We drew sweep times t uni-
formly at random from ranges as described in Table 1.
Simulated haplotypes were of length 40 kb (CEU-GIH)
or 20 kb (CEU-YRI), corresponding to the window size
for method performance evaluations, because, in practice,
a value of n would be assigned to a candidate sweep based
on its most prominent associated signal. All other param-
eters were identical to previous experiments using these
demographic models (Table 1).

Testing performance across diverse scenarios

We additionally observed the effects of potentially common
scenarios that deviate from the basic model defined in pre-
vious sections to determine whether these deviations could
mislead SS-H12. First, we examined the effect of admixture
from a distantly related donor on one of the two sampled
populations under the simplified demographic model (Table
2, “admixture, distant donor”). Second, we simulated a sce-
nario in which a pair of sister populations experiences
a sweep, followed by unidirectional admixture from one sis-
ter to the other, once again under the simplifiedmodel (Table
2, “admixture, intersister”). Next, we provided greater depth
to previous experiments by varying the relative sample sizes
of the simulated populations (Table 2, “uneven sample
sizes”), and varying the time at which convergent sweeps
occurred in either population, keeping one fixed and chang-
ing the other (otherwise identical to generalized mammalian
model). To provide context on the effect of tree topology, we
also simulated a K ¼ 4 scenario as a star tree, in which all
populations split from the common ancestor simultaneously
at time t (otherwise identical to generalized mammalian
model). Finally, we generated samples under long-term back-
ground selection (Table 1, “background selection”), which is
known to yield similar patterns of diversity to sweeps
(Charlesworth et al. 1993, 1995; Seger et al. 2010; Cutter
and Payseur 2013; Nicolaisen and Desai 2013; Huber et al.
2016), following the CEU-GIH and CEU-YRI models.

For the distant-donor admixture experiments,we simulated
single pulses of admixture at fractions between 0.05 and
0.4, at intervals of 0.05, from a diverged unsampled donor
(tanc ¼ 23 104, one coalescent unit), tadm ¼ 200 generations
prior to sampling. Admixture follows a strong sweep (s ¼ 0:1;
s ¼ 4Nes ¼ 4000), which occurred at either t ¼ 1400 (ances-
tral) or t ¼ 600 (convergent and divergent). We simulated three
different scenarios of admixture into the sampled target popula-
tion from the donor population, where the target and its sister
were separated by t ¼ 1000 generations. The scenarios con-
sisted of admixture from a highly diverse donor population
(N ¼ 105, tenfold larger than the sampled population), which
may obscure a sweep signature in the sampled target, and
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from a low-diversity donor population (N ¼ 103, 1=10 the
size of the sampled population), which may produce
a sweep-like signature in the target, in addition to an inter-
mediately diverse donor population (N ¼ 104, equal to the
size of the sampled population). For divergent sweeps here,
the population experiencing the sweep was the target. In the
intersister admixture experiment, a pair of equally sized sister
populations (N ¼ 104 diploids) splits t ¼ 1000 generations
ago. Parameters are identical to the previous experiment (Ta-
ble 2), except that admixture occurs between the sister pop-
ulations. We modeled two divergent admixture scenarios, one
in which the selected allele was adaptive in only the original
population, and one where it was identically adaptive in both.

In further experiments under the simplified model, we
sought to determine the manner in which changes to our
basicmodelassumptions changedtheperformanceofSS-H12.
First, we reduced the sample size of one of the populations
from n2 ¼ 100 diploids to n2 ¼ 20, n2 ¼ 40, or n2 ¼ 60, while
increasing the size of the other population (n1) to maintain
n1 þ n2 ¼ 200, keeping all other parameters identical to pre-
vious experiments. This distorted g in the computation of xi
(Equation 2), yielding a new g9 ¼ 180=ð180þ 20Þ ¼ 0:9,
g9 ¼ 160=ð160þ 40Þ ¼ 0:8, or g9 ¼ 140=ð140þ 60Þ ¼ 0:7,
respectively, up from g ¼ 0:5 originally. Second, for conver-
gent sweeps and equal sample sizes n ¼ 100, we modeled
unequal sweep start times, with t1, the time of selection in
population 1, fixed at 800 generations prior to sampling,
paired with a variable t2 2 f200; 400; 600; 800g. This pro-
vided amore realistic scenario than identical start times, which
should not be expected a priori. Third, we tested the suscep-
tibility of SS-H12 to detecting and classifying sweeps on K ¼ 4
populations under a star tree model ðt ¼ 1000Þ. Here, all sis-
ter populations are equally related, having radiated simulta-
neously from their common ancestor. With this model, we
assessed the extent to which the tree topology may influence
shared sweep inference.

Our background selection simulations followed the same
protocol as in previouswork (Cheng et al. 2017). At the start of
the simulation, we introduced a centrally located 11-kb gene
composed of untranslated regions (UTRs; 59 UTR of length
200 nt, 39 UTR of length 800 nt) flanking a total of 10 exons
of length 100 nt separated by introns of length 1 kb. Strongly
deleterious (s ¼ 2 0:1) mutations arose throughout the
course of the simulation across all three genomic elements
under a gamma distribution of fitness effects with shape pa-
rameter 0.2 at rates of 50, 75, and 10% for UTRs, exons, and
introns, respectively. The sizes of the genic elements follow
human mean values (Mignone et al. 2002; Sakharkar et al.
2004). To enhance the effect of background selection on the
simulated chromosome, we also reduced the recombination
rate within the simulated gene by two orders of magnitude to
r ¼ 10210 per site per generation.

Empirical analysis procedures

We applied SS-H12 and SS-G123 to human empirical data
from the 1000 Genomes Project Consortium et al. (2015).We

scanned all autosomes for signatures of shared sweeps in
nine population pairs using 40-kb windows advancing by
increments of 4 kb for samples of non-African populations,
and 20-kb windows advancing by 2 kb for any samples con-
taining individuals from any African population. We based
these window sizes on the interval over which LD, measured
as r2, decayed beyond less than half its original value relative
to pairs of loci separated by 1 kb. As in Harris et al. (2018),
we filtered our output data by removing analysis windows
containing,40 SNPs, equal to the expected number of SNPs
under the extreme case in which a selected allele has swept
across all haplotypes except for one, leaving two lineages
(Watterson 1975). Following Huber et al. (2016), we also
divided all chromosomes into nonoverlapping bins of length
100 kb and assigned to each bin a mean CRG100 score
(Derrien et al. 2012), which measures site mappability and
alignability. We removed windows within bins whose mean
CRG100 score was ,0.9, with no distinction between genic
and nongenic regions. Thus, our overall filtering strategy was
identical to that of Harris et al. (2018). We then intersected
remaining candidate selection peaks with the coordinates for
protein- and RNA-coding genes from their hg19 coordinates.

For each genomic analysis window of each population pair
analysis, we assigned a p-value. To do this, we first generated
33 107 neutral replicate simulations in ms (Hudson 2002)
under appropriate two-population demographic histories
inferred from smc++, using our aforementioned protocol
and parameters described in Table 1. We initially computed
a window’s p-value as the proportion of neutral replicate
jSS‐H12j values exceeding the jSS‐H12j associated with that
window. Because some comparisons yielded windows with
p ¼ 0, meaning that no neutral replicate exceeded their
jSS‐H12j value, we first performed a linear regression of
2log10ðpÞ and jSS‐H12j through the origin, and predicted
the p-value of each window according to the inferred relation-
ship. We demonstrate the linear relationship between
2log10ðpÞ and jSS‐H12j by significant and strong Pearson
correlation (Table S1). However, we found by QQ-plot that
the distribution of empirical p-values was inflated relative to
the theoretical expectation of uniform distribution (Klammer
et al. 2009). To determine our inflation factor l, which meas-
ures the extent to which empirical p-values are inflated relative
to the theoretical, we used a linear regression approach (Yang
et al. 2011). Here, we performed a linear regression, through
the origin, of the x2 quantile function evaluated for our un-
corrected p-values, as a function of x2 quantiles derived from
a vector of uniform probabilities. We adjusted our uncorrected
x2 quantiles, dividing by l, and used their x2 probabilities as
our calibrated p-values (Figure S3). Our Bonferroni-corrected,
genome-wide significance cutoff for a population pair at the
a ¼ 0:05 threshold was p,a=106 ¼ 53 1028, adjusting for
an assumed 1million independent test sites in the human genome
(Altshuler et al. 2008).

Additionally, we determined whether the maximum asso-
ciated jSS‐H12j (the score), and therefore p-value, of a gene
was related to the recombination rate of the genomic region
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in which it resided. We determined this by computing the
Spearman correlation between the maximum SS-H12 of
a gene, and the recombination rate (centimorgan/megabase)
within the genomic analysis window of maximum signal as-
sociated with that gene (International HapMap Consortium
et al. 2007). Furthermore, we observed the effect of model
misspecification on critical SS-H12 values. To do this, we
compared the distribution of SS-H12 simulated under the
nine appropriate smc++-inferred nonequilibrium demo-
graphic models, and the distribution under models with
equal FST to the correct models, but with constant sizes of
N ¼ 104 diploids per population throughout the simulation.
We computed mean FST (Wright 1943, 1951) across
1000 neutral replicates of size 20 or 40 kb under the
smc++-derived models, and used these values to solve
the equation t ¼ 4NFST=ð12 FSTÞ (Slatkin 1991), where t

is the split time in generations between population pairs in
each misspecified model.

We assigned the most probable n for each sweep candidate
following the same protocol as previously (Table 1, “hard/soft
classification”), generating 53 106 replicates of sweep scenar-
ios in SLiM 2 under smc++-inferred demographic histories for
ancestral and convergent sweeps. Once again, t. t for ances-
tral sweep scenarios and t, t for convergent sweep scenarios,
where t is defined by the specific demographic history of the
sample. The CEU-GIH and CEU-YRI replicates used here were
identical to those in the prior classification experiments
(Classifying sweeps as hard or soft). Sequence length for each
replicate was identical to analysis window length for equiv-
alent empirical data (20 or 40 kb), because in practice we
assign n to windows of this size. For both p-value and most
probable n assignment, we used an alternative per-site
per-generation recombination rate of r ¼ 3:1253 1029

(Terhorst et al. 2017), finding that this more closely
matched the distribution of jSS2H12j � ðjSS2G123jÞ val-
ues in the empirical data. Using these simulations in combi-
nation with 106 neutral simulations of the matching length,
we determined the 1% false discovery rate (FDR) cutoffs for
jSS‐H12j. To do this, we drew a random sample of 106 selec-
tion simulations to construct a total sample of 23 106 repli-
cates, half neutral and half sweep. The 1% FDR cutoff was the
jSS‐H12j value for which 1% of the 23 106 replicates ex-
ceeding that value were neutral, and 99% were sweeps.
We repeated this process 103 times to get a distribution
of cutoffs based on our simulations.

Data availability

Tomake the results of our work maximally accessible, we have
uploadedallrelevantscripts,aswellasalloutputs fromanalyses,
into a Dryad repository (https://datadryad.org/stash/share/
tqLw6lJN0uqtyfvj46INlHHGg0nAbFKmsxiFVJ0a0SM). Our
upload is divided into directories labeled to match the broad
directions of our research in this manuscript: simulations
using the smc++-derived CEU-GIH and CEU-YRI models,
simulations using the simplified mammalian model for
K 2 f2; 3; 4; 5g sampled populations, admixture model

simulations, background selection simulations, misspecified
model simulations, simulations to infer n, simulations to as-
sign p-values, and scans of the 1000 Genomes data. Outside
of the latter two batteries of simulations, we provide all of the
raw SLiM-simulated outputs in addition to analyses on those
simulations. For simulations to infer n and p-value simula-
tions, we retain only the summary statistics from windows of
maximum signal for each replicate because each scenario
featured at least 106 replicates. Our summary files condense
those simulations into single, more manageable, documents
for reader reference. In addition to simulations and scripts,
we have also included the builds of ms and SLiM used for
simulations, and our SS-X12 software package. We affirm
that the results of all analyses deriving from our data, using
the scripts, replicates, and summary files within our Dryad
repository, are present within this manuscript’s figures and
tables. Supplemental materials, consisting of Tables S1–S21,
Figures S1–S46, and Supplemental Note Figures SN1–SN7,
are available online through FigShare. Supplemental mate-
rial available at figshare: https://doi.org/10.25386/genetics.
11953632.

Results

Weevaluated the ability of SS-H12 to differentiate among the
simulated scenarios of shared selective sweeps, sweeps
unique to only one sampled population, and neutrality, using
the signature of expected haplotype homozygosity in samples
consisting of individuals from two or more populations. Al-
though our formulation of SS-H12 does not explicitly con-
strain the definition of a population,we define a population as
a discrete group of individuals thatmatemore oftenwith each
other than they do with individuals from other discrete
groups, and themodelswe consideredhere represent extreme
examples in which there is no gene flow between populations
after their split.

We performed simulations using SLiM 2 (Haller and
Messer 2017) under human-inspired parameters
(Takahata et al. 1995; Nachman and Crowell 2000;
Payseur and Nachman 2000; Narasimhan et al. 2017;
Terhorst et al. 2017) for diploid populations of fluctuating
size (N) under nonequilibrium models, as well as constant-
size models, subject to changing selection start times (t)
and strengths (s), across differing split times (t) between
sampled populations. Additionally, we evaluated the ro-
bustness of SS-H12 to a variety of potentially confounding
deviations from the basic simulation parameters (such as
equal sample sizes, no admixture, and asymmetric tree to-
pology). We then used an ABC approach in the same man-
ner as Harris et al. (2018) to demonstrate our ability to
distinguish between shared hard and soft sweeps in sam-
ples from multiple populations. Finally, we show that
SS-H12 recovers previously hypothesized signatures of
shared sweeps in human whole-genome sequences (1000
Genomes Project Consortium et al. 2015), while also uncov-
ering novel candidates. We supplement results from
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SS-H12 analyses with results using SS-G123 in Detection
and classification of shared sweeps from unphased data.
See Materials and Methods, as well as Table 1 and Table
2, for further explanation of experiments. We include
a summary of the major results in Table 3.

Detection of ancestral and convergent sweeps
with SS-H12

Weconductedexperiments toexamine theabilityofSS-H12to
not only identify shared sweep events among two or more
sampled populations ðK$ 2Þ, but categorize them as shared
due to common ancestry, or due to convergent evolution.
Across all scenarios, we scanned 100 kb simulated chromo-
somes using a 20 or 40 kb sliding window with a step size of
1 kb, which was sufficient to analyze sweeps in single pop-
ulations (Harris et al. 2018). These windows provide an in-
terval over which neutral pairwise LD, measured with r2,
decays below half of the value for loci 1 kb apart (Figure
S4), and so we do not expect elevated values of SS-H12
due to background LD. For each sweep scenario, we studied
power at 1 and 5% false positive rates (FPRs) for detecting

shared selective sweeps (Figure 2, Figure 3, Figures S5–S9,
and Figure SN1–SN3) as a function of time at which benefi-
cial alleles arose, under scenarios of ancestral, convergent,
and divergent sweeps.

First, we simulated scenarios in which an ancestral pop-
ulation split into K ¼ 2 descendant populations using a real-
istic nonequilibrium model based on the history of the human
CEU (European descent) and GIH (South Asian descent) pop-
ulations, which we inferred from variant calls (1000
Genomes Project Consortium et al. 2015) with smc++
(Terhorst et al. 2017) (Figure S10). We began with scenarios
of strong ðs ¼ 0:1Þ hard (n ¼ 1 sweeping haplotype) sweeps,
starting between 200 and 4000 generations prior to sam-
pling, and applied an analysis window of size 40 kb (Figure
2). Our CEU-GIH model features a split time of t ¼ 1100
generations prior to sampling, which matches prior estimates
of the split time between Eurasian human populations
(Gravel et al. 2011; Gronau et al. 2011; Schiffels and
Durbin 2014). This series of experiments illustrates the range
of sweep start times over which SS-H12 can detect prominent
selective sweeps. SS-H12 has high power for recent strong

Figure 2 Properties of SS-H12 for simulated strong (s ¼ 0:1; s ¼ 4Nes ¼ 4000) and moderate (s ¼ 0:01; s ¼ 400) hard sweep scenarios under the
CEU-GIH model (t ¼ 1100 generations, or 0.055 coalescent units, before sampling). (Top row) Power at 1% (red lines) and 5% (purple lines) false
positive rates (FPRs) to detect recent ancestral, convergent, and divergent hard sweeps (see Figure 1) as a function of time at which positive selection of
the favored allele initiated (t), with FPR based on the distribution of maximum jSS‐H12j across simulated neutral replicates. (Middle row) Box plots
summarizing the distribution of SS-H12 values from windows of maximum jSS2H12j across strong sweep replicates, corresponding to each time point
in the power curves, with dashed lines in each panel representing SS‐H12 ¼ 0. (Bottom row) Box plots summarizing the distribution of SS-H12 values
across moderate sweep replicates. For convergent and divergent sweeps, t, t, while for ancestral sweeps, t. t. All replicate samples for the CEU-GIH
model contain 99 simulated CEU individuals and 103 simulated GIH individuals, as in the 1000 Genomes Project dataset (1000 Genomes Project
Consortium et al. 2015), and we performed 1000 replicates for each scenario. CEU: Utah Residents with Northern and Western European Ancestry. GIH:
Gujarati Indians from Houston, Texas.
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shared sweeps starting between 400 and 2500 generations
prior to sampling, with power dropping rapidly for shared
sweeps older than 2500 generations (Figure 2).

As expected, the distribution of SS-H12 for detectable
convergent sweeps centered on negative values (Figure 2,
left column), whereas the SS-H12 distributions of ancestral
sweeps centered on positive values (Figure 2, center col-
umn). The vast majority of such replicates had the correct
sign, underscoring the consistency with which SS-H12 cor-
rectly classifies shared sweeps (Figure S11, top). However, in
the rare event that identical haplotypes convergently experi-
ence an identical sweep, a positive value of SS-H12 emerges
at the locus under selection, with larger values expected for
more recent sweeps. Conversely, detectable ancestral sweeps
are highly unlikely to yield negative SS-H12 values in closely
related populations, as SS-H12 is acutely sensitive to the
presence of shared haplotypes in the sample even as the sig-
nal decays. We also found that the power of SS-H12 to detect
convergent sweeps was uniformly greater than for ancestral
sweeps because convergent sweeps are more recent events,
with the selected haplotype not yet eroding due to the effect
of mutation and recombination, as with older ancestral
sweeps. Additionally, because we compute power from the

distribution of maximum jSS‐H12j values for each sweep
scenario, this means that the magnitude of SS-H12 for rep-
licates of shared sweeps must exceed the magnitude under
neutrality for the sweep to be detected, which, for any com-
bination of t and s, is more likely for convergent than ances-
tral sweeps.

To further characterize theperformanceofSS-H12 forhard
sweeps, we repeated experiments on simulated samples from
K ¼ 2 populations both for more anciently diverged popula-
tions (larger t), and for weaker sweeps (smaller s). SS-H12
maintains excellent power to distinguish strong shared
sweeps fromneutrality for amodel based on themore ancient
split between CEU and the sub-Saharan African YRI popula-
tion (Figure 3; 20-kb window), while keeping s ¼ 0:1. We
inferred t ¼ 3740 for this model using smc++ (Terhorst
et al. 2017) (Figure S10), and this estimate fits existing esti-
mates of split times between African and non-African human
populations (Gravel et al. 2011; Gronau et al. 2011; Schiffels
and Durbin 2014). Notably, the signal of ancestral sweeps
remains elevated across many of the tested CEU-YRI sweep
scenarios. Power stayed .0.6 for sweeps more recent than
t ¼ 4500 generations before sampling, representing a range
of sweep sensitivity�1500 generations wider than that of the

Figure 3 Properties of SS-H12 for simulated strong (s ¼ 0:1; s ¼ 4Nes ¼ 8000) and moderate (s ¼ 0:01; s ¼ 800) hard sweep scenarios under the
CEU-YRI model (t ¼ 3740 generations, or 0.0935 coalescent units, before sampling). (Top row) Power at 1% (red lines) and 5% (purple lines) false
positive rates (FPRs) to detect recent ancestral, convergent, and divergent hard sweeps (see Figure 1) as a function of time at which positive selection of
the favored allele initiated (t), with FPR based on the distribution of maximum jSS‐H12j across simulated neutral replicates. (Middle row) Box plots
summarizing the distribution of SS-H12 values from windows of maximum jSS‐H12j across strong sweep replicates, corresponding to each time point in
the power curves, with dashed lines in each panel representing SS‐H12 ¼ 0. (Bottom row) Box plots summarizing the distribution of SS-H12 values
across moderate sweep replicates. For convergent and divergent sweeps, t, t, while for ancestral sweeps, t. t. All replicate samples for the CEU-YRI
model contain 99 simulated CEU individuals and 108 simulated YRI individuals, as in the 1000 Genomes Project dataset (1000 Genomes Project
Consortium et al. 2015), and we performed 1000 replicates for each scenario. YRI: Yoruba people from Ibadan, Nigeria.
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CEU-GIH model. This is because it is easier to detect selective
sweeps in more diverse genomic backgrounds (Harris et al.
2018), such as that of the YRI population. Despite this, we
observed a greater proportion of ancestral sweeps with spu-
riously negative values of SS-H12 in the CEU-YRI model than
in the CEU-GIH model because over 3740 generations, the
two simulated populations had sufficient time to accumulate
unique mutations and recombination events that differenti-
ated their common high-frequency haplotypes (Figure S12,
top).

Reducing the selection coefficient to s ¼ 0:01 for both
models had the effect of shifting the range of t over which
SS-H12 had power to detect shared sweeps. Because weakly
selected haplotypes rise to high frequency more slowly than

strongly selected haplotypes, there is a greater delay between
the selection start time and the time at which a shared sweep
can be detected for smaller values of s. Thus, SS-H12 reaches
a maximum power to detect moderate shared sweeps
ðs ¼ 0:01Þ for older values of t, additionally maintaining this
power for less time than for strong sweeps under bothmodels
(top rows of Figure 2 and Figure 3). Themisclassification rate
for shared sweeps is also greater for weaker sweeps, espe-
cially for convergent sweeps in the CEU-GIH model and an-
cestral sweeps in the CEU-YRI model (Figures S13 and S14,
top).

Because the single-population statistic H12 has power to
detect both hard and soft sweeps, we next performed analo-
gous experiments for simulated soft sweep scenarios.

Table 1 Summary of parameters for experiments involving simulated human models

Experiment
Sample
sizes

Mutation
rate (m) [u]

Recombination
rate (r) [r]

Sequence
length;

window size

Split time (t,
generations)

[coalescent units]

Selection coefficient
(s) [s] and time
(t, generations)
[coalescent units] Figures

Power
simulations

99
(CEU),
103
(GIH),
108
(YRI)

1:253 1028

[u ¼ 53 1024

(no SSA),
u ¼ 1023

(with SSA)]

1028, drawn at
random from
exponential
distribution
[r ¼ 431024

(no SSA),
r ¼ 831024

(with SSA)]

100; 20
(CEU-YRI),
40
(CEU-GIH)

CEU-GIH: 1100
[0.055]; CEU-
YRI:
3740 [0.0935]

s ¼ 0:01 [s ¼ 4000
(no SSA),
s ¼ 8000
(with SSA)],
s ¼ 0:1
[s ¼ 400
(no SSA),
s ¼ 800
(with SSA)];
t 2 ½200;4000�
[t=ð2NeÞ 2 ½0:01;0:2�]
(CEU-GIH),
t 2 ½400;6000�
(CEU-YRI)
[t=ð2NeÞ 2 ½0:01;0:15�]

2, 3;
S2–S8;
S11–
S18;
S34–
S43

Background
selection

Same
as
above

Same as
above

Same as above,
but reduced to
r ¼ 10210

across central
gene

Same as
above

Same as above s ¼ 20:1, occurring
from the start of the
simulation on central
gene

S23

Hard/soft
classification

Same as
above;
also
91 (GBR),
99 (KHV),
104 (JPT),
99 (LWK)

Same as
above

3:12531029

[r ¼ 1:2531024

(no SSA),
r ¼ 2:531024

(with SSA)],
drawn as above

20 (with SSA),
40 (no SSA);
sequence
treated
as a single
window

Same as
above; also,
300 (CEU-GBR),
1560 (CEU-JPT),
3740 (GIH-YRI),
1580 (JPT-GIH),
660 (JPT-KHV),
3740 (JPT-YRI),
2800 (LWK-YRI)

s 2 ½0:005; 0:5� uniformly
at random from
log-scale; t dependent
on population pair,
ancestral sweeps finish
40 generations before
t, convergent sweeps
start 40 generations
after t

5; S24–
S29

p-value
assignment

Same as
above

Same as
above

Same as
hard/soft
classification

Same as
hard/soft
classification

Same as
hard/soft
classification

No selection Tables S1,
S3, and
S4–S21

False
discovery
rate

Same as
above

Same as
above

Same as
hard/soft
classification

Same as
hard/soft
classification

Same as
hard/soft
classification

Same as hard/soft
classification for
sweeps, and same
as p-value simulations
for neutral

Table S2

We provide diploid sample sizes, per-site per-generation mutation and recombination rates, and sequence length in kilobases. Additionally, we indicate the population-scaled
values for mutation and recombination rates in brackets upon their first appearance, scaling by 4Ne where Ne ¼ 104 for population pairs not containing sub-Saharan African
(SSA) populations, and Ne ¼ 23 104 otherwise (u ¼ 4Nem; r ¼ 4Ner; s ¼ 4Nes). The relationship between generations and coalescent units is 2Ne generations per
coalescent unit.
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Maintaining values of t, t, and s identical to those for hard
sweep experiments, we simulated soft sweeps as selection on
standing genetic variation for n ¼ 4 and n ¼ 8 distinct sweep-
ing haplotypes (Figures S5–S8). We found that trends in the
power of SS-H12 to detect shared soft sweeps remained con-
sistent with those for hard sweeps. However, the power of
SS-H12 for detecting soft sweeps, as well as classification
ability (Figures S11–S14, middle and bottom rows), were
attenuated overall relative to hard sweeps, proportionally
to the number of sweeping haplotypes, with a larger drop
in power for older sweeps and little to no effect on power

for more recent sweeps. Our observations therefore align
with results for the single-population H12 statistic (Garud
et al. 2015; Harris et al. 2018). Thus, the ability to detect
a sweep derives from the combination of s, t, and n, with
stronger recent sweeps on fewer haplotypes being easiest to
detect, and detectable over larger timespans.

We contrast our results for shared sweeps across popula-
tionpairswith those fordivergent sweeps,whichwepresent in
parallel (right columns of Figure 2, Figure 3, and Figure S5–
S8). Across identical values of t as for each convergent sweep
experiment, we found that divergent sweeps, in which only

Table 2 Summary of parameters for experiments involving the generalized mammalian model

Experiment
Sample
sizes

Mutation (m)
[u]

and recombi-
nation

(r) [r] rates

Sequence
length;
window

size

Split time
(t, generations)
[coalescent units]

Selection coefficient (s)
[s] and time

(t, generations)
[coalescent units] Other parameters Figures

Generalized
mammalian
model, including
star tree and
nonsimultaneous
sweeps
(K 2 f2; 3; 4;5g)

100 per
population

m ¼ 2:531028

[1023],
r ¼ 1028

(uniform
across
replicates)
[r ¼ 431024]

100; 40 t 2 f250,500,750,
1000g
[t=ð2NeÞ 2 f0:0125,
0.025, 0.0375,
0:05g]; t ¼ 1000
for K ¼ 2 and star
tree (K ¼ 4), and
sequential
starting from
t ¼ 1000
otherwise

s ¼ 0:1 [s ¼ 4000];
t 2 ½200;4000�
[t=ð2NeÞ 2 ½0:01;0:2�]

Population splits
separated by
250
generations for
K.2 scenarios;
K.2 trees are
asymmetric

S1; S4; S9
and
Supple
mental
note
SN1–
SN3;
SN5;
SN6,
SN7

Admixture, distant
donor (K ¼ 2)

Same as above Same as above Same as
above

t ¼ 1000
[t=ð2NeÞ ¼ 0:05]
between sampled
sisters

s same as above;
t ¼ 1400
[t=ð2NeÞ ¼ 0:07]
for ancestral sweeps,
and
t ¼ 600
[t=ð2NeÞ ¼ 0:03]
for convergent and
divergent sweeps

Distant donor split
from sampled
populations
t ¼ 20000
generations
[t=ð2NeÞ ¼ 1]
ago; admixture
occurred 200
generations
[0.01
coalescent units]
ago; admixture
proportion a 2

f0:05;0:1; . . . ;0:4g

4; S19

Admixture,
intersister
(K ¼ 2)

Same as above Same as above Same as
above

Same as above Same as above Adaptive mutation
originates in
donor
population and
may be adaptive
or not in its
target sister;
timing and
proportion of
admixture same
as above

Supple
mental
note
SN4

Uneven sample
sizes (K ¼ 2)

Pooled sample
size is 200
diploids; smaller
sample size is
nsmall 2 f20;40;60g

Same as above Same as
above

Same as above s and t same as
generalized
mammalian model

Protocol identical
to unmodified
generalized
mammalian
model

S20–S22

We provide diploid sample sizes, per-site per-generation mutation and recombination rates, and sequence length in kilobases. Additionally, we indicate the population-scaled
values for mutation and recombination rates in brackets upon their first appearance, scaling by 4Ne where Ne ¼ 104 (u ¼ 4Nem; r ¼ 4Ner; s ¼ 4Nes). The relationship
between generations and coalescent units is 2Ne generations per coalescent unit.
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one of the two simulated sampled populations experiences
a sweep ðt, tÞ, are not visible to SS-H12 for any combination
of simulation parameters. To understand the properties of
divergent sweeps relative to shared sweeps, we compared
the distributions of their SS-H12 values at peaks identified
from the maximum values of jSS‐H12j for each replicate. We
observed that the distributions of the divergent sweeps re-
main broadly unchanged from one another under all param-
eter combinations, and closely resemble the distribution
generated under neutrality, as all are centered on negative
values with small magnitude, and have small variance. Thus,
the use of a correction factor that incorporates the values of
H12 from each component population in the sample (see
Equation 3) provides an appropriate approach for preventing
sweeps that are not shared from appearing as outlying sig-
nals. In the absence of correction, the shared sweep statistic
(properly termed H12Anc), incorrectly treats the reduced

haplotype diversity around the site under selection in one
population as the locus of a convergent sweep, owing to
the large disparities in haplotype frequencies between the
sampled populations (right columns of Figures S15 and
S16). We additionally explore the properties of SS-H12 on
a simplified demographic history with constant population
size, and up to K ¼ 5 sampled populations (Figure S1),
intended as a more general mammalian model, in Part 1 of
the Supplemental Note.

In addition to detecting shared sweeps under a variety of
scenarios with high power, we also found that detecting
sweeps with SS-H12 provides more power than performing
multiple independent analyses across populations with the
single-population statistic H12 (Garud et al. 2015). To dem-
onstrate this, we reanalyzed our simulated CEU-GIH and
CEU-YRI replicates (Figure 2 and Figure 3), assessing the
ability of H12 to simultaneously detect an outlying sweep

Table 3 Summary of SS-H12 signals and their interpretation across various scenarios

Scenario Sign of SS-H12
Magnitude
of SS-H12 Comments Reference

Neutrality Typically negative Small Magnitude becomes positive in bottleneck sce-
narios where the number of shared haplotypes
between populations is higher by chance.

Figure 2, Figure 3, and Figure S5–S8,
see first boxplot of left column in
each figure.

Ancestral sweep Positive Large Magnitude is generally smaller than for conver-
gent sweeps because ancestral sweeps are
older; rare negative values may arise for weaker
sweep strengths.

Figure 2, Figure 3, and Figure S5–S8 for
power curves and boxplots, Figures
S11–S14 for sign of SS-H12, center
column of each figure.

Convergent
sweep

Predominantly
negative

Large Largest magnitude of SS-H12 across tested sce-
narios; positive values may arise in the rare
event that two independent sweeps on the
same haplotype occur between sampled pop-
ulations.

Figure 2, Figure 3, and Figure S5–S8,
Figure S11–S14, left column of each
figure; Supplemental note Figure
SN5.

Divergent sweep Typically negative Small Trends in magnitude of SS-H12 match those of
neutrality without exception; large magnitudes
are impossible for divergent sweeps due to the
correction factor (Equation 3).

Figure 2, Figure 3, and Figure S5–S8,
Figures S11–S14, right column of
each figure.

Relative sample
sizes

Negative or posi-
tive

Small or large The performance of SS-H12 does not depend on
the relative sizes of each sample, with values of
g 2 f0:7;0:8;0:9g (Equation 2) behaving as
with g ¼ 0:5.

Figures S20–S22.

Background
selection

Typically negative Small Background selection has no discernible effect on
the distribution of SS-H12 relative to neutrality.

Figure S23

Admixture Predominantly
negative (see
comments)

Small or large Sufficient admixture from a diverse enough donor
population will erode the signal of a sweep,
yielding negative values of small magnitude;
admixture with a low-diversity donor does not
affect magnitude or signal of convergent
sweeps, but will cause ancestral sweeps to
spuriously resemble convergent sweeps. Ad-
mixture between closely related sampled sister
populations yields positive values.

Figure 4 and Figure S19 for distant-
donor scenario; Supplemental note
Figure SN4 for intersister scenario.

Number of
sampled
populations (K)

Negative or posi-
tive

Small or large The number of populations included in the sample
does not affect inference with SS-H12, across
tested asymmetric and star phylogenies.

Figures S9 and Supplemental note Fig-
ures Sn1-SN3 (asymmetric); Figures
SN6 and SN7 (star).

Unphased data Negative or posi-
tive

Small or large Applied to unphased multilocus genotypes (MLGs)
as SS-G123, our approach has similar power
and yields comparable inferences to SS-H12.
Classification ability decays more rapidly be-
cause MLGs are more diverse than haplotypes

Figures S34–S41.
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signal in both populations. That is, wemeasured the power of
H12 at the 0.5% FPR [Bonferroni-corrected for multiple test-
ing (Neyman and Pearson 1928), providing the entire exper-
iment with a 1% FPR cutoff] to detect an outlying sweep in
the CEU sample and in either the GIH (Figure S17) or YRI

(Figure S18) samples. For the most recent convergent hard
sweeps, joint analysis with H12 has equivalent power to
SS-H12 analysis, but the power of H12 never matches that
of SS-H12 for ancestral hard sweeps, and for the majority of
tested soft sweeps (n ¼ 4 and n ¼ 8), regardless of timing.

Figure 4 Effect of admixture from a diverged, unsampled donor lineage on distributions of SS-H12 values at peaks of maximum jSS‐H12j, in samples
consisting of individuals from K ¼ 2 populations following the simplified mammalian model (t ¼ 1000; 0.05 coalescent units), under simulated recent
ancestral, convergent, and divergent sweeps. For ancestral sweeps, selection occurred 1400 generations (0.07 coalescent units) before sampling. For
convergent and divergent sweeps, selection occurred 600 generations (0.03 coalescent units) before sampling. The effective size of the donor
population varies from N ¼ 103 (an order of magnitude less than that of the sampled populations), to N ¼ 105 (an order of magnitude more), with
admixture at 200 generations (0.01 coalescent units) before sampling at rates 0.2 to 0.4, modeled as a single pulse. The donor diverged from the
sampled populations 23104 ¼ 2N generations (one coalescent unit) before sampling. In divergent sweep scenarios, admixture occurred specifically
into the population experiencing a sweep. All sample sizes are of n ¼ 100 diploid individuals, with 1000 replicates performed for each scenario. For
comparison, we include unadmixed results in each panel.
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These trends persisted even for SS-H12 computed from half-
sized samples (thus, matching the sample sizes of individual
H12 analyses), indicating that avoiding multiple testing with
SS-H12 analysis is likely to yield a greater return on sampling
effort, especially as the number of sampled populations, K,
increases.

Performance of SS-H12 across diverse scenarios

Admixture: Because SS-H12 relies on a signal of elevated
expected haplotype homozygosity, it may be confounded by
nonadaptive processes that alter levels of population-genetic
diversity. For this reason,we examined the effect of admixture
on the power of SS-H12 in the context of ancestral, conver-
gent, and divergent strong (s ¼ 0:1) sweeps between popu-
lation pairs. Parameters were derived from the simplified
mammalian model (Table 2). For the first set of experiments
(termed distant-donor), one sampled population (the target)
receives gene flow from a diverged, unsampled donor out-
group population (Figure 4 and Figure S19). Admixture oc-
curred as a single unidirectional pulse 200 generations before
sampling, and in the case of the divergent sweep, occurred
specifically in the population experiencing the sweep. The
donor split from the common ancestor of the two sampled
populations (the target and its unadmixed sister) 23 104

generations before sampling—within a coalescent unit of
the sampled populations, similar to the relationship between
Neanderthals andmodern humans (Harris and Nielsen 2016;
Juric et al. 2016)—and had an effective size either one-tenth,
identical to, or tenfold the size of the target. Although the
donor does not experience selection, extensive gene flow
from a donor with low genetic diversity may resemble
a sweep. Correspondingly, gene flow from a highly diverse
donor may obscure sweeps. The second admixture scenario
we examined featured only the two sister populations sepa-
rated by t ¼ 1000 generations, wherein one admixed into
the other 200 generations prior to sampling, as previously
(intersister admixture; see Supplemental Note, Part 2).

As expected, gene flow from a distant donor into the target
population distorted the SS-H12 distribution of the two-pop-
ulation sample relative to no admixture (Figure 4), and this
distortion was proportional to the level of admixture from the
donor, as well as the donor population’s size. Ancestral
sweeps were the most likely to be misclassified following
admixture from a donor of small effective size (N ¼ 103;
Figure 4, top row), increasingly resembling convergent
sweeps as the rate of gene flow increased (though ultimately
with little change in power to detect the shared sweep; Figure
S19, top row). The confounding effect of admixture on an-
cestral sweep inference emerges because low-diversity gene
flow into one population yields a differing signal of elevated
expected haplotype homozygosity in each population, spuri-
ously resembling a convergent sweep. In contrast, the distri-
butions of SS-H12 values and the power of SS-H12 for
convergent and divergent sweeps remained broadly un-
changed relative to no admixture under low-diversity admix-
ture scenarios (Figure 4 and Figure S19, top rows). Because

two populations subject to convergent or divergent sweeps
are already extensively differentiated, further differentiation
due to admixture does not impact the accuracy of sweep
timing classification using SS-H12.

For intermediate donor effective size (N ¼ 104; Figure 4
and Figure S19, middle rows), the magnitudes of both the
ancestral and convergent sweep signals attenuate toward
neutral levels, and the power of SS-H12 wanes as the admix-
ture proportion increases. This is because the genetic diver-
sity in the target population increases to levels resembling
neutrality, overall yielding a pattern spuriously resembling
a divergent sweep that SS-H12 cannot distinguish from neu-
trality. Accordingly, the magnitude and power of SS-H12 un-
der a divergent sweep scenario following admixture scarcely
change under the N ¼ 104 scenario. As the effective size of
the donor population grows large (N ¼ 105; Figure 4 and
Figure S19, bottom rows), SS-H12 becomes more robust to
the effect of admixture for shared sweeps, accurately identi-
fying ancestral and convergent sweeps with high power at
greater admixture proportions relative to the N ¼ 104 sce-
nario. However, the power of SS-H12 spuriously rises to 1.0
for divergent sweeps under the N ¼ 105 admixture scenario.
Both the increased robustness to admixture for the ancestral
and convergent sweeps, as well as the elevated power for
divergent sweeps, result from a reduction in the magnitude
of SS-H12 under neutrality for the N ¼ 105 admixture sce-
nario relative to N ¼ 104, which does not occur for the sweep
scenarios. That is, jSS‐H12j remains similar across the
N ¼ 105 and N ¼ 104 admixture scenarios for sweeps, while
jSS‐H12j for the neutral background is smaller, meaning that
any sweep, even a divergent sweep, is more prominent for
larger donor population sizes.

Different sample sizes: Next, we performed experiments to
understand the effect of deviating from basic parameters of
the simplified unadmixed mammalian model, changing one
parameter at a time. First, we generated replicates for K ¼ 2
populations containing an overall sample size of n ¼ 200
diploids representing the sum of component sample sizes
n1 and n2, modifying these such that more individuals were
sampled from one subpopulation than the other. This there-
fore changed the value of g ¼ n1=ðn1 þ n2Þ for the compu-
tation of xi (see Equation 2). We simulated values of g ¼ 0:7
(n1 ¼ 140; n2 ¼ 60), 0.8 (n1 ¼ 160; n2 ¼ 40), or 0.9
(n1 ¼ 180; n2 ¼ 20) in contrast to the standard g ¼ 0:5
(n1 ¼ n2 ¼ 100; as seen in Figure S9). Regardless of g, we
found that trends in power for shared sweeps (n ¼ 1,
s ¼ 0:1) were consistent with one another, and that the dis-
tribution of SS-H12 values yielded the expected sign—neg-
ative for convergent sweeps and positive for ancestral
sweeps—suggesting that sample composition should not
generally affect these inferences (Figure S20–S22). We also
observed a slight, spurious increase in power for divergent
sweeps (occurring in population 1) that was most promi-
nent for g ¼ 0:9, but visible at t ¼ 200 for all three g.0:5
scenarios. This effect emerged as a result of two factors.
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First, strong sweeps have not established by t ¼ 200,
meaning that the sampled sister populations are not yet
extensively differentiated at this point, and have some-
what closer H12 values to one another than for older
sweeps. Second, smaller sample sizes for either subpopu-
lation translate to reduced haplotypic diversity in the sam-
ple overall, resulting in elevated magnitudes of SS-H12.
Thus, while extreme distortions in g and smaller sample
sizes may yield more prominent divergent sweeps, their
signature remains minor, rendering them highly unlikely
to yield outlying signals relative to shared sweeps. We
subsequently tested power and classification ability for
convergent sweeps initiating at different timepoints on
the simplified mammalian tree, as well as for a deviation
to the bifurcating tree assumption by simulating a star
phylogeny with K ¼ 4 subpopulations (see Supplemental
Note, Part 3).

Background selection: Finally,weobserved theeffect of long-
term background selection on the neutral distribution of
SS-H12 values (Figure S23). Background selection may yield
signatures of genetic diversity resembling selective sweeps
(Charlesworth et al. 1993, 1995; Seger et al. 2010; Cutter
and Payseur 2013; Nicolaisen and Desai 2013; Huber et al.
2016), though previous work suggests that background se-
lection does not drive particular haplotypes to high frequency
(Enard et al. 2014; Harris et al. 2018). Our two background
selection scenarios for samples from K ¼ 2 populations, with
t ¼ 1100 (CEU-GIH model) and 3740 (CEU-YRI model) gen-
erations, were performed as described in the Materials and
Methods, following the protocol of Cheng et al. (2017).
Briefly, we simulated a 100-kb sequence featuring a centrally
located 11-kb gene consisting of exons, introns, and untrans-
lated regions, across which deleterious variants arose ran-
domly throughout the entire simulation period. In
agreement with our expectations, we found that background
selection is unlikely to confound inferences from SS-H12,
yielding only marginally larger values of |SS-H12| than does
neutrality (Figure S23). Accordingly, SS-H12 does not clas-
sify background selection appreciably differently from
neutrality.

Classifying shared sweeps as hard or soft from the
number of sweeping haplotypes

Because the primary innovation of the single-population ap-
proach is its ability to classify sweeps as hard or soft from
paired (H12,H2/H1) values, we evaluated the corresponding
properties of our current approach for samples consisting of
K ¼ 2 populations (Figure 5). Here, we color a space of
paired ðjSS-H12j; H2Tot=H1TotÞ values, each bounded by
½0:005; 0:995�, according to the inferred most probable num-
ber of sweeping haplotypes n for each point in the space.
Similarly to the approach of Harris et al. (2018), we inferred
the most probable n using an ABC approach in which we
determined the posterior distribution of n from 53 106 rep-
licates of sweep scenarios with n 2 f0; 1; . . . ; 16g and

s 2 ½0:005; 0:5�, both drawn uniformly at random for each
replicate (the latter drawn from a log-scale), and where
n ¼ 0 simulations are neutral replicates. A test point in
ðjSS‐H12j; H2Tot=H1TotÞ space was assigned a value of n

based on the most frequently occurring n among simula-
tions whose ðjSS‐H12j; H2Tot=H1TotÞ coordinates were
within a Euclidean distance of 0.1 from that test point
(see Materials and Methods). We were able to classify re-
cent shared sweeps as hard or soft, but found our current
approach to have somewhat different properties to the
single-population approach.

For ancestral sweep scenarios and t ¼ 1100 generations
(t 2 ½1140; 3000�, CEU-GIH model), the pattern of paired
ðjSS‐H12j; H2Tot=H1TotÞ values generally followed that of
single-population analyses (Harris et al. 2018) (Figure 5,
top-left). For a given value of jSS‐H12j, smaller values of
H2Tot=H1Tot were generally more probable for ancestral
sweeps from smaller n, and inferred n increased with
H2Tot=H1Tot. This fit our expectations because, as the number
of ancestrally sweeping haplotypes in the pooled population
increases, the value of H2Tot increases relative to H1Tot. Ad-
ditionally, ancestral sweeps from larger n (softer sweeps) are
unlikely to generate large values of jSS‐H12j or small values
of H2Tot=H1Tot, and the most elevated values of jSS‐H12j
were rarely associated with more than four sweeping haplo-
types. Accordingly, harder and softer ancestral sweeps
yielded distinct probability densities of jSS‐H12j and
H2Tot=H1Tot from one another (Figure S24, left column).

We note, however, the presence of paired values
inferred to derive from n ¼ 1 for some intermediate values
of H2Tot=H1Tot, as well as the presence of points with
inferred n$4 at smaller H2Tot=H1Tot This may indicate
that, among ancestral sweep replicates for the CEU-GIH
model, weaker hard sweep signals may occasionally be
difficult to resolve from stronger soft sweep signals, as
both should yield intermediate levels of haplotypic diver-
sity. The difficulty in resolving this region of the plot also
derives from the low number of nearby observations
(within a Euclidean distance of 0.1) from which to make
inferences, despite the higher than average support for
these observations (Figure S26, top row). Additionally,
the next-most likely n for most points tended to be an
immediately adjacent value (for example, if n ¼ 4, then
the next most likely n is either 3 or 5; Figure S27, top
row). Under simulated CEU-YRI ancestral sweep scenar-
ios (t 2 ½3780; 5000�, t ¼ 3740; Figure 5, top right), we ob-
served a broadly similar pattern of inferred n. However, the
increased age of sweeps relative to the CEU-GIH model
resulted in more erratic inferences across intermediate
jSS‐H12j paired with intermediate H2Tot=H1Tot, smaller
mean jSS‐H12j and larger mean H2Tot=H1Tot across all clas-
ses (Figure S25, left column), and somewhat less support for
inferences throughout the plot (Figures S28 and S29, top
row). Our approach still maintains a clear tendency to infer
sweeps with smaller H2Tot=H1Tot as hard, thereby preserving
its basic classification ability.
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The convergent sweep experiments yielded distinctly dif-
ferent occupancies and distributions of possible paired
ðjSS‐H12j; H2Tot=H1TotÞ values relative to ancestral sweeps,
and provided greater resolution and inferred support among
the tested values of n, showing little irregularity in the as-
signment of n (bottom rows of Figure 5, and Figures S26–
S29). In addition, trends in the occupancy of hard and soft
sweeps were generally concordant between replicates for
both the CEU-GIH (t ¼ 1100, t 2 ½200; 1060�) and CEU-YRI
(t ¼ 3740, t 2 ½200; 3700�) models, though jSS‐H12j was
larger on average for CEU-GIH (Figures S24 and S25, right
columns). For these experiments, we simulated simulta-
neous independent sweeps, either both soft or both hard,
allowing each population to follow a unique but compara-
ble trajectory. Thus, there were always at least two sweep-
ing haplotypes in the pooled population. Accordingly,
convergent hard sweeps, unlike ancestral hard sweeps,
are associated primarily with large values of jSS‐H12j
and intermediate values of H2Tot=H1Tot. Furthermore,
strong convergent sweeps of any sort could not generate
small H2Tot=H1Tot values unless |SS-H12| was also small.
Even so, convergent sweeps from larger n occupy a distinct
set of paired ðjSS‐H12j; H2Tot=H1TotÞ values that is shifted
either toward smaller jSS�H12j, larger H2Tot=H1Tot, or
both, demonstrating that the accurate and consistent in-
ference of n is possible for convergent sweeps. Unlike for
ancestral sweeps or single-population analyses, we ob-
served that the smallest values of H2Tot=H1Tot paired with
the smallest values of jSS‐H12j were associated with neu-
trality, representing scenarios in which similar highly

diverse haplotype frequency spectra arose in both pop-
ulations by the time of sampling.

Application of SS-H12 to human genetic data

We applied SS-H12 to whole-genome sequencing data from
global human populations in phase 3 of the 1000 Genomes
Project (1000 Genomes Project Consortium et al. 2015),
which is ideal as input because it contains large sample sizes
and no missing genotypes at polymorphic sites. We searched
for shared sweep signals within the RNA- and protein-coding
genes of geographically proximate and distant human popu-
lation pairs, performing various comparisons of unadmixed
European, South Asian, East Asian, and Sub-Saharan African
populations (Tables S4–S12). We scanned with sliding anal-
ysis windows of 40 kb with a step size of 4 kb for samples
with non-African populations, or 20 kb with step size 2 kb
otherwise, to overcome the effect of short-term LD (Figure
S30). For the top 40 outlying candidate shared sweeps
among population pairs, we assigned p-values from a neutral
distribution of 106 replicates following human demographic
models inferred from smc++ (see Materials and Methods).
Our Bonferroni-corrected genome-wide significance thresh-
old (Neyman and Pearson 1928) for single comparisons
was 53 1028 (Altshuler et al. (2008); we did not assess
significance across multiple global-scale tests). We ad-
ditionally inferred the maximum posterior estimates on
n 2 f1; 2; . . . ; 16g for each top candidate from a distribution
of 53 106 simulated convergent or ancestral sweep repli-
cates, depending on our classification of the candidate from
the sign of SS-H12, following the same smc++-derived

Figure 5 Ability of paired
ðjSS‐H12j;   ; H2Tot=H1TotÞ values to infer the
most probable number of sweeping haplotypes
n in a shared sweep. Most probable n for each
test point was assigned from the posterior dis-
tribution of 53106 sweep replicates with
n 2 f0; 1; . . . ;16g, drawn uniformly at random.
(Top row) Ancestral sweeps for the CEU-GIH
model (t ¼ 1100, t=ð2NeÞ ¼ 0:055 coalescent
units, left) and the CEU-YRI model (t ¼ 3740,
t=ð2NeÞ ¼ 0:0935 coalescent units, right),
with t 2 ½1140; 3000� (t=ð2NeÞ 2 ½0:057; 0:15�
coalescent units, left) and t 2 ½3780;5000�
(t=ð2NeÞ 2 ½0:0945;0:125� coalescent units,
right). (Bottom row) Convergent sweeps for
the CEU-GIH model (left) and the CEU-YRI
model (right), with t 2 ½200;1060�
(t=ð2NeÞ 2 ½0:01; 0:053� coalescent units, left)
and t 2 ½200;3700� (t=ð2NeÞ 2 ½0:005;0:0925�
coalescent units, right). Colored in red are points
whose paired ðjSS‐H12j; H2Tot=H1TotÞ values
are more likely to result from hard sweeps, those
colored in shades of blue are points more likely
to be generated from soft sweeps, and gray
indicates a greater probability of neutrality.
Regions in white are those for which no obser-
vations of sweep replicates within a Euclidean
distance of 0.1 exist.
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models. We categorized sweeps from n ¼ 1 as hard, and
sweeps from n$ 2 as soft. By using both neutral and sweep
simulations, we were also able to assign 1% FDR jSS‐H12j
cutoffs for each population pair comparison (Table S2).

Overview of genome-wide trends: Across all comparisons,
we found that ancestral hard sweeps comprised the majority
of prominent candidates at RNA- and protein-coding genes,

regardless of population pair. Many of these candidate ances-
tral sweeps were detected with H12 in single populations
(Harris et al. 2018), including novel sweeps at RGS18 in the
sub-Saharan African pair of YRI and LWK (Luhya people from
Webuye, Kenya; n ¼ 1; previously identified in YRI; Figure 6,
second row) and at P4HA1 between the European CEU and
South Asian GIH populations (n ¼ 1; previously identified in
GIH, though as a soft sweep; Figure S32, middle row). We

Figure 6 Top outlying shared sweep candidates at RNA- and protein-coding genes in global human populations. The signal peak, including chromo-
somal position, magnitude, and highlighted window of maximum SS-H12 (left column), as well as the pegas haplotype network for the window (Paradis
2010) are displayed for each candidate. The East Asian JPT and KHV populations experience an ancestral soft sweep at GPHN (top row). The sub-
Saharan African populations LWK and YRI share an ancestral hard sweep at RGS18 (second row). The European CEU population experiences a shared
sweep with YRI at SPRED3 (third row). The European CEU and East Asian JPT have a convergent sweep at C2CD5, with a different, single high-frequency
haplotype present in each population (bottom row). Haplotype networks are truncated to retain only haplotypes with an observed count $6. The
number of haplotypes belonging to the sweeping class (es) is indicated as a fraction, and the Hamming distance (H) between sweeping haplotypes is
indicated where applicable. New population abbreviations: Japanese people from Tokyo (JPT); Kinh people of Ho Chi Minh City, Vietnam (KHV); Luhya
people from Webuye, Kenya (LWK).
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also observed a dearth of large-magnitude negative values in
Tables S4–S12, with prominent convergent sweep candi-
dates only occurring between the most diverged population
pairs. These consisted of C2CD5 between CEU and the East
Asian JPT population (Japanese in Tokyo; n ¼ 1), PAWR be-
tween Indo-European populations CEU and GIH with the
sub-Saharan African YRI population (small and almost-sig-
nificant for the CEU-YRI comparison, p ¼ 6:63 1028, n ¼ 1
for both comparisons; Tables S7 and S9), and MPHOSPH9
and EXOC6B between JPT and YRI (both with n ¼ 1). Re-
gardless of genome-wide significance threshold, our 1%
FDR cutoffs for jSS2H12j indicate that the outlying values
we identified in our scans were much more likely for sweeps
than for neutrality, especially for more distantly related pop-
ulations, which are unlikely to produce high-magnitude
SS-H12 values in the absence of a sweep (Table S2). Support-
ing this pattern, we observed that the proportion of genic
windows .1% FDR cutoff was uniformly higher than the
proportion of nongenic windows exceeding the cutoff (Table
S2).

Our observations also reflect the broader pattern that
negative SS-H12 values are rare between closely related
populations. Indeed, the majority of SS-H12 values at pro-
tein-coding genes between populations from the same geo-
graphic region are positive, and this distribution shifts toward
negative values for more differentiated population pairs,
consisting primarily of intermediate-magnitude negative val-
ues between the YRI and non-African populations (Figure
S31). Our present results are also consistent with the H12-
based observations of Harris et al. (2018) in single popula-
tions, in that we found a greater proportion of hard sweeps
than soft sweeps among outlying sweep candidates in
humans, though both were present between all population
pairs. We additionally found that the maximum jSS‐H12j
associated with a gene had a significantly negative Spearman
correlation with its recombination rate regardless of popula-
tion comparison, consistent with previous observations
(O’Reilly et al. 2008) and highlighting a secondary pattern
potentially responsible for observed genome-wide SS-H12
values (Table S3).

The top shared sweep candidates comprised genes that
have been described in greater detail in the literature
(Bersaglieri et al. 2004; Sabeti et al. 2007; Gerbault et al.
2009; Liu et al. 2013), including LCT and the surrounding
cluster of genes on chromosome 2 including MCM6, DARS,
and R3HDM1 in the European CEU-GBR (GBR: English and
Scottish) pair (n ¼ 1 for all; Table S4), reflecting selection for
the lactase persistence phenotype. We also recovered the
sweep on the light skin pigmentation phenotype in Indo-
Europeans (Sabeti et al. 2007; Coop et al. 2009; Basu
Mallick et al. 2013; Liu et al. 2013) for comparisons between
the CEU population with GBR (Table S4; almost-significant
with p ¼ 8:13 1028 and n ¼ 1) and GIH (Table S5;
p ¼ 2:403 1028, n ¼ 1). Although the selected allele for this
sweep is thought to lie within the SLC24A5 gene encoding a
solute carrier (Lamason et al. 2005), the CRG100 filter that

we applied to our data removed SLC24A5, but preserved the
adjacent SLC12A1, which we use as a proxy for the expected
signal. Finally, we find KIAA0825 as a top candidate across
comparisons between the CEU and GIH (Table S5; n ¼ 1),
YRI and CEU (Table S7; p ¼ 2:7131028, n ¼ 1), YRI and
LWK (Table S8, n ¼ 1), JPT and YRI (Table S10;
p ¼ 1:133 1028, n ¼ 1), and GIH and YRI (Table S9;
p ¼ 2:123 1029, n ¼ 1) populations. Although the function
of KIAA0825 has not yet been characterized, it is a previously
reported sweep candidate ancestral to the split of African and
non-African human populations (Racimo 2016).

Specific sweep candidates of interest: Across all population
comparisons, the top shared sweep candidates at RNA- and
protein-coding genes comprised both hard and soft sweeps,
yielding a wide range of H2Tot=H1Tot values. This emphasizes
the multitude of sweep histories that have shaped shared
variation among human populations. In Figure 6, we high-
light four distinct results that capture the diversity of sweeps
we encountered in our analysis, each generating wide, well-
defined SS-H12 peaks. We first examine GPHN, which we
found as an outlying candidate shared soft sweep in the East
Asian JPT and KHV (Kinh of Ho Chi Minh City in Vietnam)
populations (n ¼ 2; Table S12). GPHN encodes the scaffold
protein gephyrin, which has been the subject of extensive
study due to its central role in regulating the function of
neurons, among the many other diverse functions of its splice
variants (Ramming et al. 2000; Lencz et al. 2007; Tyagarajan
and Fritschy 2014). GPHN has received attention as the can-
didate of a recent selective sweep ancestral to the human out-
of-Africa migration event (Voight et al. 2006; Williamson
et al. 2007; Park 2012), which has resulted in the mainte-
nance of two high-frequency haplotypes worldwide (Climer
et al. 2015). Although not meeting the genome-wide signif-
icance threshold, we see that a large signal peak is centered
over GPHN, and the underlying haplotype structure shows
two high-frequency haplotypes at similar frequency in the
pooled population and in the individual populations (Figure
6, top row).

Next, we recovered RGS18 as a top novel outlying ances-
tral sweep candidate in the sub-Saharan African LWK and YRI
populations. RGS18 occurs as a significant sweep in the YRI
population (Harris et al. 2018) and correspondingly displays
a single shared high-frequency haplotype between the LWK
and YRI populations (Figure 6, second row), matching our
assignment of this locus as a hard sweep ðn ¼ 1Þ. RGS18 has
been implicated in the development of hypertrophic cardio-
myopathy, a leading cause of sudden cardiac death in Amer-
ican athletes of African descent (Maron et al. 2003; Chang
et al. 2007). Between the CEU and YRI populations, we found
another novel shared sweep at SPRED3 (Figure 6, third row;
significant p ¼ 2:013 1029, n ¼ 1), which encodes a protein
that suppresses cell signaling in response to growth factors
(Kato et al. 2003). Although elevated levels of observed ho-
mozygosity at this gene have previously been reported in
European and sub-Saharan African populations separately
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(Granka et al. 2012; Ayub et al. 2013), these observations
have not previously been tied to one another. Once again,
we see the pattern of an ancestral shared sweep wherein
a single haplotype predominates within both populations,
but with even noticeably less background variation
than what we observed in the aforementioned LWK-YRI
comparison.

Finally, we present the novel convergent hard sweep
candidate that we uncovered at C2CD5 (also known as
CDP138) between the CEU and JPT populations. As
expected of a convergent sweep, the SS-H12 peak here is
large in magnitude but negative, corresponding to the pres-
ence of a different high-frequency haplotype in each popu-
lation, each of which is also at high frequency in the pooled
population. Notably, both haplotypes exist in both popula-
tions (Figure 6, bottom row). The protein product of C2CD5
is involved in insulin-stimulated glucose transport (Xie et al.
2011; Zhou et al. 2018), and the insulin response is known
to differ between European and East Asian populations
(Kodama et al. 2013). Therefore, our discovery of C2CD5
is in agreement with the results of Kodama et al. (2013), and
illustrates the importance of differentiating ancestral and
convergent sweeps in understanding the adaptive histories
of diverse populations.

We also highlight our discovery of PAWR (Figure S33, top)
as another outlying novel convergent hard sweep candidate
with complementary clinical support, for comparisons be-
tween GIH and CEU with YRI. The protein product of
PAWR is involved in promoting cancer cell apoptosis, and is
implicated in the development of prostate cancer (Yang et al.
2013). Because mutations within and adjacent to PAWR have
been specifically implicated in the development of prostate
cancer among individuals of African descent (Bonilla et al.
2011), our identification of a candidate convergent sweep at
PAWR is consistent with the observation of elevated prostate
cancer rates for populations with African ancestry
(Kheirandish and Chinegwundoh 2011; Shenoy et al. 2016).

To further validate our identified sweep candidates, we
also constructed signal plots and pegas (Paradis 2010) hap-
lotype networks for each highlighted gene outside of Figure
6, grouping these into inferred ancestral (Figure S32) and
convergent sweeps (Figure S33). Prominent ancestral
sweeps—SPIDR (p ¼ 3:493 10211, CEU-JPT), SLC12A1
(p ¼ 2:403 1028, CEU-GIH), P4HA1, KIAA0825
(p ¼ 2:133 1029, GIH-YRI), and LCT—were character-
ized by the presence of one or two high-frequency hap-
lotypes in the population pool, divided between either
component population in approximately equal propor-
tions. The nonsweeping minor haplotypes also present in
the sample generally differed from the sweeping haplotypes
at one to two sites, and frequently only observed once
(mostly omitted, as we removed haplotypes with less than
six copies from the network). Minor haplotypes observed at
higher frequencies were often shared between both popula-
tions (SLC12A1, LCT, and RGS18) and may also be represen-
tative of persistent ancestral polymorphism (Figure S32).

Notably, the sweeping haplotypes observed in convergent
sweeps were not always exclusive to either population, and
separated by a range ofHammingdistances (whichwedenote
H). Whereas the independently sweeping haplotypes within
PAWR in CEU-YRI (H ¼ 20) belonged to either the CEU or
YRI populations (Figure S33, top), both sweeping haplotypes
of C2CD5 (H ¼ 8) were visible in both CEU and JPT, suggest-
ing that they were segregating ancestrally to their indepen-
dent selection following the CEU-JPT split and may be more
closely related (Figure 6, bottom). Additionally, we found the
selected haplotype of JPT present at low frequency in YRI at
EXOC6B (H ¼ 8; Figure S33, middle), and similarly the se-
lected haplotype of YRI present in JPT at MPHOSPH9
(H ¼ 30; Figure S33, bottom). Even so, we note that for
convergently selected loci, each population’s haplotypes
tended to cluster together in the network, reflecting the ge-
netic differentiation of the populations.

Detection and classification of shared sweeps from
unphased data

Here, we briefly describe the results from our application of
the unphased MLG approach, SS-G123. We explored the
properties of SS-G123 in equivalent scenarios to our
SS-H12 tests by manually merging diploid study individuals’
two haplotypes into MLGs. The ability to identify and classify
shared sweeps from unphased data are consequential be-
cause nonmodel organisms may not have phased data from
which to make inferences. Nonetheless, previous work
(Harris et al. 2018) has indicated that distortions in the
MLG frequency spectrum can convey the signature of a recent
selective sweep.

Overall, SS-G123 performed comparably to SS-H12 at
detecting sweeps across identical CEU-GIH and CEU-YRI
scenarios (Figures S34–S43), with only slight reductions in
power at both the 1 and 5% FPRs for MLGs relative to hap-
lotypes. Reductions in power generally occurred for older
sweep times, as MLGs are more diverse than haplotypes
(Harris et al. 2018), and so the signal of a sweep erodes more
rapidly for MLG data as mutation and recombination events
accumulate. Under both the CEU-GIH and CEU-YRI models,
we found that the magnitude of SS-G123 was, due to the
greater baseline diversity of MLGs, generally smaller than
the magnitude of SS-H12, matching trends from results with
the single-population statistics H12 and G123 (Harris et al.
2018).

However, SS-G123 values were also shifted toward the
negative for all scenarios, including ancestral sweeps, indi-
cating that the unphased approach may not be as adept at
classifying shared sweeps as ancestral after identifying them,
except for strongly outlying candidates (Figures S11–S14).
Thus, we expect that the detection of shared selective sweeps
will be possible across the wide variety of organisms for
which unphased whole-genome sequence data are available,
but urge caution in blindly classifying negative signals as
convergent. Classification notwithstanding, the comparable
power between SS-H12 and SS-G123 underscores the
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importance of the latter as a tool (Figures S37, S38, S42, and
S43). Crucially, we also found that our empirical analysis of
the 1000 Genomes Project dataset (1000 Genomes Project
Consortium et al. 2015) in which we paired individuals’ hap-
lotypes into their MLGs yielded congruent results to the
phased approach in practice, with similar inclusion and clas-
sification of candidates between data types (Tables S13–
S21).

The primary difference that we encountered between
haplotype and MLG empirical analyses was in the inferred
softness of candidate sweeps.We found that, as in the single-
population analyses of Harris et al. (2018), a greater pro-
portion of top candidate sweeps in the MLG data were clas-
sified as soft than in haplotype data, including both
candidates classified as hard sweeps in the haplotype data,
and candidates absent from the top 40 haplotype candi-
dates. The explanation for both of these discrepancies,
which were minor in scope, lies once again in the greater
diversity of MLGs relative to haplotypes. A genomic re-
gion with one high-frequency haplotype and one or more
intermediate-frequency haplotypes may yield a paired
ðjSS‐H12j; H2Tot=H1TotÞ value that most resembles a hard
sweep under the ABC approach using haplotypes, but yield
an MLG frequency spectrum featuring multiple intermediate-
frequency MLGs that may be inferred as a soft sweep. Mean-
while, the greater background diversity of MLG data may
allow for themore subtle signatures of soft sweeps to bemore
readily detectable than in haplotype data. Overall, the rarity
of discrepancies between SS-H12 and SS-G123 top candidate
lists corroborates the high level of concordance between the
power of the two statistics that we found in simulated data.

Discussion

Characterizing the selective sweeps shared between geo-
graphically close and disparate populations can provide
insights into the adaptive histories of these populations that
may be unavailable or obscure when analyzing single pop-
ulations separately. To this end, we extended the H12 frame-
work of Garud et al. (2015) to identify genomic loci affected
by selection in samples composed of individuals from two or
more populations. Our approach, SS-H12, has high power to
detect recent shared selective sweeps from phased haplo-
types, and is sensitive to both hard and soft sweeps.
SS-H12 can also distinguish hard and soft sweeps from one
another in conjunction with the statistic H2Tot=H1Tot, thus
retaining the most important feature of the single-population
approach. Furthermore, SS-H12 has the unique ability to dis-
tinguish between sweeps that are shared due to common
ancestry (ancestral sweeps), and shared due to independent
selective events (convergent sweeps). Analysis with the
SS-H12 framework therefore provides a thorough character-
ization of selection candidates, both previously described and
novel, unlike that of comparable methods. In addition, we
extended analyses to unphased MLG data as SS-G123, main-
taining excellent power in the absence of phased haplotypes,

expanding the range of study systems from which we may
draw selective sweep inferences.

Power and classification

Because SS-H12 and SS-G123 derive fundamentally from
measures of expected homozygosity, they are tailored to de-
tect recent shared selective sweeps. Stronger sweeps are de-
tectable over a wider range of selection start times (t) than
weaker sweeps due to their greater distortion of the haplo-
type frequency spectrum resulting in larger sweep footprints
(Gillespie 2004; Garud et al. 2015; Hermisson and Pennings
2017) and larger values of the sweep statistics. However,
because stronger sweeps reach fixation sooner than do
weaker sweeps, their signals begin to erode sooner, especially
for sweeps from larger n (compare, for example, the center
columns of Figure 2, Figure S5, and Figure S6 for ancestral
sweeps). Accordingly, there is an inverse relationship be-
tween the strength of detectable shared sweeps (s), and the
selection start times for which we can detect a sweep. The
interaction between t and s is also important for classifying
the timing of shared sweeps. Barring rare convergent sweeps
on the same haplotype between sister populations, we found
that simulated convergent sweeps were reliably identified
from the sign of SS-H12 or SS-G123 under scenarios in which
they have power to detect shared sweeps (see boxplots of
Figure 2, Figure 3, and Figures S5–S8, and classification
curves of Figures S11–S14).

Forweakerancestral sweeps, in contrast, negativevaluesof
elevatedmagnitude could emerge if the timeof selection twas
close to the split time t for the CEU-GIH model (bottom row
of Figure 2, Figure S5, and Figure S6), or for the CEU-YRI
model in general (bottom row of Figure 3, Figure S7, and
Figure S8), especially for SS-G123 (boxplots of Figures
S34–S36 and S39–S41). In the CEU-GIH case, it is likely that
the beneficial allele, and its haplotypic background(s), have
not risen to high frequency before the ancestral population
splits into the modern sampled populations. In the CEU-YRI
case, enough time has passed since t by the time of sampling
that extensive population differentiation exists. Thus, in both
cases, copies of the beneficial haplotype present in each of the
two descendant populations may follow distinct trajectories.
Using a smaller analysis window may therefore increase
power to detect sweeps with less prominent footprints, but
at the risk of misinterpreting elevated signal due to short-
range LD as a sweep.

More generally, the strengths and limitations of our meth-
ods to identify shared sweeps as ancestral or convergent
depend upon the underlying genealogy of the analysis region.
In our analyses, we may expect a particular combination of t
and s to be readily detectable and classifiable across any de-
mographic history, such as a strong sweep (s ¼ 0:1) initiating
t ¼ 2000 generations before sampling. Under the CEU-GIH
model, this would be an ancestral sweep, while it would be
convergent for the CEU-YRI model. Similarly, because we had
no power in our simulation experiments to detect weaker
(s ¼ 0:01) sweeps younger than t � 1500 generations old,
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we could not detect convergent sweeps in the CEU-GIH
model unless their selection coefficient is large. Furthermore,
the background haplotypic diversity inherent to different
populations’ demographic histories may be highly variable,
affecting signal duration and intensity. This meant we could
detect ancestral sweeps up to 2000 generations more ancient
under the CEU-YRI model than under the CEU-GIHmodel. In
these ways, genealogy constrains which sweeps are identifi-
able under a particular parameter set. In practice, most out-
lying shared sweep candidates in humans were ancestral
(Tables S4–S21), despite the high power of our approach
to detect simulated convergent sweeps. Indeed, convergent
sweeps may simply be uncommon because beneficial muta-
tions are rare (Orr 2010). Thus, it should be especially rare
for beneficial mutations to independently establish at the
same locus across multiple populations, for all but the most
strongly selected mutations (Haldane 1927; Kimura 1962;
Wilson et al. 2014).

While powerful for detecting shared sweeps, an equally
important property of our statistics is that they ignore di-
vergent sweeps, assigning only values of small magnitude in
such cases. The ability to eliminate unshared sweeps as
potentially outlying signals is important because a sweep in
a subset of sampled populations still produces distorted hap-
lotype frequencies between them. This can result in values of
fDiff (or gDiff ) that may spuriously resemble convergent
sweeps, yielding values of the uncorrected H12Anc statistic
that are distinct from neutrality (Figures S15 and S16, right
column). By applying a correction factor to H12Anc (Equation
3), we dampened the signals of divergent sweeps for samples
drawn from any number of populations K (right columns of
Figure 2, Figure 3, Figure S9, and Figure SN1–SN3). As such,
the distributions of SS-H12 and SS-G123 generated under
divergent sweeps often appears visually no different from
neutrality, leaving no possibility of misidentifying divergent
sweeps as shared sweeps.

Our ability to detect recent shared sweeps remained con-
sistent across samples composed of K 2 f2; 3; 4; 5g popula-
tions, which we demonstrate with haplotype results from the
generalized mammalian model in the Supplemental Note
(Figure S9 and Figure SN1–SN3). Power curves across
experiments were nearly identical to one another, regardless
of K, and regardless of whether we employed the conserva-
tive or grouped approach (see Materials and Methods) for
K. 2 samples. However, we were frequently unable to clas-
sify convergent sweeps shared across K. 2 populations cor-
rectly, often assigning SS‐H12. 0 when the time of the
sweep is more ancient than the most recent population split
time but younger than the root of the population tree, due to
the presence of internal ancestral sweeps (Figures SN1-SN3,
left columns). True ancestral sweeps, in contrast, were un-
ambiguous because in these cases, all populations share iden-
tical sweeping haplotypes (Figures SN1–SN3, center
columns). Finally, divergent sweeps never produced outlying
values of SS-H12, but we observed spuriously elevated power
for sweeps shared ancestrally among more populations

(Figures SN1–SN3, right columns). To avoid misinterpreting
shared sweep signals deriving from K$ 3 sampled popula-
tions, we recommend performing follow-up analyses on iden-
tified signal peaks to determine the specific populations
involved in the sweep.

Similarly to the single-population approach (Garud et al.
2015; Harris et al. 2018), SS-H12 and SS-G123 have power
to detect shared soft sweeps, and can assign these as an-
cestral or convergent. We found that softer sweeps were
more difficult to detect than harder sweeps, proportional
to n. Sweeps from larger n produce smaller haplotype fre-
quency spectrum distortions than do hard sweeps, but
trends in the distributions of SS-H12 (Figure 2, Figure 3,
and Figure S5–S8) and SS-G123 (Figures S34–S41) were
nonetheless consistent between hard and soft sweeps. Our
results also indicate that all haplotypes need not be shared
between sampled populations in order to yield outlying
signals. This is because simulated population split events
represented a random sampling of ancestral haplotypes
without guaranteeing identical haplotype frequency spec-
tra between descendant sister populations or their ances-
tor. As an example, we consider a simple hypothetical
scenario in which n ¼ 5 ancestrally sweeping haplotypes
are distributed unevenly between two descendant sister
populations (Figure S44, bottom-left). A shared haplotype
exists at frequency 0.55 in Population 1 (P1), and at 0.45 in
Population 2 (P2). Meanwhile, P1 has two exclusive hap-
lotypes at frequencies 0.25 and 0.2, while P2 has exclusive
haplotypes at frequencies 0.3 and 0.25; corresponding to
�50% exclusive haplotypes per population. In this (albeit
extreme) scenario, SS‐H12 ¼ 0:183, a positive value lying
outside the distributions of neutrality for our all of our
models.

Beyond detecting recent shared sweeps with high power,
accuracy, and specificity, ours is the only one among compa-
rable methods that can classify shared sweeps as hard or soft
from the inferred number of sweeping haplotypes (n). Using
an ABC approach to assign the most likely number of sweep-
ing haplotypes in a genomic window, we found that the clas-
sification of recent ancestral sweeps broadly followed that of
sweeps in single populations, with smaller H2Tot=H1Tot cor-
responding to harder sweeps, and the largest n associated
with the largest H2Tot=H1Tot (Figure 5, top). Resolving the
most probable n can be challenging depending on the age of
the sweep, and so we find that boundaries between n classes
are somewhat irregular within the posterior distribution, es-
pecially for the CEU-YRI model. In contrast, convergent
sweeps are easily classified as hard or soft due to their nec-
essarily stronger signal relative to ancestral sweeps (Figure 5,
bottom). The classification profile of convergent sweeps is
distinctly different from that of ancestral sweeps because
the strongest hard sweeps will yield two high-frequency
haplotypes in the population, corresponding to interme-
diate H2Tot=H1Tot values, with soft sweeps generating
H2Tot=H1Tot at either extreme. Thus, we can adeptly clas-
sify shared sweeps as hard or soft using the SS-H12
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framework across any parameter combination for which
we have power (Figure 2, Figure 3 and Figures S5–S8).

Confounding factors and model deviations

SS-H12 displayed an extensive robustness to confounding
admixture across scenarios in which a distantly related donor
targeted one of the sampled populations (Figure 4 and Figure
S19). As this covers a variety of potential cases, and is a fairly
common occurrence (Chun et al. 2010; Patterson et al. 2012;
Pool et al. 2012; Nedić et al. 2014), we believe SS-H12 may
be confidently applied to a wider set of complex demographic
scenarios. In contrast, SS-H12 could not properly classify the
timing of a sweep passed from one sampled population to its
sampled sister through admixture (Supplemental Note Figure
SN4). This scenario may be avoided by restricting sampling
to only populations that have been separated geographically
by a barrier to migration for an appreciable amount of time,
making admixture unlikely. Distant-donor admixture most
impacted the ability of SS-H12 to detect and classify ancestral
sweeps, whereas convergent sweeps remained broadly unob-
scured and distinct from neutrality except in extreme scenar-
ios (admixture above 30%; Figure 4 and Figure S19, left
columns). Admixture here introduces new haplotypes into
the target, resulting in differing haplotype frequency spectra
between the pair. Lower donor genetic diversity thus expect-
edly yields a spurious convergent sweep-like pattern, while
admixture from a more diverse donor recreates a divergent
sweep-like pattern (Figure 4 and Figure S19, middle col-
umns). Overall, the effect of distant-donor admixture is likely
to be a reduction in the prominence of SS-H12, which may
impact estimates of sweep age and intensity (Malaspinas
et al. 2012; Mathieson and McVean 2013; Smith et al.
2018), but without yielding false positive signals (Figure
S19, left and center columns).

As with unadmixed samples, SS-H12 for divergent sweeps
showed little departure in prominence from neutrality fol-
lowing admixture from a diverged donor (Figure 4, right
column). However, we observed a spurious, though not
impactful, rise in power when a diverse (N ¼ 105) donor
admixes into the sweeping population at a rate of 10% or
more (Figure S19, bottom-right). While our statistics are in-
sulated against picking up these divergent sweeps as outliers
due to their small magnitude, we caution that the opposite
scenario—admixture from a donor of small size into the non-
sweeping population—may resemble a convergent sweep as
H12 in the target population, and fDiff between populations,
rises. SS-H12 does not ignore divergent sweeps in intersister
admixture, which results in extensive haplotype sharing that,
at any level, yielding positive values of SS-H12 (Supplemental
Note Figure SN4). Because the basis for our shared sweep
classifications is a quantification of haplotype frequency over-
lap, intersister admixture is the main confounding scenario
for SS-H12. It is therefore prudent to test for evidence of
admixture between sampled sister populations before search-
ing for shared sweeps, and also to obtain ecological and pa-
leontological evidence to support the origin of an adaptive

haplotype (Seeley 1986; Remigereau et al. 2011; Wogelius
et al. 2011; Gallego Romero et al. 2012). Ultimately, admix-
ture was the only confounding factor we tested that could
affect SS-H12 values, and only a narrow range of scenarios is
likely to do so.

The other major model violation we examined, back-
ground selection, accordingly posed a much smaller risk of
affecting SS-H12. Background selection results in a loss of
polymorphism as deleterious alleles and alleles at nearby
linked sites are removed from the population, resulting in
anablationofgeneticdiversity reminiscentof selective sweeps
(Charlesworth et al. 1993, 1995; Seger et al. 2010; Cutter
and Payseur 2013; Nicolaisen and Desai 2013; Huber et al.
2016). However, background selection is expected only to
reduce levels of neutral polymorphism without driving par-
ticular haplotypes to high frequency (Enard et al. 2014). In-
deed, our results indicate that background selection could
scarcely distort the distribution of SS-H12 values relative to
neutrality (Figure S23), because it affects neither H12
(Harris et al. 2018) nor the haplotype frequency spectrum
(Harris and DeGiorgio 2019 preprint). Thus, we do not ex-
pect that a detailed understanding of background selection in
a study system will be required to detect shared sweeps.

Our experiments across common deviations to the basic
parameters of the simplified mammalian model—equal sam-
ple sizes, simultaneous sweeps, and bifurcating population
splits—highlight the variety of scenarios to which we can
apply SS-H12 and SS-G123. Our statistics are agnostic to
these deviations because none should affect haplotype shar-
ing between populations. Modifying the relative sample sizes
for each subpopulation had the effect of changing g (Equa-
tion 2), but this scarcely affects patterns of haplotypic diver-
sity, and therefore power and classification (Figures S20–
S22), relative to equal sample sizes (Figure S9). The relative
timing of convergent sweeps also did not change their differ-
entiating effect between populations, and so once again we
found that power here (Supplemental Note Figure SN5) fit
with that of simultaneous convergent sweeps (Figure S9).
We can also consider a more complex scenario in which the
rate of adaptation in each population differs, as with a non-
uniform environment. If the study populations are sampled
before the beneficial mutation establishes in each, then we
may overlook a true shared sweep as divergent because a sub-
set of populations will show a sweep signature, and a subset
will not. This is a limitation of any shared sweep method,
however. Finally, we found that the power of SS-H12 to de-
tect and classify sweeps for a star tree with K ¼ 4 descen-
dants (Supplemental Note Figures SN6 and SN7) matched
that under an asymmetric topology (Figure SN2), while more
accurately classifying sweeps as ancestral or convergent.
SS-H12 can only be misled by nonadaptive changes to the
haplotype frequency distribution that affect the level of hap-
lotype sharing between populations, yielding a wide robust-
ness to many common scenarios.

While in our experiments we analyzed only ideal dense
polymorphism data with no missing sites, we briefly pause to
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consider the performance of SS-H12 outside of these condi-
tions. This is especially relevant for SNP array data, which
featuresa lowerdensityofpolymorphisms relative to sequenc-
ing data. For the single-population statistics, Harris et al.
(2018) recommended constructing analysis windows using
a SNP-delimited (rather than nucleotide-delimited) ap-
proach, wherein windows are defined by the number of SNPs
contained within rather than their physical size. Constructing
windows in this way ensures the inclusion of sufficient hap-
lotypic variation for inference, and may also confer robust-
ness to demographic processes that reduce diversity locally,
such as population bottlenecks (Harris et al. 2018). In the
case of missing data, insights from the single-population ap-
proach (Harris et al. 2018) suggest that removing sites
with .5% missing data (for data missing at random) yields
acceptable power. Sites with an extensive number of low-
confidence genotypes should also be removed, because such
errors can lead to the spurious detection of new haplotypes,
which increases background diversity and reduces the
magnitude of SS-H12, potentially causing sweeps to be
overlooked. Taken together, we suggest that it may be
beneficial to employ SNP- rather than nucleotide-delimited
windows on datasets with extensive missing data, regardless
of whether sites are missing due to sparse sampling or from
genotype or sequencing errors.

Discovery and characterization of shared sweeps
in humans

The high power, robustness, and flexibility of SS-H12 allowed
us to discover outlying sweep candidates in humans that both
corroborated previous investigations, and uncovered novel
shared sweep candidates. Most importantly, our approach
provided inferences about the timing and softness of shared
sweeps, yielding enhanced levels of detail about candidates
that were until now not directly available. As SS-H12 is the
only method that distinguishes between recent ancestral and
convergent shared sweeps, our investigation was uniquely
able to identify loci at which independent convergent sweeps,
though rare, may have played a role in shaping modern
patterns of genetic diversity. Among these was EXOC6B (Fig-
ure S33, middle row), which produces a protein component
of the exocyst (Evers et al. 2014) and has been previously
highlighted as a characteristic site of selection in East Asian
populations (Baye et al. 2009; 1000 Genomes Project
Consortium et al. 2011; Pybus et al. 2014). The shared hard
sweep ðn ¼ 1Þ at EXOC6B appeared as convergent between
the East Asian JPT and sub-Saharan African YRI populations
(Table S10), but as ancestral between all other population
pairs—pairs of non-African populations—in which it
appeared (Tables S5, S6, S11, and S12). Thus, we believe
that a sweep at EXOC6B occurred globally in both African and
non-African populations alike, and was not limited to a single
region or event.

More broadly, our investigation into sweeps shared be-
tween disparate populations also updates existing notions
about when during human history particular selective events

may have occurred. For example, a sweep atNNT, involved in
the glucocorticoid response, has been previously reported in
sub-Saharan Africa (Voight et al. 2006; Fagny et al. 2014). As
expected, we recovered NNT as an ancestral hard sweep
ðn ¼ 1Þ in the comparison between LWK and YRI (Table
S8), but additionally in all comparisons between YRI and
non-African populations (Tables S7, S9, and S10; genome-
wide significant for all but the JPT-YRI pair). Selection atNNT
preceded the out-of-Africa event and was not exclusive to
sub-Saharan African populations. Another unexpected top
outlier was SPIDR (Figure S32, first row), involved in double-
stranded DNA break repair (Wan et al. 2013; Smirin-Yosef
et al. 2017), and inferred to be a shared candidate among
Eurasian populations (Racimo 2016). SPIDR previously
appeared as an outlying H12 signal in the East Asian CHB
(Han Chinese individuals from Beijing) population (Harris
et al. 2018), but, in our present analysis, was shared ances-
trally not only between the East Asian KHV and JPT popula-
tions (Table S12), but also between JPT and the European
CEU (Table S6; p ¼ 3:493 10211), and the sub-Saharan Af-
rican LWK and YRI (Table S8) populations. Once again, we
see a strong sweep candidate shared among a wider range of
populations than previously expected, illustrating the role of
shared sweep analysis in amending our understanding of the
scope of sweeps in humans worldwide.

In addition to recovering expected and expanded sweep
signatures, we also found top outlying ancestral sweep can-
didates not especially prominent within single populations,
emphasizing that localizing an ancestral sweep depends not
only on elevated expected homozygosity generating the sig-
nal, but highly on the presence of shared haplotypes between
populations. Foremost among such candidates was CASC4,
a candidate ancestral hard sweep ðn ¼ 1Þ in all comparisons
with YRI (Tables S7–S10; genome-wide significant for CEU
and GIH with YRI). Because a sweep ancestral to the out-of-
Africa event at this cancer-associated gene (Ly et al. 2014;
Anczuków et al. 2015) had been previously hypothesized
(Racimo 2016), we expected to see it. However, CASC4 does
not have a prominent H12 value outside of sub-Saharan Af-
rican populations, and within YRI is a lower-end outlier
(Harris et al. 2018). Despite this, CASC4 is within the top
12 outlying candidates across all comparisons with YRI,
and appears as the eighth-most outlying gene in for CEU-
JPT (Table S6; n ¼ 2), even though it is not an outlier in
either population individually. Similarly, we found PHKB, in-
volved in glycogen storage (Hendrickx and Willems 1996;
Burwinkel et al. 1997; Burwinkel and Kilimann 1998), as
an ancestral hard sweep of CEU-YRI (Table S7; 9:293 1029

n ¼ 1) that was not prominent in either population alone,
though once again previously inferred to be a sweep candi-
date to Eurasians (Racimo 2016). We also identifiedMRAP2,
which encodes a melanocortin receptor accessory protein im-
plicated in glucocorticoid deficiency (Chan et al. 2009; Asai
et al. 2013), similarly to NNT, as an ancestral hard sweep
between the CEU and JPT populations (Table S6;
p ¼ 1:683 1028, n ¼ 1), and is not prominent in either
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CEU or JPT. Thus, our empirical results fit well with the
expectation deriving from our power comparison between
multiple tests of H12 and a single SS-H12 test (Figures S17
and S18), but we caution that we did not establish global
significance between regions for our candidate genes, and
are unlikely to have sufficient power to do so after correcting
for all comparisons.

An important trend from our empirical analysis was the
significantly negative correlation between recombination
rate across protein- and RNA-coding genes, and assigned
jSS‐H12j. Outlying sweep candidates were uniformly associ-
ated with regions of low recombination, yielding significant
correlations for each population pair comparison according
to Spearman’s r. The most apparent implication for this ob-
servation is that we are more likely to observe sweep signals
in regions of low recombination because it is within such
regions that sweep footprints persist for the longest time.
Consequently, the haplotypic signature of a selective sweep
should be difficult to elucidate for regions of high recombi-
nation, where sweeping haplotypes would rapidly homoge-
nize into the background diversity, leaving only a transient
footprint. It may be possible to guard against misinterpreting
regions of elevated LD as sweeps, or overlooking sweeps in
regions with high recombination, by adjusting the size of the
analysis window when computing SS-H12. Following this
approach, it would be helpful to use a smaller analysis win-
dow where recombination rates are large in order to identify
subtle haplotype frequency distortions, and larger windows
where recombination rates are low and haplotypic diversity is
already expected to be small. Althoughwe did not pursue this
strategy, we instead assigned p-values and inferred n using
simulations drawn from a spectrum of recombination rates,
which we expect conferred a high degree of robustness to our
conclusions.

The assignment of p-values additionally depended upon
our inferred population model. Because a reconstruction of
the demographic history was required for us to assign p-values,
we evaluated the effect of misspecifying the model on
jSS‐H12j significance cutoffs (Figures S45 and S46). To do
this, we simulated neutral replicates either under our more
accurate “true” smc++-derived histories with population
size changes, or under “wrong” histories with identical
mean FST to the true models but with constant population
sizes (Figure S46). Model misspecification could potentially
impact inferences of significant SS-H12 signals, and this
effect depended on the relatedness between sampled pop-
ulations (Figure S45). For more closely related population
pairs (CEU-GBR and JPT-KHV, mean FST on the order of
1023), the wrong constant-size model yielded smaller
jSS‐H12j values, corresponding to a less stringent threshold.
For more diverged pairs of subpopulations (YRI with CEU,
GIH, or JPT, mean FST on the order of 1021), an inverse
effect occurs, such that the misspecified model becomes
too conservative and significant signals may be overlooked.
Accordingly, intermediately related populations (CEU-GIH
and LWK-YRI, mean FST on the order of 1022) may be

insulated from the effect of model misspecification. Thus,
the selection of a model with parameters derived from the
study data are paramount to the proper interpretation of
genomic SS-H12 signals within those data.

We conclude our discussion of the empirical analysis by
underscoring its practical implications for the analysis of
unphased data. Across our simulation experiments, we found
that SS-G123 demonstrated power to detect shared sweeps
that was wholly concordant with the power of SS-H12 on
phasedhaplotypes (Figures S37, S38, S42, andS43). The area
in which SS-G123 appeared to be lacking was in its ability to
properly classify the timing of a shared sweep. That is, outside
of recent sweeps, SS-G123was highly susceptible to assigning
negative values to ancestral sweeps, thereby misclassifying
them as convergent [compare purple (SS-G123) and red (SS-
H12) lines within the central columns of Figures S11–S14].
The reason for this disparity in classification lies with the data
type itself. Unphased MLGs have a much greater diversity
than haplotypes under most scenarios if we assume random
mating (Harris et al. 2018). For this reason, the homogene-
ity among MLGs following a sweep returns to background
levels more rapidly than that of haplotypes, leading to
G123Tot , gDiff across scenarios for which H12Tot . fDiff : Con-
trary to these expectations, however, we found that detection
and classification with SS-G123 matched that of SS-H12 for
a wide majority of candidates across our empirical scans.
Ultimately, this indicates that the sweep candidates most
likely to pass the significance threshold, likely to be important
for adaptation, are those for which phasing does not affect
inferences, which underscores the importance of a tool with
the ability to make those inferences.

Conclusions

The SS-H12 and SS-G123 frameworks are an important ad-
vancement in our ability to contextualize and classify shared
sweep events using multilocus sequence data. Whereas prior
methods have identified shared sweeps and can do so with
high power, some without the need for MLGs or phased
haplotypes, theability todistinguishbothhardand soft shared
sweeps from neutrality, as well as differentiate ancestral and
convergent sweeps, is invaluable for understanding the man-
ner in which an adaptive event has proceeded. Discerning
whether a selective sweep has occurredmultiple times or only
once can provide novel and updated insights into the relat-
edness of study populations, and the selective pressures that
they endured. Moreover, the sensitivity of our approach to
bothhardandsoft sweeps, andourability to separateone from
the other, add an additional layer of clarity that is otherwise
missing from previous analyses, and is especially relevant
because uncertainty persists as to the relative contributions
of hard and soft sweeps in human history (Jensen 2014;
Schrider and Kern 2017; Mughal and DeGiorgio 2019). We
expect inferences deriving from shared sweep analyses to
assist in formulating and guiding more informed questions
about discovered candidates across diverse organisms for
which sequence data—phased and unphased—exist. As part
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of this, SS-H12 and SS-G123 may be incorporated into ma-
chine learning algorithms that leverage the spatial signature
of sweep statistics to construct powerful sweep detection
protocols (e.g., Schrider and Kern 2017; Mughal and
DeGiorgio 2019). After establishing the timing and softness
of a shared sweep, appropriate follow-up analyses can in-
clude inferring the age of a sweep (Smith et al. 2018), iden-
tifying the favored allele or alleles (Akbari et al. 2018), or
identifying other populations connected to the shared
sweep. We believe that our approach will serve to enhance
investigations into a diverse variety of study systems,
and facilitate the emergence of new perspectives and
paradigms.

To this end, we provide open-source software (titled
SS-X12) to perform scanning window analyses on haplotype
input data using SS-H12 orMLG input data using SS-G123, as
well as results from our empirical scans and other analyses,
within our Dryad repository. SS-X12 provides flexible user
control, allowing the input of samples drawn from arbitrary
populations K, and the output of a variety of expected homo-
zygosity summary statistics.

Acknowledgments

We thank three anonymous reviewers and editor Nicholas
Barton for their helpful comments that improved this
manuscript. This work was funded by National Institutes
of Health grant R35-GM128590, by National Science
Foundation grants DEB-1753489, DEB-1949268, and BCS-
2001063, and by the Alfred P. Sloan Foundation. Portions of
this research were conducted with Advanced CyberInfras-
tructure computational resources provided by the Institute
for CyberScience at Pennsylvania State University.

Literature Cited

1000 Genomes Project Consortium; Abecasis, G. R., D. Altshuler, A.
Auton, L. D. Brooks, R. M. Durbin et al., 2011 A map of human
genome variation from population-scale sequencing. Nature
467: 1061–1073. https://doi.org/10.1038/nature09534

1000 Genomes Project Consortium;Auton, A., L. D. Brooks, R. M.
Durbin, E. P. Garrison, H. M. Kang et al., 2015 A global refer-
ence for human genetic variation. Nature 526: 68–74. https://
doi.org/10.1038/nature15393

Akbari, A., J. J. Vitti, A. Iranmehr, M. Bakhtiari, P. C. Sabeti et al.,
2018 Identifying the favored mutation in a positive selective
sweep. Nat. Methods 15: 279–282. https://doi.org/10.1038/
nmeth.4606

Altshuler, D., M. J. Daly, and E. S. Lander, 2008 Genetic mapping
in human disease. Science 322: 881–888. https://doi.org/
10.1126/science.1156409

Anczuków, O., M. Akerman, A. Cléry, J. Wu, C. Shen et al.,
2015 SRSF1-regulated alternative splicing in breast cancer. Mol.
Cell 60: 105–117. https://doi.org/10.1016/j.molcel.2015.09.005

Asai, M., S. Ramachandrappa, M. Joachim, Y. Shen, R. Zhang et al.,
2013 Loss of function of the melanocortin 2 receptor accessory
protein 2 is associated with mammalian obesity. Science 341:
275–278. https://doi.org/10.1126/science.1233000

Ayub, Q., B. Yngvadottir, Y. Chen, Y. Xue, M. Hu et al.,
2013 FOXP2 targets show evidence of positive selection in
European populations. Am. J. Hum. Genet. 92: 696–706.
https://doi.org/10.1016/j.ajhg.2013.03.019

Basu Mallick, C., F. M. Iliescu, M. Möls, S. Hill, R. Tamang et al.,
2013 The light skin allele of SLC24A5 in South Asians and Euro-
peans shares identity by descent. PLoS Genet. 9: e1003912.
https://doi.org/10.1371/journal.pgen.1003912

Baye, T. M., R. A. Wilke, and M. Olivier, 2009 Genomic and geo-
graphic distribution of private SNPs and pathways in human
populations. Per. Med. 6: 623–641. https://doi.org/10.2217/
pme.09.54

Beleza, S., A. M. Santos, B. McEvoy, I. Alves, C. Martinho et al.,
2012 The timing of pigmentation lightening in Europeans.
Mol. Biol. Evol. 30: 24–35. https://doi.org/10.1093/molbev/
mss207

Bersaglieri, T., P. C. Sabeti, N. Patterson, T. Vanderploeg, S. F.
Schaffner et al., 2004 Genetic signatures of strong recent pos-
itive selection at the lactase gene. Am. J. Hum. Genet. 74: 1111–
1120. https://doi.org/10.1086/421051

Bonhomme, M., C. Chevalet, B. Servin, S. Boitard, J. Abdallah et al.,
2010 Detecting selection in population trees: the lewontin and
krakauer test extended. Genetics 186: 241–262. https://doi.org/
10.1534/genetics.110.117275

Bonilla, C., S. Hooker, T. Mason, C. H. Bock, and R. A. Kittles,
2011 Prostate cancer susceptibility loci identified on chromo-
some 12 in African Americans. PLoS One 6: e16044. https://
doi.org/10.1371/journal.pone.0016044

Burwinkel, B., and M. W. Kilimann, 1998 Unequal homologous
recombination between LINE-1 elements as a mutational mech-
anism in human genetic disease. J. Mol. Biol. 277: 513–517.
https://doi.org/10.1006/jmbi.1998.1641

Burwinkel, B., A. J. Maichele, Ø. Aegenaes, H. D. Bakker, A. Lerner
et al., 1997 Autosomal glycogenosis of liver and muscle due to
phosphorylase kinase deficiency is caused by mutations in the
phosphorylase kinase beta subunit (PHKB). Hum. Mol. Genet. 6:
1109–1115. https://doi.org/10.1093/hmg/6.7.1109

Chan, L. F., T. R. Webb, T. Chung, E. Meimaridou, S. N. Cooray
et al., 2009 MRAP and MRAP2 are bidirectional regulators of
the melanocortin receptor family. Proc. Natl. Acad. Sci. USA
106: 6146–6151. https://doi.org/10.1073/pnas.0809918106

Chang, Y. C., X. Liu, J. D. O. Kim, M. A. Ikeda, M. R. Layton et al.,
2007 Multiple genes for essential-hypertension susceptibility on
chromosome 1q. Am. J. Hum. Genet. 80: 253–264. https://
doi.org/10.1086/510918

Chaplin, G., and N. G. Jablonski, 2013 The human environment
and the vitamin D compromise: Scotland as a case study in
human biocultural adaptation and disease susceptibility. Hum.
Biol. 85: 529–552. https://doi.org/10.3378/027.085.0402

Charlesworth, B., M. T. Morgan, and D. Charlesworth, 1993 The
effect of deleterious mutations on neutral molecular variation.
Genetics 134: 1289–1303.

Charlesworth, B., D. Charlesworth, and M. T. Morgan, 1995 The
pattern of neutral molecular variation under the background
selection model. Genetics 141: 1619–1632.

Cheng, X., C. Xu, and M. DeGiorgio, 2017 Fast and robust de-
tection of ancestral selective sweeps. Mol. Ecol. 26: 6871–
6891. https://doi.org/10.1111/mec.14416

Chun, Y. J., B. Fumanal, B. Laitung, and F. Bretagnolle,
2010 Gene flow and population admixture as the primary
post-invasion processes in common ragweed (Ambrosia artemi-
siifolia) populations in France. New Phytol. 185: 1100–1107.
https://doi.org/10.1111/j.1469-8137.2009.03129.x

Clemente, F. J., A. Cardona, C. E. Inchley, B. M. Peter, G. Jacobs
et al., 2014 A selective sweep on a deleterious mutation in
CPT1A in Arctic populations. Am. J. Hum. Genet. 95: 584–
589. https://doi.org/10.1016/j.ajhg.2014.09.016

168 A. M. Harris and M. DeGiorgio

https://doi.org/10.1038/nature09534
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/nmeth.4606
https://doi.org/10.1038/nmeth.4606
https://doi.org/10.1126/science.1156409
https://doi.org/10.1126/science.1156409
https://doi.org/10.1016/j.molcel.2015.09.005
https://doi.org/10.1126/science.1233000
https://doi.org/10.1016/j.ajhg.2013.03.019
https://doi.org/10.1371/journal.pgen.1003912
https://doi.org/10.2217/pme.09.54
https://doi.org/10.2217/pme.09.54
https://doi.org/10.1093/molbev/mss207
https://doi.org/10.1093/molbev/mss207
https://doi.org/10.1086/421051
https://doi.org/10.1534/genetics.110.117275
https://doi.org/10.1534/genetics.110.117275
https://doi.org/10.1371/journal.pone.0016044
https://doi.org/10.1371/journal.pone.0016044
https://doi.org/10.1006/jmbi.1998.1641
https://doi.org/10.1093/hmg/6.7.1109
https://doi.org/10.1073/pnas.0809918106
https://doi.org/10.1086/510918
https://doi.org/10.1086/510918
https://doi.org/10.3378/027.085.0402
https://doi.org/10.1111/mec.14416
https://doi.org/10.1111/j.1469-8137.2009.03129.x
https://doi.org/10.1016/j.ajhg.2014.09.016


Climer, S., A. R. Templeton, and W. Zhang, 2015 Human gephyrin
is encompassed within giant functional noncoding yin–yang
sequences. Nat. Commun. 6: 6534. https://doi.org/10.1038/
ncomms7534

Coop, G., J. K. Pickrell, J. Novembre, S. Kudaravalli, J. Li et al.,
2009 The role of geography in human adaptation. PLoS Genet.
5: e1000500. https://doi.org/10.1371/journal.pgen.1000500

Cutter, A. D., and B. A. Payseur, 2013 Genomic signatures of se-
lection at linked sites: unifying the disparity among species. Nat.
Rev. Genet. 14: 262–274. https://doi.org/10.1038/nrg3425

Derrien, T., J. Estellé, S. M. Sola, D. G. Knowles, E. Rainieri et al.,
2012 Fast computation and applications of genome mappabil-
ity. PLoS One 7: e30377. https://doi.org/10.1371/journal.
pone.0030377

Enard, D., P. W. Messer, and D. A. Petrov, 2014 Genome-wide
signals of positive selection in human evolution. Genome Res.
24: 885–895. https://doi.org/10.1101/gr.164822.113

Evers, C., B. Maas, K. A. Koch, A. Jauch, J. W. G. Janssen et al.,
2014 Mosaic deletion of EXOC6B: further evidence for an im-
portant role of the exocyst complex in the pathogenesis of in-
tellectual disability. Am. J. Med. Genet. A. 164: 3088–3094.
https://doi.org/10.1002/ajmg.a.36770

Fagny, M., E. Patin, D. Enard, L. B. Barreiro, L. Quintana-Murci
et al., 2014 Exploring the occurrence of classic selective
sweeps in humans using whole-genome sequencing data sets.
Mol. Biol. Evol. 31: 1850–1868. https://doi.org/10.1093/
molbev/msu118

Fariello, M. I., S. Boitard, H. Naya, M. SanCristobal, and B.
Servin, 2013 Detecting signatures of selection through
haplotype differentiation among hierarchically structured
populations. Genetics 193: 929–941. https://doi.org/10.1534/
genetics.112.147231

Gallego Romero, I., C. Basu Mallick, A. Liebert, F. Crivellaro, G.
Chaubey et al., 2012 Herders of Indian and European cattle
share their predominant allele for lactase persistence. Mol.
Biol. Evol. 29: 249–260. https://doi.org/10.1093/molbev/
msr190

Garud, N. R., and N. A. Rosenberg, 2015 Enhancing the mathe-
matical properties of new haplotype homozygosity statistics for
the detection of selective sweeps. Theor. Popul. Biol. 102: 94–
101. https://doi.org/10.1016/j.tpb.2015.04.001

Garud, N. R., P. W. Messer, E. O. Buzbas, and D. A. Petrov,
2015 Recent selective sweeps in North American Drosophila
melanogaster show signatures of soft sweeps. PLoS Genet. 11:
e1005004. https://doi.org/10.1371/journal.pgen.1005004

Gerbault, P., C. Moret, M. Currat, and A. Sanchez-Mazas,
2009 Impact of selection and demography on the diffusion
of lactase persistence. PLoS One 4: e6369. https://doi.org/
10.1371/journal.pone.0006369

Gillespie, J. H., 2004 Population Genetics: A Concise Guide, Ed. 2.
The Johns Hopkins University Press, Baltimore.

Granka, J. M., B. M. Henn, C. R. Gignoux, J. M. Kidd, C. D. Busta-
mante et al., 2012 Limited evidence for classic selective
sweeps in African populations. Genetics 192: 1049–1064.
https://doi.org/10.1534/genetics.112.144071

Gravel, S., B. M. Henn, R. N. Gutenkunst, A. R. Indap, G. T. Marth
et al., 2011 Demographic history and rare allele sharing
among human populations. Proc. Natl. Acad. Sci. USA 108:
11983–11988. https://doi.org/10.1073/pnas.1019276108

Gronau, I., M. J. Hubisz, B. Gulko, C. G. Danko, and A. Siepel,
2011 Bayesian inference of ancient human demography from
individual genome sequences. Nat. Genet. 43: 1031–1034.
https://doi.org/10.1038/ng.937

Haldane, J. B. S., 1927 A mathematical theory of natural and
artificial selection. V. selection and mutation. Math. Proc.
Camb. Philos. Soc. 23: 838–844. https://doi.org/10.1017/
S0305004100015644

Haller, B. C., and P. W. Messer, 2017 SLiM 2: flexible, interactive
forward genetic simulations. Mol. Biol. Evol. 34: 230–240.
https://doi.org/10.1093/molbev/msw211

Harris, A. M., and M. DeGiorgio, 2019 A likelihood approach for
uncovering selective sweep signatures from haplotype data. bio-
Rxiv. (Preprint posted June 21, 2019).https://doi.org/10.1101/
678722

Harris, A. M., N. R. Garud, and M. DeGiorgio, 2018 Detection and
classification of hard and soft sweeps from unphased genotypes
by multilocus genotype identity. Genetics 210: 1429–1452.
https://doi.org/10.1534/genetics.118.301502

Harris, K., and R. Nielsen, 2016 The genetic cost of Neanderthal intro-
gression. Genetics 203: 881–891. https://doi.org/10.1534/genetics.
116.186890

Hartl, D. L., and A. G. Clark, 2007 Principles of Population Genet-
ics, Ed. 4. Sinauer Associates, Inc., Sunderland, MA.

Hendrickx, J., and P. J. Willems, 1996 Genetic deficiencies of the
glycogen phosphorylase system. Hum. Genet. 97: 551–556.
https://doi.org/10.1007/BF02281858

Hermisson, J., and P. S. Pennings, 2005 Soft sweeps: molecular
population genetics of adaptation from standing genetic variation.
Genetics 169: 2335–2352. https://doi.org/10.1534/genetics.
104.036947

Hermisson, J., and P. S. Pennings, 2017 Soft sweeps and beyond:
understanding the patterns and probabilities of selection foot-
prints under rapid adaptation. Methods Ecol. Evol. 8: 700–716.
https://doi.org/10.1111/2041-210X.12808

Huber, C. D., M. DeGiorgio, I. Hellmann, and R. Nielsen,
2016 Detecting recent selective sweeps while controlling for
mutation rate and background selection. Mol. Ecol. 25: 142–
156. https://doi.org/10.1111/mec.13351

Hudson, R. R., 2002 Generating samples under a Wright-Fisher
neutral model of genetic variation. Bioinformatics 18: 337–338.
https://doi.org/10.1093/bioinformatics/18.2.337

International HapMap Consortium; Frazer, K. A., D. G. Ballinger, D.
R. Cox, D. A. Hinds, L. L. Stuve et al., 2007 A second genera-
tion human haplotype map of over 3.1 million SNPs. Nature
449: 851–861. https://doi.org/10.1038/nature06258

Jensen, J. D., 2014 On the unfounded enthusiasm for soft selec-
tive sweeps. Nat. Commun. 5: 5281. https://doi.org/10.1038/
ncomms6281

Johnson, K. E., and B. F. Voight, 2018 Patterns of shared signa-
tures of recent positive selection across human populations. Nat.
Ecol. Evol. 2: 713–720. https://doi.org/10.1038/s41559-018-
0478-6

Jones, B. L., T. O. Raga, A. Liebert, P. Zmarz, E. Bekele et al.,
2013 Diversity of lactase persistence alleles in Ethiopia: signa-
ture of a soft selective sweep. Am. J. Hum. Genet. 93: 538–544.
https://doi.org/10.1016/j.ajhg.2013.07.008

Juric, I., S. Aeschbacher, and G. Coop, 2016 The strength of se-
lection against Neanderthal introgression. PLoS Genet. 12:
e1006340. https://doi.org/10.1371/journal.pgen.1006340

Kato, R., A. Nonami, T. Taketomi, T. Wakioka, A. Kuroiwa et al.,
2003 Molecular cloning of mammalian Spred-3 which sup-
presses tyrosine kinase-mediated Erk activation. Biochem. Bio-
phys. Res. Commun. 302: 767–772. https://doi.org/10.1016/
S0006-291X(03)00259-6

Kheirandish, P., and F. Chinegwundoh, 2011 Ethnic differences in
prostate cancer. Br. J. Cancer 105: 481–485. https://doi.org/
10.1038/bjc.2011.273

Kimura, M., 1962 On the probability of fixation of mutant genes
in a population. Genetics 47: 713–719.

Klammer, A. A., C. Y. Park, and W. S. Noble, 2009 Statistical
calibration of the SEQUEST XCorr function. J. Proteome Res.
8: 2106–2113. https://doi.org/10.1021/pr8011107

Kodama, K., D. Tojjar, S. Yamada, K. Toda, C. J. Patel et al.,
2013 Ethnic differences in the relationship between insulin

Detecting Shared Sweeps 169

https://doi.org/10.1038/ncomms7534
https://doi.org/10.1038/ncomms7534
https://doi.org/10.1371/journal.pgen.1000500
https://doi.org/10.1038/nrg3425
https://doi.org/10.1371/journal.pone.0030377
https://doi.org/10.1371/journal.pone.0030377
https://doi.org/10.1101/gr.164822.113
https://doi.org/10.1002/ajmg.a.36770
https://doi.org/10.1093/molbev/msu118
https://doi.org/10.1093/molbev/msu118
https://doi.org/10.1534/genetics.112.147231
https://doi.org/10.1534/genetics.112.147231
https://doi.org/10.1093/molbev/msr190
https://doi.org/10.1093/molbev/msr190
https://doi.org/10.1016/j.tpb.2015.04.001
https://doi.org/10.1371/journal.pgen.1005004
https://doi.org/10.1371/journal.pone.0006369
https://doi.org/10.1371/journal.pone.0006369
https://doi.org/10.1534/genetics.112.144071
https://doi.org/10.1073/pnas.1019276108
https://doi.org/10.1038/ng.937
https://doi.org/10.1017/S0305004100015644
https://doi.org/10.1017/S0305004100015644
https://doi.org/10.1093/molbev/msw211
https://doi.org/10.1101/678722
https://doi.org/10.1101/678722
https://doi.org/10.1534/genetics.118.301502
https://doi.org/10.1534/genetics.116.186890
https://doi.org/10.1534/genetics.116.186890
https://doi.org/10.1007/BF02281858
https://doi.org/10.1534/genetics.104.036947
https://doi.org/10.1534/genetics.104.036947
https://doi.org/10.1111/2041-210X.12808
https://doi.org/10.1111/mec.13351
https://doi.org/10.1093/bioinformatics/18.2.337
https://doi.org/10.1038/nature06258
https://doi.org/10.1038/ncomms6281
https://doi.org/10.1038/ncomms6281
https://doi.org/10.1038/s41559-018-0478-6
https://doi.org/10.1038/s41559-018-0478-6
https://doi.org/10.1016/j.ajhg.2013.07.008
https://doi.org/10.1371/journal.pgen.1006340
https://doi.org/10.1016/S0006-291X(03)00259-6
https://doi.org/10.1016/S0006-291X(03)00259-6
https://doi.org/10.1038/bjc.2011.273
https://doi.org/10.1038/bjc.2011.273
https://doi.org/10.1021/pr8011107


sensitivity and insulin response. Diabetes Care 36: 1789–1796.
https://doi.org/10.2337/dc12-1235

Lamason, R. L., M. P. K. Mohideen, J. R. Mest, A. C. Wong, H. L.
Norton et al., 2005 SLC24A5, a putative cation exchanger, af-
fects pigmentation in Zebrafish and humans. Science 310:
1782–1786. https://doi.org/10.1126/science.1116238

Lee, K. M., and G. Coop, 2017 Distinguishing among modes of
convergent adaptation using population genomic data. Genetics
207: 1591–1619.

Lencz, T., C. Lambert, P. DeRosse, K. E. Burdick, T. V. Morgan et al.,
2007 Runs of homozygosity reveal highly penetrant recessive
loci in schizophrenia. Proc. Natl. Acad. Sci. USA 104: 19942–
19947. https://doi.org/10.1073/pnas.0710021104

Librado, P., and L. Orlando, 2018 Detecting signatures of positive
selection along defined branches of a population tree using LSD.
Mol. Biol. Evol. 35: 1520–1535. https://doi.org/10.1093/molbev/
msy053

Librado, P., C. Gamba, C. Gaunitz, C. D. Sarkissian, M. Pruvost
et al., 2017 Ancient genomic changes associated with domes-
tication of the horse. Science 356: 442–445. https://doi.org/
10.1126/science.aam5298

Lindo, J., E. Huerta-Sánchez, S. Nakagome, M. Rasmussen, B.
Petzelt et al., 2016 A time transect of exomes from a Na-
tive American population before and after European con-
tact. Nat. Commun. 7: 13175. https://doi.org/10.1038/
ncomms13175

Liu, X., R. T. Ong, E. N. Pillai, A. M. Elzein, K. S. Small et al.,
2013 Detecting and characterizing genomic signatures of pos-
itive selection in global populations. Am. J. Hum. Genet. 92:
866–881. https://doi.org/10.1016/j.ajhg.2013.04.021

Ly, T., Y. Ahmad, A. Shlien, D. Soroka, A. Mills et al., 2014 A
proteomic chronology of gene expression through the cell cycle
in human myeloid leukemia cells. eLife 3: e01630. https://
doi.org/10.7554/eLife.01630

Malaspinas, A., O. Malaspinas, S. N. Evans, and M. Slatkin,
2012 Estimating allele age and selection coefficient from
time-serial data. Genetics 192: 599–607. https://doi.org/
10.1534/genetics.112.140939

Marciniak, S., and G. H. Perry, 2017 Harnessing ancient genomes
to study the history of human adaptation. Nat. Rev. Genet. 18:
659–674. https://doi.org/10.1038/nrg.2017.65

Maron, B. J., K. P. Carney, H. M. Lever, J. F. Lewis, I. Barac et al.,
2003 Relationship of race to sudden cardiac death in com-
petitive athletes with hypertrophic cardiomyopathy. J. Am.
Coll. Cardiol. 41: 974–980. https://doi.org/10.1016/S0735-
1097(02)02976-5

Mathieson, I., and G. McVean, 2013 Estimating selection coeffi-
cients in spatially structured populations from time series data
of allele frequencies. Genetics 193: 973–984. https://doi.org/
10.1534/genetics.112.147611

Maynard Smith, J., and J. Haigh, 1974 The hitch-hiking effect of
a favourable gene. Genet. Res. 23: 23–35. https://doi.org/
10.1017/S0016672300014634

Messer, P. W., 2013 SLiM: simulating evolution with selection and
linkage. Genetics 194: 1037–1039. https://doi.org/10.1534/
genetics.113.152181

Messer, P. W., and D. A. Petrov, 2013 Population genomics of
rapid adaptation by soft selective sweeps. Trends Ecol. Evol.
28: 659–669. https://doi.org/10.1016/j.tree.2013.08.003

Metspalu, M., I. G. Romero, B. Yunusbayev, G. Chaubey, C. B.
Mallick et al., 2011 Shared and unique components of human
population structure and genome-wide signals of positive selec-
tion in South Asia. Am. J. Hum. Genet. 89: 731–744. https://
doi.org/10.1016/j.ajhg.2011.11.010

Mignone, F., C. Gissi, S. Liuni, and G. Pesole, 2002 Untranslated
regions of mRNAs. Genome Biol. 3: REVIEWS0004.

Mughal, M. R., and M. DeGiorgio, 2019 Localizing and classifying
adaptive targets with trend filtered regression. Mol. Biol. Evol.
36: 252–270. https://doi.org/10.1093/molbev/msy205

Nachman, M. W., and S. L. Crowell, 2000 Estimate of the muta-
tion rate per nucleotide in humans. Genetics 156: 297–304.

Narasimhan, V. M., R. Rahbari, A. Scally, A. Wuster, D. Mason et al.,
2017 Estimating the human mutation rate from autozygous
segments reveals population differences in human mutational
processes. Nat. Commun. 8: 303. https://doi.org/10.1038/
s41467-017-00323-y
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