
| GENOMIC PREDICTION

Dominance Effects and Functional Enrichments
Improve Prediction of Agronomic Traits in

Hybrid Maize
Guillaume P. Ramstein,*,1 Sara J. Larsson,†,2 Jason P. Cook,‡,3 Jode W. Edwards,§ Elhan S. Ersoz,**,4

Sherry Flint-Garcia,†† Candice A. Gardner,§ James B. Holland,‡‡ Aaron J. Lorenz,§§,5 Michael D. McMullen,††

Mark J. Millard,§ Torbert R. Rocheford,*** Mitchell R. Tuinstra,*** Peter J. Bradbury,††† Edward S. Buckler,*,†††

and M. Cinta Romay*,1

*Institute for Genomic Diversity and †Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, ‡Division
of Plant Science and ††U.S. Department of Agriculture–Agricultural Research Service, University of Missouri, Columbia, Missouri
56211, §U.S. Department of Agriculture–Agricultural Research Service, Ames, Iowa 50011, **Syngenta Seeds, Stanton, Minnesota
55018, ‡‡U.S. Department of Agriculture–Agricultural Research Service, Department of Crop and Soil Sciences, North Carolina
State University, Raleigh, North Carolina 27695, §§Department of Agronomy and Horticulture, University of Nebraska, Lincoln,
Nebraska 68588, ***Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, and †††U.S. Department of

Agriculture–Agricultural Research Service, Ithaca, New York 14853

ORCID IDs: 0000-0002-7536-1113 (G.P.R.); 0000-0002-0647-9812 (S.J.L.); 0000-0001-7918-476X (J.W.E.); 0000-0001-6930-6946 (E.S.E.);
0000-0003-4156-5318 (S.F.-G.); 0000-0002-5334-6123 (C.A.G.); 0000-0002-4341-9675 (J.B.H.); 0000-0002-4361-1683 (A.J.L.); 0000-0001-

9631-1134 (M.J.M.); 0000-0003-3825-8480 (P.J.B.); 0000-0002-3100-371X (E.S.B.); 0000-0001-9309-1586 (M.C.R.)

ABSTRACT Single-cross hybrids have been critical to the improvement of maize (Zea mays L.), but the characterization of their genetic
architectures remains challenging. Previous studies of hybrid maize have shown the contribution of within-locus complementation
effects (dominance) and their differential importance across functional classes of loci. However, they have generally considered panels
of limited genetic diversity, and have shown little benefit from genomic prediction based on dominance or functional enrichments. This
study investigates the relevance of dominance and functional classes of variants in genomic models for agronomic traits in diverse
populations of hybrid maize. We based our analyses on a diverse panel of inbred lines crossed with two testers representative of the
major heterotic groups in the U.S. (1106 hybrids), as well as a collection of 24 biparental populations crossed with a single tester
(1640 hybrids). We investigated three agronomic traits: days to silking (DTS), plant height (PH), and grain yield (GY). Our results point to
the presence of dominance for all traits, but also among-locus complementation (epistasis) for DTS and genotype-by-environment
interactions for GY. Consistently, dominance improved genomic prediction for PH only. In addition, we assessed enrichment of genetic
effects in classes defined by genic regions (gene annotation), structural features (recombination rate and chromatin openness), and
evolutionary features (minor allele frequency and evolutionary constraint). We found support for enrichment in genic regions and
subsequent improvement of genomic prediction for all traits. Our results suggest that dominance and gene annotations improve
genomic prediction across diverse populations in hybrid maize.
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SINCE the development of the first maize hybrids by Shull
(1908) and their widespread adoption starting in the

1930s, hybrids have been central to the improvement of
maize in the U.S. Prevailing hypotheses about their advan-
tages have focused on complementation of parental genomes
(Crow 1998). The basis for such complementation consists
of nonadditive genetic effects, particularly dominance (within-
locus complementation, i.e., interaction between alleles

within single genetic loci) and epistasis (among-locus com-
plementation, i.e., interactions involving multiple genetic
loci). Dominance has been proposed as a major driver of ge-
nomic complementation in maize hybrids (Crow 1998;
Lamkey and Edwards 1999). Epistasis also provides a plausi-
ble explanation for genomic complementation, but studies as-
sessing its contribution to hybrid advantage have suffered
from a lack of statistical power (Reif et al. 2005) and have
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reported conflicting results (e.g., Mihaljevic et al. 2005; Ma
et al. 2007).

Genetic studies in maize have investigated dominance
gene action by focusing either on directional dominance
(consistent dominance effects across loci), effects of signifi-
cant quantitative trait loci (QTL), or genome-wide polygenic
effects. Studies on testcrosses or diallel mating designs seem
to support the presence of directional dominance, particularly
for grain yield (GY) (Hinze and Lamkey 2003; Reif et al.
2003). Furthermore, studies on populations derived from
backcrosses between recombinant inbred lines (RILs) and
their parents have generally identified several QTL with sig-
nificant dominance effects for traits such as flowering time,
plant height (PH), and GY (e.g., Frascaroli et al. 2007; Larièpe
et al. 2012). However, genomic prediction analyses often
have not shown the contribution of dominance effects to
genotypic variability, because they focused on populations
of hybrids obtained from crosses between heterotic groups:
Flint and Dent (e.g., Technow et al. 2014), or Stiff Stalk (SS)
and non-Stiff Stalk (NSS) (e.g., Kadam et al. 2016). Assessing
the relevance of dominance effects in genomic prediction
models would require more diverse panels in which comple-
mentation effects are more variable, due to differential
degrees of complementarity within and across heterotic
groups (Reif et al. 2005; Gerke et al. 2015).

The studies above have examined the relative importance
of additive and dominance effects across the genome, but
have not attempted to describe the properties of loci most
enriched for causal variants: gene proximity, structural fea-
tures, and/or evolutionary features. Gene proximity has been
linked to causal variants inmaize through enrichment forQTL
effects in genic regions (Wallace et al. 2014), consistent with
a large portion of variability of gene expression being attrib-
uted to cis polymorphisms in maize (Schadt et al. 2003).
Structural features such as chromatin openness and high re-
combination rate were also associated with enrichment for
QTL effects in maize inbred lines (Rodgers-Melnick et al.
2016), but studies on hybrids have also shown that domi-
nance effects could locate around centromeres, where re-
combination is low (Larièpe et al. 2012; Thiemann et al.

2014, Martinez et al. 2016). Evolutionary features reflecting
low allelic diversity within (allele frequency or nucleotide
diversity) and across species (evolutionary constraint) have
been associated with stronger QTL effects in hybrid maize
(Mezmouk and Ross-Ibarra 2014; Yang et al. 2017). Impor-
tantly, structural and evolutionary features have also been
associated with gene proximity (Beissinger et al. 2016;
Rodgers-Melnick et al. 2016). Therefore, there is ambiguity
about the relevance of evolutionary and structural features to
capture variability at agronomic traits independently from
gene proximity.

In this study, we characterized the genetic basis of three
agronomic traits—days to silking (DTS), PH, and GY—in pan-
els representative of the diversity in North-American hybrid
maize. We analyzed two hybrid panels. One was derived
from crosses between a diverse sample of maize inbred lines
and either of two testers, B47 and PHZ51, belonging respec-
tively to the SS and NSS heterotic groups. The other was
derived from crosses between the U.S. Nested Association
Mapping panel and PHZ51. Our study investigated the deter-
minants of genotypic variability in hybrid maize, based on
gene action (additive and/or dominance effects) or func-
tional enrichments (by gene proximity and structural or evo-
lutionary features) (Figure 1).

Materials and Methods

Phenotypic data

Phenotypic measurements: In this study, twopanels ofmaize
lines were evaluated for hybrid performance: the North Cen-
tral Regional Plant Introduction Station association panel
(hereafter, Ames) and the U.S. Nested Association Mapping
panel (hereafter, NAM). The Ames panel is a subset of tem-
perate inbred lines from the diversity panel described by
Romay et al. (2013); the NAM panel is a subset of 24 RIL
populations, all having one parent in common, B73, as de-
scribed by McMullen et al. (2009).

The hybrid Ames panel (Ames-H) was derived from a
subset of 875 inbred lines, which were selected to reduce
differences in flowering time while favoring genetic diversity
based on pedigree. Two inbred lines were selected as testers:
oneNSS inbred (PHZ51) and one SS inbred (B47, also known
as PHB47). Inbreds were assigned to one or two testers based
on known heterotic group: SS inbreds were crossed with
PHZ51, while NSS inbreds were crossed with B47; inbreds
withunknownheterotic group, aswell as inbreds belonging to
the Goodman association panel (Flint-Garcia et al. 2005),
were crossed with both testers, for a total of 1111 hybrids.
The hybrid NAM panel (NAM-H) was developed as described
by Larsson et al. (2017 preprint). Briefly, a subset of up to
80 RILs from each of the NAM families was selected to reduce
differences in flowering time across families: the later RILs
from the earliest families and the earlier RILs from the latest
families, for a total of 1799 RILs. All NAM RILs were crossed
with the same tester, PHZ51.
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In Ames-H, evaluationswere performed in 2011 and 2012,
at six locations across the U.S.—Ames (IA), West Lafayette
(IN), Kingston (NC), Lincoln (NE), Aurora (NY), and Colum-
bia (MO)—for a total of nine environments: 11IA, 11IN,
11NC, 11NE, 11NY, 11MO, 12NE, 12NC, and 12MO. In
NAM-H, hybrids were evaluated at five locations—Ames
(IA), West Lafayette (IN), Kingston (NC), Aurora (NY), and
Columbia (MO)—during 2010 and 2011 for a total of eight
environments: 10IA, 10IN, 10NC, 10MO, 11IA, 11IN, 11NC,
and 11NY. The following traits weremeasured in each hybrid
panel: DTS (number of days from planting until 50% of the
plants had silks), PH (centimeters from soil to flag leaf), and
GY (tons per hectare adjusted to 15.5% moisture). In 11NY,
only PH andDTSweremeasured (Table 1). Both Ames-H and
NAM-H panels were planted in two-row plots (40–80 plants
per plot; 50,000–75,000 plants per hectare), except for
11NY, where 12 plants were planted per plot.

Phenotypic evaluations were conducted under augmented
blockdesigns,where blockingwasused to reduce competition
for light due to heterogeneous height and/or phenology (only
checks were replicated within environments). In Ames-H,
blocks were combinations of tester (PHZ51 or B47), maturity
(early or late), and expected PH (short, medium, or tall);
checks were B733 PHZ51 (up to six replicates per block) as
well as PHZ51 3 B47, B47 3 PHZ51, and a maturity com-
mercial check (each replicated once per block). In NAM-H,
blocks were NAM families; checks were B73 3 PHZ51
(# 15 replicates per block) and the non-B73 parent crossed
with PHZ51 (# 7 replicates per block) (Larsson et al. 2017
preprint).

Genotype means and heritability: For each combination of
panel (Ames-H or NAM-H) and trait (DTS, PH, or GY), geno-
type means of hybrids were estimated by the following linear
mixed model, fitted by ASREML-R v3.0 (Butler et al. 2009):

yijkl ¼ gi þ ðEnv:Þjk þ ðFieldÞjkl þ sijkl þ eijkl

where gi was the mean of genotype i (fixed), ðEnv:Þjk was the
effect of location j and year k [random, independent, and
identically normally distributed (i.i.d.)], ðFieldÞjkl was the
effect of field l within environment jk (random, i.i.d.), eijkl
was the error (random, i.i.d.), and sijkl was a spatial effect
within environment–field combinations (random, normally
distributed under first-order autoregressive covariance struc-
tures by row and column). Since genotypes were not
replicated within environments, genotype-by-environment
interactions were pooled with errors. For PH in both panels,
spatial effects were not included in the model because the
fitting algorithm could not converge to a solution. For GY
in both panels, DTS measurements (fixed) were included in
the model to account for phenological differences among
lines. In addition to estimating genotype effects (gi’s) as fixed,
models with genotype effects as random were also fitted to
estimate genotypic variance ðs2

gÞ and error variance ðs2
e Þ.

Broad-sense heritability on a plot basis was then calculated

as H2 ¼ s2
g

s2
g þ s2

e
. Finally, the average entry-mean reliability

was estimated as r2g ¼ 12 1
n

Pn
i¼1

Varðgi 2 ĝiÞ
s2
g

, where n is the

number of hybrids evaluated in either panel and
Varðgi 2 ĝiÞ is the prediction error variance of the random
genotype effect for hybrid i (Searle et al. 2009).

Genotypic data

Marker data: Whole-genome sequencing (WGS) SNPs were
previously called in the Hapmap 3.2.1 reference panel
(Bukowski et al. 2018), under version 4 of the B73 reference
genome. In this study, marker scores (allele counts) at WGS
SNPs in the Ames and NAM inbred panels were imputed from
genotyping-by-sequencing (GBS) SNPs (Romay et al. 2013;
Rodgers-Melnick et al. 2015). Then, marker scores at WGS
SNPs in Ames-H and NAM-H hybrids were inferred based on
the marker scores at their respective parents in the Ames and
NAM inbred panels.

In the Ames and NAM inbred panels, GBS SNPs were
called with the software TASSEL v5.0 (Bradbury et al. 2007)
using the GBS production pipeline and the ZeaGBSv2.7
TagsOnPhysicalMap files (Glaubitz et al. 2014). In the Hapmap
3.2.1 reference panel, WGS SNPs were processed as follows:
25,555,019 SNPs were selected (two alleles per SNP, call
rate$ 50%, andminor allele count$ 3), heterozygousmarker
scoreswere set tomissing (since thesewere presumably due to
errors or collapsed paralogous loci), andmissingmarker scores
were imputed. Marker scores at WGS SNPs in the Ames and
NAM inbred panels were then imputed from GBS SNPs (sep-
arately by panel), using the Hapmap 3.2.1 panel WGS SNPs
as reference. Imputations ofmarker scores atWGS SNPswere
performed byBEAGLE v5 (Browning et al. 2018),with 10 bur-
n-in iterations, 15 sampling iterations, and effective popula-
tion size set to 1000.

After imputation, m = 12,659,487 WGS SNPs were se-
lected for estimated squared correlation between imputed
and actual marker scores ($ 0.8; Browning and Browning
2009) and minor allele frequency ($ 0.01), in each combi-
nation of inbred panel and tester (e.g., set of Ames inbreds
crossed to PHZ51), to avoid SNPs private to any of these sets.
Marker scores at selected WGS SNPs were then inferred for
each hybrid by CreateHybridGenotypesPlugin in TASSEL
v5.0. The marker data at selected WGS SNPs in Ames-H
(n = 1106) and NAM-H (n = 1640) consisted of the matrix X
of minor allele counts, where minor alleles were defined by
frequencies in the Hapmap 3.2.1 panel, and the matrix Z of
heterozygosity, which coded homozygotes as 0 and hetero-
zygotes as 1.

Population principal components: Principal component
(PC) analysis (PCA) was performed using the R package irlba
v2.3.3 (Baglama and Reichel 2005) in the Goodman panel
representing the genetic diversity among elite maize inbred
lines (Flint-Garcia et al. 2005). The first three PCs were
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computed based on allele counts at selected WGS SNPs
(4.7%, 3.2%, and 2.1% of genomic variability explained in
the Goodman panel, respectively). The matrix P of coordi-
nates at the first three PCs in Ames-H and NAM-H was
obtained by: (i) adjusting allele counts by their observed
mean in the Goodman panel and (ii) mapping adjusted allele
counts to PCs by SNP loadings, i.e., P ¼ ðX2MÞV, where
X2M is the matrix of adjusted allele counts in hybrid panels
and V is the m3 3 matrix of right-singular vectors from the
PCA.

Functional features

Gene annotation (proximity to genes): Gene positions were
available from v4 gene annotations, release 40 (ftp://ftp.
ensemblgenomes.org/pub/plants/release-40/gff3/zea_mays/
Zea_mays.AGPv4.40.gff3.gz). Gene proximity bins (either
“proximal” or “distal”) indicated whether any given SNP
was within 1 kb of an annotated gene (, 1 kb away from
start or end positions).

Structural features (recombination rate and chromatin
openness): Published recombination maps identified geno-
mic segments originating from either parent within the prog-
eny of each NAM family (Rodgers-Melnick et al. 2015). These
maps were uplifted to version 4 of the reference genome
using CrossMap v0.2.5 (Zhao et al. 2014). Then, the recom-
bination fractions were fitted on genomic positions by a thin-
plate regression spline model, using the R package mgcv
v1.8-27 (Wood 2003). Based on this model, recombination
rates c were inferred by finite differentiation of fitted recom-
bination fractions: c ¼ f

�
sþ 1

2

�
2 f
�
s2 1

2

�
, where s is the vec-

tor of genomic positions of all WGS SNPs and f is the function
inferred by the spline model. We defined recombination bins
as follows: cj # 0.45 cM/Mb, 0.45 cM/Mb , cj # 1.65
cM/Mb, and 1.65 cM/Mb , cj, where 0.45 cM/Mb and

1.65 cM/Mb are the first two tertiles of estimated recombi-
nation rates among all WGS SNPs.

Chromatin accessibility was measured by micrococcal nu-
clease hypersensitivity (MNase HS) in juvenile root and shoot
tissues in B73 (Rodgers-Melnick et al. 2016). Here,MNaseHS
peaks were mapped to their coordinates in version 4 of the
reference genome. A given SNP was considered to lie in a
euchromatic (open) region if an MNase HS peak was de-
tected, in either root or shoot tissues. We defined MNase
HS bins as “dense” or “open” for the absence or presence of
MNase HS peaks, respectively.

Evolutionary features (minor allele frequency and evolu-
tionary constraint): Minor allele frequency (MAF) at SNPs was
determined in the Hapmap 3.2.1 panel. Similarly to Evans et al.
(2018), we defined MAF bins as follows: MAF # 0.01, 0.01 ,
MAF # 0.05, and 0.05 , MAF (SNPs were not binned at MAF #

0.0025 due to only 7202 of them falling into this class).
Evolutionary constraint at SNPswas quantifiedby genomic

evolutionary rate profiling (GERP) scores (Davydov et al.
2010), derived from a whole-genome alignment of 13 plant
species (Rodgers-Melnick et al. 2015; Yang et al. 2017), in
version 4 of the reference genome. We defined GERP score
bins by GERP # 0 and GERP . 0.

Genomic models

Polygenic additive effects (genomic best linear unbiased
prediction): Genome-wide additive effects were estimated
under a genomic best linear unbiased prediction (GBLUP)
model (VanRaden 2008), as follows:

g ¼ Qdþ uþ e;u � N
�
0;Gs2

u
�
; e � N

�
0; Is2

e

�
;G

¼ XX’
.
m

where g was the vector of genotype means; Q ¼ ½1 P � was
the matrix consisting of a vector of ones and the three PCs as
described above; dwere fixed effects associated toQ; u and e
consisted of polygenic additive effects and random errors,
respectively; and X was the (noncentered) matrix of minor
allele counts at m ¼ 12; 659; 487 WGS SNPs as described
above. The GBLUP model was fitted in Ames-H or NAM-H
by restricted maximum likelihood (REML) using the R pack-
age regress v1.3-15 (Clifford and McCullagh 2005).

Polygenic additive and dominance effects (dominance
GBLUP): To account for dominance, the GBLUP model was
extended to the dominance GBLUP (DGBLUP) model, as
follows:

g ¼ Qdþ uþw þ e;u � N
�
0;Gs2

u
�
;w � N

�
0;Ds2

w
�
; e

� N
�
0; Is2

e

�
;G ¼ XX’

�
m;D ¼ ZZ’

�
m

(1)

where w consisted of polygenic dominance effects and
Z was the (noncentered) matrix of heterozygosity at

Table 1 Phenotypic information by panel and trait

Panel Trait Environments Mean sg H2 r2g

Ames-H DTS 11IA 11IN 11NC 11NE 11NY 11MO 66.4 2.1 0.78 0.95
12NC 12NE 12MO

PH 11IA 11IN 11NC 11NE 11NY 11MO 219 13 0.69 0.92
12NC 12NE 12MO

GY 11IA 11NC 11NE 11MO 6.13a 0.66 0.29 0.62
12NC 12NE 12MO

NAM-H DTS 10IA 10IN 10MO 70.6 1.5 0.55 0.81
11IA 11IN 11NC 11NY

PH 10IA 10IN 10NC 10MO 247 10 0.30 0.69
11IA 11IN 11NC 11NY

GY 10IA 10IN 10MO 6.94a 0.44 0.16 0.35
11IA 11NC

Environments refer to year (2010, 2011, and 2012) and locations [Kingston (NC),
Ames (IA), West Lafayette (IN), Lincon (NE), Columbia (MO), and Aurora (NY)].
Mean: average phenotypic value; sg, genotypic SD; H2, broad-sense heritability on
a plot basis; r2g , average entry-mean reliability. Ames-H, hybrid panel from Ames,
North Central Regional Plant Introduction Station association panel; NAM-H, hybrid
panel from NAM, U.S. Nested Association Mapping panel. DTS, days to silking; PH,
plant height; GY, grain yield adjusted for DTS.
a Means shown for GY are adjusted by mean DTS.
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m ¼ 12; 659; 487 WGS SNPs as described above. Notably, in
NAM-H, additive effects were completely confounded with
dominance effects, because only one inbred tester was used
in this panel (and only two genotype classes could exist at
any given marker). Therefore, model (1) was fitted only in
Ames-H by REML using the R package regress v1.3-15
(Clifford and McCullagh 2005).

Directional effects: Under amodel of directional dominance
without linkage or epistasis, inbreeding depression is char-
acterized by a linear negative relationship between the
inbreeding coefficient and fitness (Falconer and Mackay
1996). In the presence of directional epistatic effects, the
relationship between the inbreeding coefficient and fitness
is expected to be nonlinear (Crow and Kimura 1970). To
capture such nonlinearity, especially dominance 3 domi-
nance epistasis, the quadratic effect of the inbreeding co-
efficient was fitted along with its linear effect in genomic
models. We followed Endelman and Jannink (2012) to
estimate genomic inbreeding coefficients with respect to a
base population, here represented by the Goodman panel.
For each hybrid i, the coefficient of genomic inbreeding was

calculated as Fi ¼
P

j

�
xij22pj

�2P
j
2pj

�
12pj

�2 1, where pj was the allele

frequency in the Goodman panel.
Directional effects of inbreeding were analyzed as fixed

effects under an extension of the DGBLUP model (1). The
following model was fitted:

g ¼ Qdþ Rτ þ uþw þ e;u � N
�
0;Gs2

u
�
;w

� N
�
0;Ds2

w
�
; e � N

�
0; Is2

e

�
;G ¼ XX’

�
m;D ¼ ZZ’

�
m

(2)

where R consisted of genomic inbreeding values (linear and
quadratic) and τ were fixed effects associated to R. Signifi-
cance of τ estimates was assessed by Wald tests. Model (2)
was fitted in Ames-H by REML using the R package regress
v1.3-15 (Clifford and McCullagh 2005).

Oligogenic effects (genome-wide association studies): To
assess marginal additive effects (bj, fixed, for each SNP j), the
following genome-wide association study (GWAS) model
was fitted in Ames-H or NAM-H: g ¼ Qdþ xjbj þ uþ e;
u � Nð0;Gs2

uÞ, e � Nð0; Is2
e Þ, G ¼ XX’=m. Significance of

SNPs was assessed by Wald tests on estimates of bj. False
discovery rates (FDRs) were estimated based on P-values
from Wald tests by the method of Benjamini and Hochberg
(1995). In addition, posterior inclusion probabilities (PIPs)
were estimated by Bayesian sparse linear mixed models
(BSLMMs), fitted jointly on the whole matrix X by GEMMA
v0.98.1, with 1,000,000 and 10,000,000 MCMC iterations
for burn-in and sampling, respectively (Zhou et al. 2013).
Window posterior inclusion probabilities (WPIPs) were sub-
sequently estimated, following Guan and Stephens (2011),
by summing PIPs in 500-kb windows, sliding by 250-kb steps.

The most significant marker effects were then selected for
FDR # 0.05 and WPIP $ 0.5.

To assess additive and dominance effects (bj and uj, fixed,
for each SNP j), GWAS models were extended in Ames-H to
incorporate dominance for both fixed effects and random
effects: g ¼ Qdþ xjbj þ zjuj þ uþw þ e; u � Nð0;Gs2

uÞ,
w � Nð0;Ds2

wÞ, e � Nð0; Is2
e Þ, G ¼ XX’=m, D ¼ ZZ’=m. Sig-

nificance of SNPs was assessed by Wald tests on estimates of
bj and uj.

GWASmodels were fitted under the efficientmixed-model
association expedited (EMMAX) approximation of Kang et al.
(2010), using function fastLm in the R package RcppEigen
v0.3.3.5.0 (Bates and Eddelbuettel 2013).

Functional enrichments: Effects of functional features on the
amplitude of marker effects were captured by linear mixed
modelswhichpartitioned thegenomic variance by annotation
bins. For each feature (gene proximity, recombination rate,
chromatin openness, MAF, and GERP), the following func-
tional enrichment model was fitted:

g ¼ Qdþ uþw þ e;u � N

 
0;
X
k

Gks
2
k

!
;w

� N

 
0;
X
l

Dls
2
l

!
; e � N

�
0; Is2

e

�
;Gk ¼

XkX’
k

mk
; and Dl

¼ ZlZ’l
ml

(3)

where XkðZlÞ was the matrix of minor allele counts (hetero-
zygosity) at themk (ml) SNPs in bin k (l) and s2

k   ðs2
l Þwas the

variance component associated to additive effects in bin k
(dominance effects in bin l). The significance of variance
partitions was assessed by likelihood ratio tests, comparing
the REML of the evaluated model to that of a baseline model.
Model (3) was fitted by REML using the R package regress
v1.3-15 (Clifford and McCullagh 2005) in Ames-H or NAM-H.
In NAM-H, model (3) did not include dominance effects
(w), because of collinearity of additive and dominance effects
in this panel (due to only one inbred tester in NAM-H). Two
types of variance partition were analyzed: partition by one
feature (baseline: DGBLUP in Ames-H and GBLUP in NAM-H),
and partition by both gene proximity and another feature
(baseline: partition by gene proximity only in DGBLUP or
GBLUP).

Variance partition and SNP enrichment

The proportion of variance explained by marker effects in

GBLUP was estimated by 1
n

P
i

~Giis
2
u

~Giis
2
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e
, where ~Gii is the ith di-

agonal element of matrix G adjusted for fixed effects, i.e.,
~G ¼ ðI2HÞGðI2HÞ, with H ¼ QðQ9QÞ21Q9 being the ma-
trix of projection onto the column space of Q. The propor-
tion of variance explained by additive marker effects in
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k* (and similarly for dominance effects at bin l*) [model (3)].

Validation of genomic prediction models

Prediction accuracy of genomic models (GBLUP, DGBLUP,
GWASmodels, and functional enrichment models) was char-
acterized by the Pearson correlation between observed geno-
type means and their predicted values in validation sets. For
models trained in Ames-H, a validation set was 1 of the
24 NAM-H populations. This validation scheme assessed pre-
diction models for genomic selection in biparental breeding
populations, and was compared to a “leave-one-population-
out” cross-validation scheme where, for each validation set
(population), models were trained on the remaining 23 pop-
ulations in NAM-H. For models trained in NAM-H, a valida-
tion set was 1 of 10 random subsets in Ames-H. These subsets
were created by a random partition stratified by tester and
population cluster (Supplemental Material, Figure S1), so
that all validation sets equally represented variation over
population clusters and testers. This validation scheme
assessed prediction models for evaluation in diverse panels.
The significance of prediction accuracy for any genomic
model was tested for nonzero mean (by a one-sample Stu-
dent’s t-test) and difference to another model (by a two-sam-
ple Student’s t-test paired by validation set).

Assessment of genotype-by-panel interactions

Interactions between genotypes and panels were assessed
by Pearson correlation in genotype means between panels
for hybrids common to both panels ðrRÞ. These hybrids
were derived from crosses between PHZ51 and 1 of 23 refer-
ence lines (B73, B97, CML52, CML69, CML103, CML228,
CML247, CML277, CML322, CML333, Il14H, Ki3, Ki11,
M162W, M37W, Mo17, Mo18W, NC350, NC358, Oh43,
P39, Tx303, and Tzi8).

Genotype-by-panel interactions were also assessed by the
following polygenic model, following Jarquín et al. (2014):
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where Ewas the n3 2 design matrix attributing genotypes to
panels, either Ames-H or NAM-H; ~Q ¼ ½E P� and ~d cap-
tured effects of panels and population structure; ~uwere poly-
genic genomic effects with main variance and panel-specific
variance being quantified by s2

0 and s2
1, respectively; and s

refers to the Hadamard (element-wise) product. For a given
hybrid i, correlation in ~ui between different panel j and j’was

defined by rG ¼ Corð~uij; ~uij ’Þ ¼ Giis
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Giiðs2
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1Þ
¼ s2

0
s2
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1
(Jarquín

et al. 2014). This model was fitted in Ames-H and NAM-H
jointly, by REML using the R package regress v1.3-15
(Clifford and McCullagh 2005).

Data availability

Supporting data can be downloaded from https://doi.org/
10.25739/x2wc-yj71: raw marker scores at GBS SNPs (Ames
and NAM inbred panels), imputed marker scores at WGS

Figure 1 Graphical summary of the study. We tested hypotheses regard-
ing the statistical importance of two attributes of genomic variability in
hybrid maize: (1) dominance effects and (2) enrichment of genetic effects
in genic regions. Under each hypothesis, evidence from analyses is char-
acterized as consistent (+) or inconsistent (2). Nonconclusive evidence is
either due to absence of QTL (no QTL) or lack of significance (N.S.). Ames-H,
hybrid panel from Ames, North Central Regional Plant Introduction Station
association panel; NAM-H, hybrid panel from NAM, U.S. Nested Association
Mapping panel. DTS, days to silking; PH, plant height; GY, grain yield ad-
justed for DTS.
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SNPs (Hapmap 3.2.1, Ames-H, and NAM-H), raw phenotypic
measurements (Ames-H and NAM-H), estimated genotype
means (Ames-H and NAM-H), and functional annotations.
Raw marker scores at WGS SNPs in Hapmap 3.2.1 are pub-
licly available (https://doi.org/10.7946/p28h0c; Bukowski
et al. 2018). Supporting code (in R and Bash) is available
at https://bitbucket.org/bucklerlab/ames_nam_hybrid.
Supplemental material available at figshare: https://
doi.org/10.25386/genetics.11952225. Table S1 describes
interactions between genotypes and panels. Table S2 de-
scribes high-confidence QTL effects in Ames-H and
NAM-H, based on GWAS models and BSLMMs. Table S3
shows summary statistics about genomic inbreeding in
Ames-H. Table S4 describes the difference in accuracy
between Ames-H subsets (Ames 3 PHZ51 and Ames 3
B47) for prediction in NAM-H. Table S5 describes the
prediction accuracy in NAM-H by directional effects of
inbreeding in Ames-H. Table S6 describes the prediction
accuracy of GWAS models. Table S7 presents the signifi-
cance of variance partition by panel and functional feature.
Table S8 describes the genomic heritability captured by func-
tional classes in functional enrichment models. Table S9
describes the genomic prediction accuracy of functional en-
richment models. Figure S1 shows the population clusters in
Ames-H, inferred by k-means clustering (k = 4). Figure S2
depicts linkage disequilibrium (LD) in Ames-H and NAM-H.
Figure S3 shows allele frequencies among female parents in
Ames-H and NAM-H. Figure S4 shows the significance of mar-
ginal additive effects in GWAS in Ames-H and NAM-H. Figure
S5 shows the SNP enrichment by bin for structural and evolu-
tionary features in Ames-H and NAM-H. Figure S6 shows the
SNP enrichment by bin for structural and evolutionary features
in Ames-H and NAM-H, while accounting for enrichment by
gene proximity.

Results

Hybrid panels differ by genetic diversity and genetic
effects for GY

Hybrid panels display contrasting levels of diversity:While
the Ames hybrid panel (Ames-H) has a few hybrids with an
affinity to semitropical lines likeCML247, it is, for themost part,
comprisedofhybridsclosely related toSS lines likeB73andNSS
lines likeMo17 (Figure 2). Compared toAmes-H,NAM-H is less
diverse, since it was produced by crosses between a single NSS
tester (PHZ51) and biparental populations that were all de-
rived from a cross involving B73 as a common parent (NAM
RILs are 50% B73). Moreover, female parents in NAM-H were
selected for similar flowering time to PHZ51, hence further
narrowing down the genetic diversity in this panel.

Genome-wide patterns of LD and allele frequency are
similar across panels: LD patterns are quite similar in both
hybrid panels. After adjustment for population structure and
relatedness (following Mangin et al. 2012), LD values are

moderately concordant between Ames-H and NAM-H (r =
0.77) (Figure S2). Average LD values along chromosomes
decay at similar rates, reaching 0.1 at 160 kb in Ames-H and
151 kb in NAM-H. Allele frequencies among female parents
are also concordant between Ames-H and NAM-H (r =
0.88), but there are SNPs at low frequency in NAM-H (,
0.5) that segregate at frequencies between 0 and 1 in
Ames-H (Figure S3).

Genetic architecture for GY differs across panels: Three
agronomic traits were analyzed in Ames-H and NAM-H: DTS,
PH, and GY adjusted for differences in flowering time among
hybrids. The relatively lowaccuracy of genotypemeans forGY
(as reflected by low broad-sense heritability and entry-mean
reliability; Table 1) suggests variability due to genotype-by-
environment interactions. Accordingly, genotypic effects for
GY appear highly inconsistent across panels (Table S1). For
GY, correlations across panels based on genotype means of
reference lines ðrRÞ and genomic marker effects ðrGÞ are
not significantly different from zero (P-value . 0.10; Table
S1). In contrast, consistency in genetic effects is higher for PH
(rR ¼ 0:65 and rG ¼ 0:78; P-value , 0.001) and DTS
(rR ¼ 0:93 and rG ¼ 1:0; P-value, 0.001) (Table S1). There-
fore, DTS, PH, and GY represent three distinct levels of sensi-
tivity to genotype-by-environment interactions, being
respectively weak, moderate, and strong.

Evidence for dominance effects in hybrids is consistent
for PH and GY

Analyses of dominance were conducted in Ames-H only.
Under the hypothesis that dominance effects are pervasive
inAmes-H,weexpected consistent evidence fordifferent types
of dominance effects: polygenic effects fromvariance partition
[Materials and Methods: model (1)], fixed QTL effects from
association mapping, and directional effects from analysis of
genomic inbreeding [Materials and Methods: model (2)]. Fur-
thermore, we expected gains in genomic prediction accuracy
to be achieved by any type of dominance effects in an extra-
neous panel (NAM-H) (Figure 1). Dominance effects of
markers were not estimated in NAM-H because hybrids in this
panel are characterized by only two genotype classes at any
given marker (instead of three in Ames-H), such that additive
and dominance effects are statistically equivalent in NAM-H.

Polygenic dominance effects capture genotypic variability
for all traits: To assess the statistical relevance of polygenic
dominance effects, genotypic variability was partitioned into
additive and dominance components in aDGBLUPmodel. For
all traits, dominance accounts for a significant portion of
genotypic variability in Ames-H (P-value # 2.2 3 10211),
capturing 35, 23, and 41% of genomic variance for DTS,
PH, and GY, respectively (Figure 3A). These estimates corre-
spond to average degrees of dominance (ratio of dominance-
to-additive SD) of 0.73, 0.54, and 0.83 respectively.
Therefore, overdominance does not seem to be pervasive in
Ames-H (average degrees of dominance , 1).
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Effects of QTL are significant for DTS, but do not suggest
dominance gene action: GWAS models reveal multiple sig-
nificant QTL effects for DTS (Figure S4). There are five and
seven high-confidence QTL (FDR# 0.05 andWPIP$ 0.5; see
Materials and Methods) for DTS in Ames-H and NAM-H, re-
spectively (Figure S4 and Table S2). For PH and GY, no QTL
effects are significant except for one QTL in NAM-H for GY
(Table S2). GWAS signals for DTS show limited consistency
between Ames-H and NAM-H, with no overlap of high-con-
fidence QTL across panels (Figure S4 and Table S2).

To test whether dominance contributes to QTL effects, we
conducted aGWAS for additive and dominanceQTL effects in
Ames-H. Multiple additive effects appear significant for DTS,
with significant QTL effects (FDR# 0.05) in chromosomes 3,
1, and 9 (Figure 3C). But, dominance effects are not signifi-
cant (FDR . 0.30) (Figure 3C), so the inconsistency in QTL
effects for DTS across panels probably does not involve dom-
inance. Moreover, genetic effects for DTS do not appear to be
sensitive to environments (Table S1), and there are no sys-
tematic differences in allele frequency that consistently ex-
plain differences in significance of QTL effects across panels
(Table S2). Thus, it is plausible that higher-order genetic
interactions (epistasis) cause the difference in QTL signifi-
cance for DTS across panels.

Effects of inbreeding point to higher-order genetic inter-
actions for DTS: Under directional dominance, inbreeding
should be linearly related to fitness, but such relationship will
tend to be nonlinear under higher-order epistatic interactions
such as dominance 3 dominance interactions (Crow and
Kimura 1970). To test whether dominance contributes to
genotypic variability by directional effects, we assessed linear

and quadratic effects of genomic inbreeding (F) on agro-
nomic traits. For PH and GY in Ames-H, only linear effects
of genomic inbreeding are significant (Figure 3B and Table
S3). Moreover, these effects are on par with their expected
impact on fitness, since genomic inbreeding is negatively as-
sociated with PH and GY. For DTS in Ames-H, only the qua-
dratic effect of genomic inbreeding is significant (Figure 3B).
Along with the lack of dominance QTL effects, this lack of
linear effects suggests that nonadditive genetic effects for
DTS may not be properly captured by dominance effects,
contrary to PH and GY where evidence from polygenic and
directional effects is consistent.

Polygenic dominance effects increase prediction accuracy
for PH: Prediction accuracy within NAM-H (in leave-one-
population-out cross-validation) is consistently higher than
prediction accuracy fromAmes-H toNAM-H, especially forGY
(Table 2). Indeed, the observed decreases in prediction ac-
curacy (between GBLUP trained in Ames-H and GBLUP
trained in NAM-H) are larger when genomic correlations
across panels are lower (Table S1). For DTS and PH, GBLUP
models trained in Ames-H (1106 hybrid crosses with PHZ51
or B47) are significantly more accurate than those trained in
Ames 3 B47 (subset of 643 hybrid crosses with B47 only),
highlighting the benefit of having a similar tester (PHZ51)
between training and validation panels. Furthermore, GBLUP
models trained in Ames-H are as or more accurate than those
trained in Ames3 PHZ51 (subset of 463 hybrid crosses with
PHZ51 only), which demonstrates the robustness of GBLUP
models to multiple testers within training sets. For GY, a
GBLUP model trained in Ames 3 B47 is more accurate than
those trained in Ames-H or Ames 3 PHZ51 (Table 2). The

Figure 2 The two hybrid panels differ by their number of testers and their level of diversity. PC plot of hybrids. Ames-H consists of crosses between the
Ames inbred panel and B47 (Ames 3 B47) or PHZ51 (Ames 3 PHZ51). NAM-H consists of crosses between the NAM inbred panel and PHZ51. Crossed
circles refer to the male tester inbred line; light blue dots refer to female inbred lines; and dark blue open circles refer to the hybrid lines making up
Ames-H and NAM-H. Diamonds refer to reference lines: B73, SS reference line; Mo17, NSS reference line; and CML247, CIMMYT semitropical reference
line. PCs and proportions of genomic variance explained were computed based on WGS SNPs in the Goodman panel. Ames, North Central Regional
Plant Introduction Station association panel; Ames-H, hybrid Ames panel; NAM, U.S. Nested Association Mapping panel; NAM-H, hybrid NAM panel;
PC, principal component; WGS, whole-genome sequencing.
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close genetic relationship between B47 and the common par-
ent in NAM-H, B73, may benefit prediction accuracy from
Ames 3 B47 to NAM-H, despite the difference in tester (Fig-
ure 2). Moreover, the gain in prediction accuracy from
Ames 3 PHZ51 to Ames 3 B47 is only significant in NAM-H
populations that originate from tropical lines, at equal sample
sizes (+0.124; P-value = 0.010; Table S4); therefore, female
parents in Ames 3 B47 may also contribute to better predic-
tions for GY, especially in NAM-H populations of tropical
origin.

Incorporating dominance effects in GBLUP models results
in significant gains in prediction accuracy for PH only
(+0.023; P-value = 0.021), and no significant differences
for DTS and GY (Table 2). Therefore, accounting for poly-
genic dominance effects should not be detrimental to geno-
mic prediction models and may even increase their accuracy.
In contrast, fixed effects do not contribute to increased pre-
diction accuracy: directional effects from genomic inbreeding
result in small and nonsignificant differences in prediction
accuracy (Table S5); additive and dominance effects at
high-confidence QTL in GWAS models result in large and
moderately significant decreases in prediction accuracy for
DTS (20.059; P-value , 0.10; Table S6).

Heterogeneity in polygenic effects is best captured by
gene proximity

Analyses of functional features (gene proximity, recombination
rate, chromatin openness, MAF, and GERP scores) were con-
ducted inAmes-HandNAM-H.Under thehypothesis that there
are differential effects across functional classes, we expected
SNPenrichment (enrichment in genomicheritability by class of
SNPs) in functional enrichment models (partition of additive
and dominance variance in Ames-H, and partition of additive
variance in NAM-H) [Materials and Methods: model (3)].
Moreover, we expected gains in prediction accuracy achieved
by functional enrichment models across panels (Figure 1).

Polygenic effects are enriched in genic regions for all
traits: Partition of genomic variance by proximity to anno-
tated genes is significant for all traits in Ames-H and NAM-H,
based on likelihood ratio tests combined by Fisher’s method
(P-value , 0.01; Figure 4A and Table S7). As suggested by
the high correlation in significance [2log10(P-value)] be-
tween Ames-H and NAM-H (r = 0.92), the higher signifi-
cance of partitions in NAM-H could be due to a systematic
increase in statistical power, due in part to the larger sample
size in NAM-H (n = 1640 vs. n = 1106).

Figure 3 Dominance genetic effects are prevalent for PH and GY, but not for DTS, in Ames-H. (A) Partition of variance by additive (Add.) and
dominance (Dom.) effects in genome-wide polygenic models; genomic heritability: proportion of variance among genotype means captured by Add.
or Dom. marker effects; and p: P-values from likelihood ratio tests. (B) Estimated effects of genomic inbreeding (point and 95% C.I.). Effects are shown
in unit of SD for each trait. F: linear effect; F2: quadratic effect. (C) Quantile–quantile plot for joint estimates of Add. and Dom. effects in GWAS. Effects
of SNPs were deemed significant if their FDR was # 0.05 and if they were not within 1 Mb of SNPs with more significant effects (effects with lower
P-values). SNPs with significant effects are designated by chromosome number and genomic position in megabases. Ames-H, hybrid North Central
Regional Plant Introduction Station association panel; FDR, false discovery rate; DTS, days to silking; PH, plant height; GY, grain yield adjusted for DTS.
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Polygenic SNP effects are consistently enriched near genic
regions (Figure 4B), and the proportion of variance explained
by gene-proximal SNPs is consistently larger than explained
by gene-distal SNPs (56–100% of the genomic variability is
explained by gene-proximal SNPs, across traits and panels;
Table S8). Therefore, genetic effects seem enriched in genic
regions, especially for PH where enrichment is highly signif-
icant in both panels.

Enrichment of polygenic effects by structural and evolu-
tionary features is unclear: Partition of genomic variance
explained by recombination rate, chromatin openness, MAF,
and GERP scores is significant, for DTS in NAM-H only, for
PH in both panels (except MAF), and for GY in NAM-H only
(except MAF) (Figure 4A and Table S7). SNP enrichments
in both panels indicate that the magnitudes of polygenic ef-
fects tend to be larger at low-diversity loci (lowMAF and high
GERP scores) and in euchromatic regions (open chromatin
and moderate-to-high recombination rates) (Figure S5).
However, none are significant across traits after account-
ing for gene proximity, based on likelihood ratio tests
combined by Fisher’s method (P-value . 0.01; Table S7).
Because evolutionary constraint and chromatin openness
are positively associated with gene density, enrichment at
these features may be due to functional enrichment by gene
proximity (Figure S6). One notable exception is MAF for GY
(P-value = 9.8 3 1023; Table S7), which indicates some
promise for SNP enrichment by MAF classes. However, en-
richments byMAF classes are inconsistent across panels, with
rare SNPs (MAF # 0.01) being functionally enriched only in
NAM-H, for example (Figure S6).

Variance partition by gene proximity or GERP scores
increases prediction accuracy for all traits: Partitioning
genomic variance by geneproximity is oftenuseful to genomic
prediction. From Ames-H to NAM-H (training in Ames-H and
validation in NAM-H), partition of genomic variance by gene
proximity increases prediction accuracy for DTS (+0.013,
P-value= 3.33 1024), PH (+0.029, P-value=0.023), andGY
(+0.010, P-value = 0.085), compared to a DGBLUP model
(Figure 5). From NAM-H to Ames-H, partition by gene

proximity increases prediction accuracy for PH only
(+0.078, P-value= 1.13 1024), compared to a GBLUPmodel
(Figure 5). Other features than gene proximity result in further
gains in prediction accuracy (Table S9). In particular, partition-
ing genomic variance by GERP scores is useful for genomic
prediction, even when accounting for enrichment by gene
proximity, with significant gains in prediction accuracy
achieved from NAM-H to Ames-H for DTS (+0.019, P-value
= 1.63 1024) and GY (+0.040, P-value = 5.43 1026) (Fig-
ure 5 and Table S9). There are also some improvements by
taking into account recombination rate (+0.014 for GY from
Ames-H to NAM-H, and +0.013 for DTS and +0.020 for GY
from NAM-H to Ames-H), but they are less substantial than
those achieved by using GERP scores (Table S9). Even when
classes based on MNase HS and GERP scores do not yield
significant gains in prediction accuracy, the high SNP en-
richments achieved by taking into account these features
(�32-fold for open-chromatin regions and �8-fold for GERP
scores. 0) can be of practical interest for SNP prioritization in
genomic prediction (Figure S5 and Table S8).

Improvements of prediction accuracy by enrichment of
SNP effects in functional classes contrast with the lack of
improvement from enrichment of SNP effects by GWAS. In-
corporating high-confidence QTL effects from GWAS as fixed
effects in either aDGBLUPmodel (fromAmes-H toNAM-H)or
a GBLUP model (from NAM-H to Ames-H) does not improve
prediction accuracy, regardless of traits or validation schemes
(Figure 5 and Table S6). These results suggest that prioritiz-
ing few statistically significant loci (based on GWAS) may
not be as useful as prioritizing broader classes of loci, prob-
ably because of background dependency of strong QTL
effects (marker-by-population and marker-by-environment
interactions).

Discussion

Do additive and dominance effects adequately capture
genetic architectures?

For all traits, a significant proportion of variance is explained
by dominance effects (Figure 3A). However, for DTS, there
is conflicting evidence about the importance of dominance:

Table 2 Genomic prediction accuracy in NAM-H

Cross-validation prediction
accuracy (P-value)

Prediction accuracy
(P-value)

Difference in prediction accuracy (P-value)

Training panel (Testers) NAM-H (PHZ51) Ames-H (PHZ51, B47)
Ames-H

(PHZ51, B47)
Ames 3 PHZ51
(PHZ51 only)

Ames 3 B47
(B47 only)

Model GBLUP GBLUP DGBLUP GBLUP GBLUP

DTS 0.405 (2.2 3 10211) 0.331 (2.3 3 10211) 20.013 (0.21) 20.028 (0.078) 20.068 (2.7 3 1023)
PH 0.394 (1.4 3 10210) 0.235 (9.6 3 1028) +0.023 (0.021) +0.014 (0.42) 20.095 (8.5 3 1025)
GY 0.240 (2.2 3 1029) 20.001 (0.96) 20.010 (0.33) 20.018 (0.29) +0.056 (0.014)

Prediction accuracy: average correlation between observed and predicted phenotypes over the 24 populations in NAM-H; cross-validation prediction accuracy: leave-one-
population-out prediction accuracy within NAM-H; difference in prediction accuracy: difference in cross-panel prediction accuracy between models (DGBLUP vs. GBLUP
model in Ames-H) or between training sets (Ames 3 PHZ51 or Ames 3 B47 vs. Ames-H). Significance of average prediction accuracies (nonzero mean) and estimated
differences in prediction accuracy (nonzero difference, paired by NAM-H population) was assessed by Student’s t-tests. Ames, North Central Regional Plant Introduction
Station association panel; Ames-H, hybrid Ames panel; NAM, U.S. Nested Association Mapping panel; NAM-H, hybrid NAM panel; GBLUP, genomic best linear unbiased
prediction; DGBLUP, dominance GBLUP; DTS, days to silking; PH, plant height; GY, grain yield adjusted for DTS.

224 G. P. Ramstein et al.



(i) no significant dominance QTL effects despite significant
additive QTL effects (Figure 3C) and (ii) significant quadratic
effects of genomic inbreeding, without any linear effect (Fig-
ure 3B). Such evidence indicates that DTS should probably be
analyzed under more complex genetic models involving ep-
istatic interactions, possibly reflecting the complex molecular
pathways underlying flowering time (e.g., photoperiod
genes; Yang et al. 2013; Blümel et al. 2015; Minow et al.
2018). In this study, genomic variance in Ames-H could not
be partitioned reliably by additive, dominance, and epistatic
effects, because genomic relationships for pairwise epistatic
effects are highly correlated with those for additive effects
(r. 0.99 between additive and additive3 additive relation-
ships). Moreover, epistatic effects in linearmixedmodels vary
depending on how marker variables are centered, in a way
that can be arbitrary (Martini et al. 2016, 2017). However,
further analyses to investigate the contribution of epistatic
effects to genomic variance is merited (Jiang and Reif 2015).
Investigating epistatic effects would likely require large pan-
els with more testers, and also efficient methodologies to
restrict the number of interactions (e.g., only interactions be-
tween homeologs; Santantonio et al. 2019) and the types of
effects involved (e.g., only SNP 3 SNP interactions like
additive 3 additive effects, or SNP 3 background interac-
tions like SNP 3 PC effects; Ramstein et al. 2018).

For PH and GY, there is consistent evidence for prevalent
dominance effects: (i) significant variance partition by dom-
inance effects (Figure 3A) and (ii) significant linear effects of

genomic inbreeding, without any quadratic effect (Figure
3B). Therefore, additive and dominance effects may effi-
ciently capture genetic effects for PH and GY. These results
contrast with previous studies on hybrid maize, which
showed that additive effects could capture most of genotypic
variability. Critically, those studies were based on panels de-
rived solely from crosses between different heterotic groups
(due to the practical relevance of such crosses), e.g., Flint 3
Dent (Technow et al. 2014; Giraud et al. 2017) or SS 3
NSS (Kadam et al. 2016). Therefore, complementation
effects were relatively consistent across hybrids and well cap-
tured by general combining abilities, such that variability for
specific combining ability was low. In contrast, one of our
panels (Ames-H) shows strong variation for complementa-
tion effects because it represents a variety of genetic contexts
(SS3 NSS, SS3 SS, Semitropical3 SS, etc.). Therefore, it is
better suited to represent the differential levels of comple-
mentation effects in maize and reveal the importance of dom-
inance effects across maize hybrids.

No QTL effects were detected in Ames-H for PH or GY,
whereas previously published analyses have reported signif-
icant additive and dominance QTL effects for these traits
(Schön et al. 2010; Larièpe et al. 2012). Those studies were
based on populations from Design III experiments, where
biparental progeny (typically RILs) are crossed with either
parent. In comparison, panels like Ames-H or even NAM-H
are genetically more diverse, and are characterized by many
low-frequency variants (Figure S3). So, heterogeneity in

Figure 4 Effects of SNPs are enriched in gene-proximal regions for DTS, PH, and GY, in Ames-H and NAM-H. (A) Significance of variance partition by
gene proximity (Gene), structural features (Rec. and MNase HS) or evolutionary features (MAF and GERP), and variance partition after accounting for
gene proximity (Gene+Rec., Gene+MNase HS, Gene+MAF, and Gene+GERP); P-values (p) were obtained by likelihood ratio test comparing the
functional enrichment model to a baseline model with no partition for the feature of interest (e.g., Gene vs. unpartitioned model or Gene+MAF vs.
Gene); dashed lines correspond to thresholds for significance in either panel, after adjustment by Bonferroni correction. Labels refer to significant
features after Bonferroni correction, based on P-values in either panel (open boxes) or P-values in both panels combined by Fisher’s method (full boxes)
(Table S7). (B) SNP enrichment (inflation of SNP effects by functional class, i.e., the ratio of the proportion of genomic variance explained over the
proportion of SNP effects), for additive (Add.) and dominance (Dom.) effects, by bin for gene proximity (Gene). Proximal: #1 kb of an annotated gene;
Distal: . 1 kb away from an annotated gene. Ames-H, hybrid North Central Regional Plant Introduction Station association panel; NAM-H, hybrid U.S.
Nested Association Mapping panel; GERP, genomic evolutionary rate profiling; MAF, minor allele frequency; MNase HS, micrococcal nuclease hyper-
sensitivity; Rec., recombination rate; DTS, days to silking; PH, plant height; GY, grain yield adjusted for DTS.
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genetic backgrounds and low variability at markers likely
contribute to lower QTL detection power in Ames-H and
NAM-H. Moreover, it is possible that the larger QTL effects
detected in Design III studies arose from multiple loci in
strong linkage, due to relatively few (effective) recombina-
tion events in their populations. Consistently, degrees of
dominance estimated in those studies were especially large
around centromeres, possibly because of repulsion-phase
linkage (Hill and Robertson 1966). In contrast, genome-wide
degrees of dominance estimated in Ames-H are relatively low
(, 1) and no significant enrichment for dominance effects is
detected in low-recombination regions, after accounting for
gene proximity (Table S7). Therefore, differences in QTL de-
tection power between Ames-H and Design III populations
may be caused by important differences in both genetic di-
versity and LD structure.

What is the biological basis for enrichment of SNP
effects by gene proximity?

Analyses of functional enrichment point to genetic effects
arising mostly from genic regions (proximal SNPs, # 1 kb
from annotated genes). The relevance of genic regions for
capturing genotypic variability in hybrid maize is consistent
with hypotheses about biological causes of heterosis (hybrid
vigor) related to gene expression, namely, (i) nonadditive
inheritance of gene expression and (ii) nonlinear effects of
gene expression on agronomic traits (Springer and Stupar
2007; Schnable and Springer 2013). Proposed mechanisms
for nonadditive inheritance of gene expression include
complementation with respect to regulatory motifs or

transcription factors, and presence/absence variation
(Paschold et al. 2012; Marcon et al. 2017; Zhou et al.
2019), but studies in maize generally report that most genes
have an additive mode of inheritance for expression levels
(e.g., Stupar and Springer 2006; Swanson-Wagner et al.
2006; Zhou et al. 2019). Conversely, the gene balance hy-
pothesis indicates that highly connected genes (in pathways,
protein complexes, etc.) should be expressed in relative
amounts under a stoichiometric optimum (Birchler and
Veitia 2010). This optimum points to a balance between ben-
efits of gene expression (from RNA or protein activity) and its
costs (from energy requirements and accumulation of waste-
ful products, or toxic intermediates), which may result in
nonlinear effects of gene expression (Dekel and Alon 2005;
Domingo et al. 2019). Results in support of the gene balance
hypothesis in maize include intermediate gene expression
harboring minimal burden of deleterious mutations in di-
verse maize inbred lines (Kremling et al. 2018). Furthermore,
models related to metabolic fluxes provide examples of
mechanisms by which gene balance can arise (Fiévet et al.
2010; Vacher and Small 2019). These models describe the
nonlinear relationships between enzyme concentrations and
metabolic fluxes (e.g., hyperbolic functions), so that additive
genetic effects on gene expression may translate into non-
additive effects on agronomic traits. Importantly, benefits
and costs of gene expression are affected by intragenic inter-
actions (e.g., protein folding; Otwinowski et al. 2018), which
can be captured by dominance effects and LD within genes,
but also intergenic interactions (e.g., pathway interactions or
protein–protein interactions; Diss and Lehner 2018; Vacher

Figure 5 Functional enrichment by
gene proximity and GERP scores
improves accuracy of genomic predic-
tion models for DTS, PH, and GY.
Prediction accuracy (y-axis): average
correlation between observed and pre-
dicted genotype means in validation
sets. Validation scheme: training panel
⇒ validation panel. Unpartitioned:
DGBLUP (polygenic additive and domi-
nance effects) in Ames-H, GBLUP (poly-
genic additive effects only) in NAM-H;
GWAS, fixed effects at high-confidence
QTL from GWAS; Gene, functional en-
richment by proximity to genes (#1 kb
of an annotated gene); Gene+GERP,
functional enrichments by proximity to
genes and GERP scores. Black diamonds
indicate average prediction accuracy.
Significance of estimated differences in
prediction accuracy (nonzero difference)
was assessed by Student’s t-tests, paired
by validation set. Only P-values, 0.1 (p)
are shown. Ames-H, hybrid North Cen-
tral Regional Plant Introduction Station
association panel; NAM-H, hybrid U.S.
Nested Association Mapping panel;

GERP, genomic evolutionary rate profiling; GBLUP, genomic best linear unbiased prediction; DGBLUP, dominance GBLUP; DTS, days to silking; PH,
plant height; GY, grain yield adjusted for DTS.
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and Small 2019), which cannot be captured predictably by
dominance effects. Ideally, future research about nonadditive
genetic effects and their enrichment in genic regions will in-
volve transcriptomic, proteomic, and/or metabolomic data,
to empirically test the gene balance hypothesis and provide
mechanistic explanations for genotypic variability in hybrid
maize.

Are dominance effects and enrichments in genic regions
useful for genomic prediction?

In this study, the relevance of dominance effects and func-
tional enrichments was evaluated by genomic prediction
across panels. Therefore, prediction models were assessed
for their ability to sustain accuracy across distinct population
backgrounds. Genomic prediction accuracy was estimated in
NAM-H to reflect genomic selection applications in biparental
breeding populations crossed to a single tester. These popu-
lations serve as useful validation sets because they exemplify
interheterotic populations, as crosses between PHZ51 (an
NSS line) and NAM inbred lines (related to the SS pool
by $ 50% through the common B73 parent). Therefore,
these populations are good examples of breeding populations
crossed to a relevant tester. In contrast, genomic prediction
accuracy was estimated in Ames-H to reflect a different situ-
ation where diverse panels are evaluated for hybrid per-
formance, in genomic prospection (e.g., for prebreeding
applications; Voss-Fels et al. 2019). Under this validation
scheme, validation sets do not correspond to breeding pop-
ulations, but instead consist of diverse hybrid panels struc-
tured by subpopulations and testers (Figure S1).

Enrichment of SNP effects emphasizes causal loci; there-
fore, enrichment procedures such as QTL detection or vari-
ancepartition can improve theaccuracy of genomic prediction
models. However, as genetic effects vary between popula-
tions, enrichments about small functional classes (e.g., a few
GWAS hits) lose their potential. This caveat is exemplified by
differences in QTL effects for DTS between Ames-H and
NAM-H, and the consequent lack of gain in accuracy by pre-
diction models based on QTL effects (Figure 5 and Table S6).
Similarly, Spindel et al. (2016) showed benefits of major QTL
effects for prediction of flowering time in rice, but only when
QTL were detected in the target breeding populations. Con-
trary to enrichments for QTL, enrichments for larger func-
tional classes (e.g., gene-proximal SNPs) should result in
gains of prediction accuracy that are robust to differences
in population backgrounds, as is observed here (Figure 5
and Table S9). Likewise, Gao et al. (2017) reported gains
in genomic prediction accuracy by prioritizing genic SNPs
in mice, Drosophila, and rice (increases in predictive ability
averaging +0.013, similar to those realized in this study).
Therefore, gains in prediction accuracy by gene proximity
should be expected in a broad range of population and spe-
cies contexts.

While functional enrichments by gene proximity appeared
beneficial for all traits, incorporating polygenic dominance
effects resulted in gains in prediction accuracy for PH only

(Table 2). The lack of gain in prediction accuracy for DTS and
GY illustrates possible reasons for disagreement between
quality of fit and prediction accuracy often observed in geno-
mic prediction studies. For DTS, incorporating dominance
effects results in statistically significant improvements in
fit, but a genetic model accounting for epistatic interactions
appears more plausible according to analyses of QTL and
genomic inbreeding. Thus, the choice of prediction procedure
should probably come from multiple pieces of evidence in
favor of a given genetic model, rather than a single statistical
test about the genomic prediction model. In the case of GY,
prediction accuracy across panels is probably hindered by
genotype-by-environment interactions, which could be ac-
commodated by models incorporating environmental covari-
ates (e.g., Li et al. 2018; Millet et al. 2019).

Conclusions

Our analyses point to genetic models in hybrid maize that
involve interactive effects and emphasize genic regions.While
dominancemay be relevant to all three traits, other nonlinear
effects seemed important for DTS and interactions with envi-
ronments appeared critical for GY. Consistently, genomic
prediction models were improved by dominance effects for
PH only. In contrast, genomic prediction models benefited
from functional enrichment in genic regions for all traits.
Although gene proximity appearedmost useful andmeaning-
ful in our study, the value of structural and evolutionary
features for genomic prediction deserves more attention.
Our results call for further investigation about the biological
basis of genetic complementation and the underlying inter-
active effects that could enable more robust prediction of
genotypic variability in hybrid maize.
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