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ABSTRACT The question of the relative evolutionary roles of adaptive and nonadaptive processes has been a central debate in
population genetics for nearly a century. While advances have been made in the theoretical development of the underlying models,
and statistical methods for estimating their parameters from large-scale genomic data, a framework for an appropriate null model
remains elusive. A model incorporating evolutionary processes known to be in constant operation, genetic drift (as modulated by the
demographic history of the population) and purifying selection, is lacking. Without such a null model, the role of adaptive processes in
shaping within- and between-population variation may not be accurately assessed. Here, we investigate how population size changes
and the strength of purifying selection affect patterns of variation at “neutral” sites near functional genomic components. We propose
a novel statistical framework for jointly inferring the contribution of the relevant selective and demographic parameters. By means of
extensive performance analyses, we quantify the utility of the approach, identify the most important statistics for parameter estimation,
and compare the results with existing methods. Finally, we reanalyze genome-wide population-level data from a Zambian population
of Drosophila melanogaster, and find that it has experienced a much slower rate of population growth than was inferred when the
effects of purifying selection were neglected. Our approach represents an appropriate null model, against which the effects of positive
selection can be assessed.
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At the founding of population genetics in the early 20th
century, R.A. Fisher, J.B.S. Haldane, and S. Wright de-

velopedmuchof themathematical and conceptual framework
underlying the study of population-level processes controlling
variation observed within and between species. However, as
shown by decades of published interactions between them,
they held differing views regarding the relative importance of
adaptive vs. nonadaptive processes in driving evolution
(Provine 2001). As pointed out by Crow (2008), these issues
were not really resolved, but “rather they were abandoned in
favor of more tractable studies.”With the advent of the Neu-
tral Theory (Kimura 1968, 1983; King and Jukes 1969; Ohta

1973), the evolutionary importance of stochastic effects due
to finite population size, as earlier advocated by Wright, re-
ceived renewed attention.

In the following decades, further theoretical developments
as well as the availability of large-scale sequencing data have
validated the important role of genetic drift (Kimura 1983;
Walsh and Lynch 2018). However, subsequent research on
the indirect effects of selection on patterns of variability at
“linked neutral” sites has reignited previous debates (Kern
and Hahn 2018; Jensen et al. 2019). In particular, it remains
unclear whether the large class of deleterious variants envis-
aged in the Neutral Theory, and their effects on linked neutral
sites [background selection (BGS)], are sufficient to explain
genome-wide patterns of variation and evolution, or whether
a substantial contribution from the effects of beneficial vari-
ants on linked neutral sites (i.e., selective sweeps) is also
required [see review by Stephan (2010)].

The primary difficulty in answering this question stems
from our lack of an appropriate neutral null model, that is, a
model incorporating genetic drift as modulated by the
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demographic history of the population, as well as a realistic
distribution of fitness effects (DFE) summarizing the per-
vasive effects of both direct and indirect purifying selection.
Without a model incorporating these evolutionary process-
es, which are certain to be occurring constantly in natural
populations, it is not feasible to quantify the frequency with
which adaptive processes may also be acting to shape
patterns of polymorphism and divergence.

However, it can be difficult to distinguish the individual
contributions of positive and purifying selection from demo-
graphic factors such as changes in population size, as all of
these evolutionary processes may affect allele frequency dis-
tributions and patterns of linkage disequilibrium in similar
ways. For example, both purifying selection and population
growth candistort gene genealogies at linkedneutral sites in a
similar fashion (Charlesworth et al. 1993, 1995; Kaiser and
Charlesworth 2009; O’Fallon et al. 2010; Charlesworth 2013;
Nicolaisen and Desai 2013), and result in a skewing of the
site frequency spectrum (SFS) toward rare variants. In fact,
demographic inference is often performed using either syn-
onymous or intronic sites, which are close to sites in coding
regions, but the contributions of the effects of selection at
linked sites are generally ignored. Patterns of variation in
these regions may be skewed by the effects of either negative
selection (Zeng 2013; Ewing and Jensen 2016) or positive
selection (Messer and Petrov 2013), and this could strongly
affect the accuracy of the inferred demographic model
(Ewing and Jensen 2016; Schrider et al. 2016). In other
words, selection may cause demographic parameters to be
misestimated in such a way that population size changes are
over or underestimated.

In addition, the extent of BGS can vary considerably across
the genome. Although it is necessarily a function of the
number and selective effects of directly selected sites, as well
as the rate of recombination (Hudson and Kaplan 1995;
Charlesworth 1996, 2013; Nordborg et al. 1996), the inter-
action between these parameters and the underlying demo-
graphic history of the population remains poorly understood,
even for simple models. Furthermore, existing analytical
work (Zeng and Charlesworth 2010b; Nicolaisen and Desai
2013; Zeng 2013) has often been done under the assumption
of demographic equilibrium, and is mostly restricted to de-
scribing strongly selected mutations with a fixed selection
coefficient. However, population genomic data suggest the
existence of a wide DFE of deleterious mutations, with a
significant proportion of weakly selected mutations with 2-
Nes , 10 [reviewed by Bank et al. (2014b)], where Ne is the
effective population size and s is the reduction in fitness for
mutant homozygotes. In regions of low crossing over, inter-
ference among such mutations may result in large distortions
of the underlying genealogies (Kaiser and Charlesworth
2009; O’Fallon et al. 2010; Good et al. 2014), so that the
consequences of a wide DFE are not well described by the
analytical results.

We first investigate the joint effects of demography, the
shape of theDFE, and the number of selected sites in shaping

linked neutral variation. Next, we utilize the decay of BGS
effects away from the targets of selection, by examining
regions spanning coding/noncoding boundaries, to jointly
infer the DFE of the coding region and the demographic
history of the population. By performing extensive perfor-
mance analyses, and quantifying both power and error
associated with our approximate Bayesian computation
(ABC) approach (Beaumont et al. 2002), the method is
shown to perform well across arbitrary demographic histo-
ries and DFE shapes. Importantly, by utilizing patterns of
variation and divergence across coding and noncoding
boundaries, this approach avoids the assumption of synon-
ymous site neutrality inherent to approaches based on com-
parisons of nonsynonymous and synonymous site variability
and divergence, an assumption that has been shown to be
violated in many organisms of interest (Chamary and Hurst
2005; Lynch 2007; Zeng and Charlesworth 2010a; Lawrie
et al. 2013; Choi and Aquadro 2016; Jackson et al. 2017),
and which can result in serious misinference (Matsumoto
et al. 2016). In applying this approach to genome-wide data
from a Zambian population of Drosophila melanogaster, our
results show that this population has experienced a very
mild 1.2-fold growth in size, considerably less than previous
estimates that did not correct for the BGS-induced skew of
the SFS (e.g., Ragsdale and Gutenkunst 2017; Kapopoulou
et al. 2018). In addition, we estimate that �25% of all mu-
tations in exons are effectively neutral in this population,
and find little evidence for widespread selection on synon-
ymous sites.

Methods

Simulations

The discrete generation simulation package SLiM 3.1 (Haller
and Messer 2019) was used to simulate a functional element
of length L, which is flanked by neutral nonfunctional re-
gions. The functional region experiencing purifying selection
is described by a DFE that is modeled as a discrete distribu-
tion with four bins (Figure 1A) representing effectively neu-
tral (g , 1), weakly deleterious (1 # g , 10), moderately
deleterious (10# g , 100), and strongly deleterious (100#

g , 10,000) classes of mutations, where g = 2Nes. Semi-
dominance is assumed, so that the fitness of mutant hetero-
zygotes is exactly intermediate between the values for the
two homozygotes (a dominance coefficient, h, of 0.5). Fitness
effects are assumed to follow a uniform distribution within
each of the four bins. To infer the extent of purifying selec-
tion, we estimated the fraction of mutations in each bin, re-
ferred to as f0, f1, f2, and f3, respectively (Figure 1A), such
that 0 # fi # 1, and Si fi = 1, for i = 0 to 3. In addition, to
limit the computational complexity, we restricted values of
fi to multiples of 0.05 (i.e., fi 2 {0.0, 0.05, 0.10, . . ., 0.95,
1.0} " i). These constraints allowed us to sample 1771 dif-
ferent DFE realizations and to work independently of arbi-
trary assumptions regarding DFE shape.
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Simulations under demographic equilibrium

Simulations were performed for four different values of L –

0.5, 1, 5, and 10 kb. The intergenic regions were assumed to
be 10 kb in length, and simulations were restricted to the
intergenic region on one side of the functional region. For
the purpose of power analyses and testing, we used popula-
tion genetic parameter values that approximately resemble
those for Drosophila populations. The population size in na-
ture was assumed to be 106, and the recombination rate (13
1028 per site per generation) and mutation rate (1 3 1028

per site per generation) were constant across the simulated
region. Although we have not included gene conversion in
this study, it will be an important addition in future studies.
The simulations were performed with Nsim = 5000 diploid
individuals, and the recombination and mutation rates were
scaled proportionally to maintain realistic values of their
products withNe. Such scaling is important for reducing com-
putation time and has been found to be largely accurate, with
some exceptions that are not relevant here (Comeron and
Kreitman 2002; Hoggart et al. 2007; Kim and Wiehe 2009;
Uricchio and Hernandez 2014).

We used a burn-in period of 80,000 generations, and
an additional 20,000 (= 4Nsim) generations were allowed
for further evolution. For every set of parameter combina-
tion (i.e., f0, f1, f2, and f3) we performed 1000 replicate
simulations.

Simulations under nonequilibrium demography

Simulations with demographic changes were performed
specifically to match the details of the D. melanogaster ge-
nome. A set of 94 exons belonging to the D. melanogaster
genome were chosen according to certain criteria (see
Results and Discussion). Simulations were performed using
the length of each exon, together with 4 kb of flanking inter-
genic sequence. The mutation rate was assumed to be 3.03
1029 per site per generation, which is consistent with both
pedigree (Keightley et al. 2014) and mutation accumulation
(Keightley et al. 2009) studies, although somewhat higher
mutation rates have been estimated in other studies
(Schrider et al. 2013; Assaf et al. 2017). Ancestral and cur-
rent population sizes were sampled from a uniform prior
between 105 and 107, and with values of fi chosen as de-
scribed above. The nucleotide-site diversity at fourfold de-
generate sites was 0.019 for the Zambian population of D.
melanogaster, giving an estimate of Ne of 1.6 3 106. A scal-
ing factor of 320 corresponding to Ne/Nsim (= 1.6 3 106/
5000) was used to perform all simulations with demo-
graphic changes. With population size changes, the time
of change was assumed to be fixed at Nsim generations, as
inferred in previous studies (Terhorst et al. 2017;
Kapopoulou et al. 2018). A total of 10 replicates were per-
formed for each exon, resulting in 940 replicates for every
parameter combination. These simulations were conducted
using the computational resources of Open Science Grid
(Pordes et al. 2007; Sfiligoi et al. 2009).

Calculation of summary statistics

First, we fitted a logarithmic function to the recovery of
nucleotide-site diversity (p) around the functional region
such that p = slope*ln(x) + intercept, where x is the distance
of the site from the functional region in base pairs. We used
the slope and intercept of the fit to define the number of bases
required for a 50, 75, and 90% recovery of nucleotide diver-
sity, with 50% and below being defined as the linked neutral
region and 50% and above as the neutral region. This anal-
ysis provides for three nonoverlapping regions: (1) functional
(experiencing direct selection), (2) linked neutral (experi-
encing observable levels of BGS), and (3) neutral (experienc-
ing low/unobservable levels of BGS). The following statistics
were calculated for each of these three types of regions: nu-
cleotide-site diversity (p), Watterson’s u, Tajima’s D, Fay and
Wu’s H (both absolute and normalized), number of single-
tons, haplotype diversity, linkage disequilibrium-based statis-
tics (r2, D, and D9), and divergence (i.e., number of fixed
mutations per site per generation after the burn-in period).
Simulations for any particular set of parameters were run
with 1000 replicates, and the means and variances of the
above statistics across replicates were used as summary sta-
tistics for ABC. In addition to these variables, the six statistics
summarizing the characteristics of the recovery of p in linked
neutral regions were included. Together, these amount to
72 initial summary statistics. All statistics were calculated
using the Python package pylibseq (Thornton 2003). The
sample sizewas kept constant at 100 genomes (i.e., 50 diploid
individuals). It should be noted that some statistics are
strongly dependent on the number of sites used in the calcu-
lations, and the sizes of linked and neutral regions varied for
every set of parameter combination, although this effect is
captured in the individual prior distributions.

ABC: We used an ABC approach, using the R package “abc”
(Csilléry et al. 2012), to coestimate the DFE characterizing a
functional region, as well as the population history. The re-
lationship between the parameters and summary statistics
were modeled with a linear regression method (ridge regres-
sion) and a nonlinear correction regression method (a neural
net), using default parameters provided by the package:
https://cran.r-project.org/web/packages/abc/abc.pdf. The
neural net method in the abc package by default fits a sin-
gle-hidden-layer neural network with five units in the hidden
layer. To infer posterior estimates, a tolerance of 0.05 was
applied (i.e., 5% of the total number of simulations were
accepted by ABC to estimate the posterior probability of each
parameter). Cross-validation was performed by leaving out
one randomly chosen simulation from which the summary
statistics from that simulation were used to infer the param-
eters. A 100-fold cross-validation procedure was used to as-
sess performance as well as to choose the tolerance value
determining acceptance. The weighted medians of the pos-
terior estimates for each parameter were used as point
estimates.
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Ranking of summary statistics: Ranking of summary statis-
tics was performed separately for both demographic equilib-
rium and nonequilibrium cases, using two different methods.
The first approach consisted of performing Box–Cox transfor-
mations on all 72 summary statistics to correct for nonlinear
relations between statistics and parameters, using the func-
tion “boxcox” in R. Specifically, we used the code provided in
Figure 9 of the ABCtoolboxmanual (Wegmann et al. 2009) to
find partial least squares components using R. The squared
correlation coefficient, r2, between the transformed statistics
and parameters was then used to rank each statistic for every
parameter separately, and a statistic was considered to be
significantly correlated with the parameter if the P-value
was , 0.05 (Bonferroni corrected for multiple testing with
a significance cutoff of 0.05/72). The second approach in-
volved a modified version of the algorithm proposed by
Joyce and Marjoram (2008) for ranking statistics. With this
algorithm, we started with the entire set of 72 statistics. Each
statistic was removed from the set and cross-validation using
20 randomly sampled simulations was used to identify the
statistic that corresponded to the least error (i.e., the removal
of which causes the least reduction in accuracy). The same
algorithm was performed iteratively until only two statistics
remained. This method was performed for each parameter
separately, was replicated 10 times, and the average ranking
across these replicates was used to obtain the final ranking.
The second approach was extremely time-consuming and
was thus only used to rank the statistics for inferring the
DFE under demographic equilibrium.

Comparisons with DFE-a: Simulations were performed un-
der demographic-nonequilibrium models, with 100 replicates
of 94 exons each, and ancestral population sizes of 10,000 for
all. Functional regions were simulated with 30% of sites being
neutral, which were used to calculate the neutral SFS required
by DFE-a. Est_dfe (Schneider et al. 2011) was used on the
unfolded SFS to perform demographic inference and to infer
the deleterious DFE. The proportion of adaptivemutationswas
fixed at 0.0. Final estimates of the DFE were obtained as Nws,
where Nw is the weighted population size inferred by est_dfe.

Drosophila data application: Release5of theD.melanogaster
genome assembly (Hoskins et al. 2007) and annotation
version 5.57 were used, downloaded from ftp://ftp.flybase.net/
genomes/Drosophila_melanogaster/dmel_r5.57_FB2014_03/
gff/. Crossing over rates estimated by Comeron et al. (2012) for
every exonandflanking intergenic regionwere obtained from the
D. melanogaster Recombination Rate Calculator (https://petrov.
stanford.edu/cgi-bin/recombination-rates_updateR5.pl) (Fiston-
Lavier et al. 2010), and explicitly utilized for each specific region
considered. These rates were halved to obtain sex-averaged
rates of recombination (Campos et al. 2017) as all regions
were restricted to autosomes. We excluded all genes that have
a crossing over rate fivefold larger or smaller than the average
(i.e., we used only genes with a crossing over rate of between
0.44 and 11 cM/Mb). Consensus sequences of all Zambian

lines were downloaded from http://www.johnpool.net/
genomes.html (Lack et al. 2015). Identity by descent
(IBD) tracks and admixture tracks were masked using
scripts provided by the same site. Individuals with known
inversions were entirely excluded from the analysis
(Kapopoulou et al. 2018).

The final set consisted of 76 haploid genomes. PhastCons
scores calculated with respect to 15 insect taxa were down-
loaded from the University of California, Santa Cruz (UCSC)
genome browser (https://genome.ucsc.edu/). For each of
the 94 exons, summary statistics were calculated using pylib-
seq (Thornton 2003) for the coding region and for 2-kb inter-
genic regions flanking both sides. To exclude sites in
intergenic regions that might be under direct selection, a
phastCons cutoff score of 0.8 was used to calculate all statis-
tics. That is, sites that had a $ 80% probability of being a
conserved noncoding element identified by phastCons were
excluded when calculating statistics.

For the purpose of inferring derived alleles and for cal-
culating branch-specific rates of substitution, we used the
ancestral sequence to the D. melanogaster genome provided
to us by the authors of Kolaczkowski et al. (2011). The
ancestral sequence reconstruction had been performed by
maximum likelihood over 15 insect genomes available in
the UCSC genome browser (Karolchik et al. 2004). Sites
with missing ancestral sequence were excluded from anal-
ysis. Branch-specific rates of substitution (also referred to as
divergence in this study) were calculated by identifying de-
rived alleles that were fixed in the D. melanogaster Zambian
population (i.e., polymorphic sites were removed). After
excluding sites with missing ancestral information, with
IBD and admixture tracks, and which were likely to belong
to a noncoding conserved element, we had on average
1062 sites per exon, 556 sites per linked region, and
666 sites per neutral regions.

It should be noted that for the purpose of performing
inference using ABC, substitution rates in simulations were
calculated per base pair for 25,000 generations. We thus
normalized all rates obtained from simulations by the
expected neutral substitution rate (i.e., msimtsim = 320 3
3 3 1029 3 25,000 = 0.024, where msim is the scaled muta-
tion rate and tsim is the number of generations used in the
simulations for calculating divergence). Divergence esti-
mates from D. melanogaster were normalized by an expected
neutral substitution rate of mt = 33 1029 3 21333333 (the
estimated divergence time) = 0.064 (Li et al. 1999; Halligan
and Keightley 2006), where m is the mutation rate in D.
melanogaster and t is the time to the ancestor of D. mela-
nogaster and D. simulans in number of generations. In addi-
tion, inference was performed using divergence estimates
only in the exonic regions. ABC inference for Drosophila
was performed using the abc package in R, with linear re-
gression aided by neural net with default parameters. Each
inference was performed 50 times, and the mean of point
estimates obtained were reported as the final parameter
estimates.

176 P. Johri, B. Charlesworth, and J. D. Jensen

ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r5.57_FB2014_03/gff/
ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r5.57_FB2014_03/gff/
ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r5.57_FB2014_03/gff/
https://petrov.stanford.edu/cgi-bin/recombination-rates_updateR5.pl
https://petrov.stanford.edu/cgi-bin/recombination-rates_updateR5.pl
http://www.johnpool.net/genomes.html
http://www.johnpool.net/genomes.html
https://genome.ucsc.edu/


Data availability

The following data are publicly available on https://github.
com/paruljohri/BGS_Demography_DFE: (1) aligned sequences
of the single-exon genes and their corresponding intergenic
regions used in this study, including derived alleles and fixed
substitutions; (2) scripts to calculate statistics from simula-
tions and from empirical data, as well as the code used to
perform simulations; (3) values of all calculated statistics
obtained for all parameter combinations; and (4) a Mathe-
matica notebook as well as a Python script for analytically
calculating the reduction in linked neutral diversity caused
by BGS caused by a functional element. Supplemental ta-
bles and figures have been uploaded to figshare. Supplemen-
tal material available at figshare: https://doi.org/10.25386/
genetics.11879025.

Results and Discussion

Recovery of nucleotide diversity away from a functional
region as predicted under equilibrium

The nucleotide-site diversity at neutral sites linked to sites
experiencing direct purifying selection, relative to its value in
the absence of selection (B), can be obtained by modifying
equation 6 of Nordborg et al. (1996), which is of the form:

B ¼ p

p0
� exp

�
2

ZZ
Eðt; zÞfðtÞdz  dt

�

where p0 is the nucleotide-site diversity in the absence of
selection and p is its value in the presence of BGS. The term
E in the exponent is a function of the heterozygous selection
coefficient (t = hs) against a deleterious mutation at a se-
lected site, and the physical distance (z) between the neutral
and selected sites. Here, s is the reduction in fitness of mutant
homozygotes and h is the dominance coefficient; f(t) is the
probability density function for t.

For the purpose of the current study, equation S1a of the
Supplemental Information of Campos and Charlesworth
(2019) was modified to model a neutral site outside a gene,
located y base pairs from the end of the functional region. If a
selected site is x bp from the end of the gene (in the opposite
direction), the distance between the two sites is z= x+ y. The
integral of E (t, z) over z is equal to:

EðtÞ ¼ Ut
l

Z l

o

dx

½t þ ðgþ rc yÞð12tÞ þ rcxð12tÞ�2 (1)

where U is the total mutation rate to deleterious alleles over
the entire gene, l is the length of the gene in base pairs, g is
the rate of gene conversion, and rc is the rate of crossing over
per base pair. The crossover map is assumed to be linear, so
that the net rate of recombination between the two sites is
g+ rcz, and z is assumed to be sufficiently large that the effect
of gene conversion is independent of z.

By evaluating the integral in Equation 1, we have:

EðtÞ ¼ Ut
rclð12 tÞ

(
1

½t þ ðgþ rcyÞð12 tÞ�

2
1

½t þ ðgþ rcyÞð12 tÞ þ rclð12 tÞ�

)

¼ Ut
½t þ ðgþ rcyÞð12 tÞ�½t1 gð12 tÞ1 rcðy1 lÞð12 tÞ�

(2)

Note that this equation implies that, if t is small compared
with y, BGS effects outside the coding region will be minimal.

We can integrate E(t) over the distribution of selection
coefficients, as described in the Appendix. The expectation
of E(t) for a given bin of t values is then given by the sum of
the following two terms:

U½rclð12aÞ�21

(
1þ a½ð12aÞðtiþ12tiÞ�21ln

h aþ ð12 aÞti
aþ ð12 aÞtiþ1

i)

(3a)

2U½rclð12bÞ�21

(
1þ b½ð12bÞðtiþ12tiÞ�21ln

�
bþð12 bÞti
bþð12 bÞtiþ1

�)

(3b)

where a = g + rcy and b = g + rc(y + l), and the ti’s corre-
spond to the boundaries of the discrete bins. For the case
when b ,, 1, the sum of the two components is approxi-
mately equal to:

Uðtiþ12tiÞ21ln

"
bþ tiþ1

bþ ti

#
(3c)

Figure 1B shows the theoretical and simulation results for rc
= 1026, l = 1000, U = lm, m = 1026, g = 0, t0 = 0, t1 =
0.00005, t2 = 0.0005, t3 = 0.005, and t4 = 0.5. It should be
noted that these derivations assume that Net ..1, which is
violated by the presence of the weakly deleterious DFE class
(frequency f1). Most studies deal with this assumption by
ignoring the contribution of mutations with Net , 5 or
10 (Charlesworth 2013; Elyashiv et al. 2016; Torres et al.
2019).

As expected from these considerations, when all classes of
mutation were included, we found a significant discordance
between the simulated and theoretically predicted values for
the slope of the recovery of diversity as f1 increases (Figure 2,
C and D and Supplemental Material, Table S1). On including
only mutations with Net . 2.5 (i.e., g = 2Nes . 5), the di-
versity patterns are mostly well explained, even when the
DFE is highly skewed toward the weakly deleterious class.
In fact, it is interesting to note that a combination of high
values of f1 and f2 can result in BGS effects that extend up to
4 kb, even for very short exons, although the maximum re-
duction in diversity is �10–15%, which is consistent with
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the findings of Charlesworth (2012) and Campos and
Charlesworth (2019).

Joint effects of demography, the DFE, and the number of
selected sites on linked neutral variation: While the above
results show that the effect of BGS on linked neutral regions
can be determined analytically, there are several reasons for
investigating BGS effects using simulations. First, the analyt-
ical expressions neglect the contribution of very weakly del-
eterious mutations (Net, 2.5) and do not predict the SFS. In
addition, they assume demographic equilibrium, which is
probably not true of natural populations.

Effects of the shape of the DFE and number of selected sites:
We first simulated 10-kb neutral regions linked to functional
regions of varying sizes—0.5, 1, 5, and 10 kb—assuming de-
mographic equilibrium, as shown in Figure 2. By varying the
contributions from each bin of selective effects, with frequen-
cies f0, f1, f2, and f3, it was possible to sample all possible DFE
shapes, as described in theMethods section. As expected from
Equation 3c, the reduction in diversity is nonlinearly propor-
tional to the number of selected sites for a given recombina-
tion rate. A larger number of selected sites increases both the
total reduction in diversity and the slope of the recovery of
diversity away from functional regions (Figure S1). The max-
imum reduction in diversity in the linked neutral regions
(immediately adjacent to the functional region), averaged
across all DFE realizations, is �8, 12, 24, and 29% for 0.5,
1, 5, and 10-kb selected sites, respectively. Furthermore, for
the chosen recombination rate, the median numbers of base
pairs necessary to achieve a 50% recovery in diversity are
955, 1035, 1350, and 1650 bp, respectively (Figure 2A).

The reduction of nucleotide diversity at closely linked
neutral regions was maximized when the proportions of
weakly (f1) and moderately deleterious mutations (f2) were

largest (Figure 2B and Table S2). The effect is greatest when
purifying selection is weak, allowing mutations to segregate
in the population prior to being purged (Campos et al. 2017).
Although weakly deleterious mutations (f1) only reduce var-
iation slightly, they generate significant distortions in the SFS
(Figure 2C), consistent with previous studies (Charlesworth
et al. 1995; Charlesworth 2012; Nicolaisen and Desai 2013).
Moderately deleteriousmutations cause the largest reduction
in p, the highest rate of recovery of p around functional
regions, and the largest skew in the SFS toward rare variants.
As expected, the proportion of strongly deleterious mutations
(f3) does not greatly affect levels of linked neutral variation,
and these mutations skew the SFS only slightly. Furthermore,
increasing the number of selected sites results in larger BGS
effects for all DFE types, as is to be expected. It should be
noted that these generalizations about BGS effects depend on
the distance between the neutral and selected sites; in par-
ticular, the size of the region affected by deleterious muta-
tions is expected to be an increasing function of the size of
their fitness effects. As we were interested in understanding
BGS effects caused by all classes of mutations, we focus our
further discussion on sites close to the functional boundary,
where all classes of mutation are likely to have an impact.

To summarize, at demographic equilibrium, neutral re-
gions linked to functional regions under selection undergo a
reduction in diversity and a skew in the SFS, both of which
depend on the underlying shape of theDFE and the number of
directly selected sites (Charlesworth et al. 1993, 1995;
Charlesworth 2013; Campos and Charlesworth 2019). How-
ever, importantly for the sake of statistical inference, the
three classes of deleterious mutation behave differently, sug-
gesting the possibility of distinguishing their relative contri-
butions (as discussed in the next section). Furthermore, these
results again demonstrate the potentially important role of

Figure 1 (A) An example of a discrete DFE with
four classes of mutations. The proportion of each
class of mutation, fi, lies between 0 and 1. (B) Nu-
cleotide-site diversity relative to the neutral expec-
tation (B = p/p0) as a function of the distance from
the directly selected sites (length 1 kb), as predicted
by the analytical solution (black points) and as ob-
served in simulations (red points). (C and D) Analyt-
ical predictions and simulated values for a DFE with
larger contributions from the weakly deleterious
class of mutations. Note that, for the analytical so-
lutions, the two classes of results represent cases
where mutations with 2Net , 5 (black circles) and
2Net , 2.5 (blue triangles) were ignored. DFE, dis-
tribution of fitness effects.
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BGS in shaping patterns of neutral variation, highlighting the
danger posed by ignoring these effects when performing de-
mographic inference [see Ewing and Jensen (2016)]. Addi-
tionally, the dramatic differences in the extent of BGS effects
as a function of the number of directly selected sites empha-
size the necessity of directly modeling exon sizes in empirical
applications.

Effects of demography and the shape of the DFE on BGS:We
investigated the effects of BGS after recent changes in pop-
ulation size. Populations with the same ancestral population
size (Nanc) either experienced 10-fold exponential growth
or contraction in the last 4Nanc generations; BGS effects
were compared to populations that remained in equilibrium
throughout, for all possible DFE shapes. Both expansion and
contraction result in reduced BGS effects (i.e., there is an
increase in B compared to equilibrium), irrespective of the
shape of the DFE (Figure 3, A and B). This observation sug-
gests that the extent of BGS caused by functional elements is
not only determined by the strength of selection, but also by
the demographic history of the population. Thus, demo-
graphic effects may in principle explain variable inferences
among studies of the importance of purifying selection in
shaping genome-wide patterns of variation (Cutter and
Payseur 2013).

However, interestingly, there is still a significant skew in the
SFS at linked neutral sites caused by BGS after a population
size change (Figure 3, C–E). Thus, in more compact genomes,
where BGS is pervasive, this suggests that methods that use
the SFS to fit demographic models may overestimate growth,

and either underestimate population contraction or misclas-
sify contraction as expansion. It is also interesting to note that
BGS effects are largest under demographic equilibrium, such
that constant population size is likely to be inferred as pop-
ulation growth.

Inference of the DFE under demographic equilibrium: The
next question we investigated was whether the parameters of
the DFE can be estimated using the set of summary statistics
described in the Methods section. We first determined
whether it is possible to distinguish the four different classes
of the DFE under demographic equilibrium, using population
genomic data and divergence from the closest outgroup spe-
cies. The simulations involved functional regions of lengths L
= 0.5, 1, 5, and 10 kb, with linked neutral regions of 10 kb
and a discrete DFE, as described previously. The ABC ap-
proach described in theMethods section was used to quantify
our ability to infer the four DFE parameters. The recovery of
nucleotide diversity over linked neutral regions was used to
calculate the distance in base pairs (p50) required for diver-
sity to reach 50% of its maximum value (see Methods). The
neutral region within p50 base pairs from the functional re-
gion was defined as linked, and the remainder was defined as
neutral (Figure 4A). Statistics were calculated for three re-
gions (functional, linked, and neutral) separately, and the
means and variances across simulation replicates of each sta-
tistic were used to infer the four parameters. The simulation
replicates correspond to independently evolving loci within
a genome. In the following subsections, we describe the

Figure 2 Effects of BGS under demographic equi-
librium. (A) The slope of the recovery of nucleotide
diversity in 10-kb linked neutral regions flanking
functional regions, such that p = slope*ln (distance
from functional region) + intercept, (B) nucleotide
diversity in 500-bp linked neutral regions flanking
functional regions relative to neutral expectation
(B), and (C) Tajima’s D for 500-bp linked neutral
region flanking functional regions. All of the above
are shown for various sizes of functional elements
(0.5–10 kb) and DFE shapes. The four DFE shapes
considered are fi $ 0.8 for i = 0,1,2,3, with . 80%
of mutations residing in DFE class fi, such thatP

fj # 0.2, where j 6¼i. The DFE category “all” rep-
resents an average over all possible DFE shapes. The
error bars are 2 3 SD. Red points show the analyt-
ical predictions for B with: (1) f0 = 0.85, f1 = 0.05,
f2 = 0.05, and f3 = 0.05; (2) f0 = 0.05, f1 = 0.85, f2 =
0.05, and f3 = 0.05; (3) f0 = 0.05, f1 = 0.05, f2 =
0.85, and f3 = 0.05; and (4) f0 = 0.05, f1 = 0.05, f2 =
0.05, and f3 = 0.85. BGS, background selection;
DFE, distribution of fitness effects.
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performance of the method and its robustness to various
model violations.

Accuracy of inference: All four DFE classes were estimated
fairly accurately when using all statistics (Figure S2a). How-
ever, under demographic equilibrium, the DFE is inferred
much more accurately using statistics from the functional
regionsalone, thus sidestepping theneed for the identification
of linked neutral regions (Figure 4B and Figure S2b). In both
cases, the accuracy of inference is highest for the neutral class
and lowest for moderately deleterious mutations (class 2),
and significantly improves when the size of the functional
region increases (Figure S2). When using only functional
regions to perform inference, the absolute difference be-
tween the true value and the estimated value of the neutral
class is �0.034, 0.030, 0.017, and 0.010 for functional sizes

of 0.5, 1, 5, and 10 kb. Therefore, for 1-kb regions, the
method cannot determine whether the neutral class of mu-
tations comprise 30 or 33% of the DFE. For the moderately
deleterious class, this error is larger: 0.077, 0.060, 0.028, and
0.019, respectively. These absolute error values are not sur-
prising, as the fi in our simulations aremultiples of 0.05 out of
computational necessity. The accuracy of the estimates can
thus be increased by sampling the parameter space more
densely.

The accuracy of estimation can also be evaluated using r2

between the true and estimated values. For instance, for 1-kb
functional regions, the r2 values for f0, f1, f2, and f3 are 0.93,
0.91, 0.89, and 0.87, respectively. It is interesting to note that
it is possible to infer the proportion of DFE classes when using
statistics from the linked region alone (Figure S3). Although

Figure 3 Effects of BGS under nonequilibrium demography. (A) The slope of recovery of nucleotide diversity in linked neutral regions for different DFE
shapes under equilibrium demography (black), population expansion (blue), and contraction (red). (B) Nucleotide-site diversity relative to neutral
expectation (B), over 500 bp of linked neutral regions flanking functional regions, for varying DFE shapes and three different demographic models:
equilibrium (black), 10-fold exponential expansion (blue), and 10-fold exponential decline (red). (C) Tajima’s D for the 500-bp linked neutral region
flanking the functional region under equilibrium, (D) after a 10-fold expansion, and (E) after a 10-fold population size reduction. The four DFE shapes
considered in all panels are fi $ 80% for i = 0–3, where. 80% of mutations reside in DFE class fi. The DFE category “all” represents an average over all
possible DFE shapes. For nonequilibrium demography, g = 2Nancs, where Nanc is the ancestral population size. BGS, background selection; DFE,
distribution of fitness effects.
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there is an increase in the absolute errors for 10-kb regions to
0.103, 0.122, 0.056, and 0.044 in f0, f1, f2, and f3, respec-
tively, this analysis suggests that, if the population size were
known to be at equilibrium, statistics for the linked neutral
regions alone could distinguish between the contributions of
the four DFE classes.

It should furthermore be noted that this approach does not
distinguish between nonsynonymous and synonymous mu-
tations. Indeed, no assumption is made regarding which
specific bases are neutral, nearly neutral, or deleterious in
the coding region. Thus, this method can be used to estimate
the DFE for any type of functional region, as well as to assess

Figure 4 (A) Values of diversity statistics across functional, linked, and neutral regions. (B) Accuracy of estimation (cross-validation) of the four classes of
the DFE using statistics for functional regions only (size 1 kb), under equilibrium demography. (C) Joint estimation of population size changes and the
DFE using all statistics. (D) Joint estimation of population size changes and the DFE using statistics for functional regions only. The true proportions of
mutations in each DFE class and Nanc and Ncur are given on the x-axes, while the estimated values are given on the y-axes. Parameters are indicated in
the upper left corners for each plot. Each dot represents 1 out of 200 different parameter combinations, sampled randomly from the entire set of
simulations. DFE, distribution of fitness effects.
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the nonneutrality of synonymous sites by comparing their
frequency in a given coding region with the value of f0.

Effect of misspecification of exon size and recombination
rate: In view of these results, it is important to consider
whether accurate estimates depend on correctly specifying
precise exon size, or if it would be sufficient to generate priors
assuming, for example, a mean exon length for a given
genome. To quantify this effect, simulated data sampled from
the priors were based on 1-kb exons, while the test data were
obtained from simulations based on alternative exon sizes.
The error in inference of the DFE increases as the differences
between exon sizes of the priors and those of the true sizes are
increased (Figure S4), with the highest error for the moder-
ately deleterious class 2, although when exon sizes are suf-
ficiently large, misspecification of exon size does not strongly
affect performance. A similar approachwas used to determine
if the presence of another functional region (also 1 kb in size),
separated by an intron or intergenic region, would skew
inference. As expected, smaller intron sizes result in stronger
misinference than larger ones, and intronic/intergenic sizes
. 4 kb performed essentially as well as those with no nearby
functional exon (Figure S5). Moreover, a twofold difference
between assumed and actual recombination rates inflated the
errors dramatically (Figures S6 and S7). Informatively, the
direction of bias generated differs by DFE class (Figure S7).
For example, when true recombination rates are half of those
assumed, the inferred weakly deleterious class is greatly
inflated. As this class of mutations most strongly skews the
linked neutral SFS, this misinference presumably arises from
an attempt to fit stronger linked effects by inferring a higher
proportion of mutations in this class, whereas in reality the
increased BGS effects are being generated by fewer recombi-
nation events than are assumed.

These results highlight the importance of taking into ac-
count the specific exonic–intronic–intergenic structure of a
particular genomic region of interest, nearby functional re-
gions, and the specific recombination rate. Although any con-
figuration of these details may be directly simulated, an
alternative approach is simply to group exons of like size
across a genome, and further reduce these to a group that
is devoid of neighboring functional regions.

Joint inference of purifying selection and demography,
under nonequilibrium conditions: Based on the above re-
sults demonstrating that details of exon sizes and recombi-
nation rates are essential for accurate inference, we explicitly
modeled both exon sizes and recombination rates when
examining our ability to jointly infer demographic changes
together with the DFE. As our example involved an African
population of D. melanogaster, we chose for our simulations
single-exon genes that had . 4-kb noncoding regions flank-
ing both sides, and whose exon sizes were between 500 and
2000 bp. For this specific set of 94 exons, we simulated func-
tional regions with specified exon sizes linked to 4-kb neutral
regions and utilized the previously inferred local crossing
over rate for each exonic region in question. For every

parameter combination, we performed 10 replicates of each
of the 94 exon sizes (resulting in a total of 940 replicates per
parameter combination), with their respective recombination
rates and exon sizes, and summarized the resulting means
and variances of the summary statistics.

Models of exponential population size expansion and con-
traction assumed various ancestral population size (Nanc) and
current population size (Ncur), which were both sampled uni-
formly between 105 and 107, following previous studies
(Duchen et al. 2013; Arguello et al. 2019). As earlier work
has inferred the duration of the expansion in Zambian pop-
ulations to be of the order of Ne generations, this was scaled
down and fixed at Nsim = 5000 generations, to attempt to
infer both historical and current population sizes. Thus, for
this framework, we evaluated the estimates of six parame-
ters: f0, f1, f2, f3, Nanc, and Ncur.

Accuracy of joint inference: Encouragingly, the results dem-
onstrated an ability to successfully coestimate the DFE, and
both ancestral and current population sizes, using the set of
coding and linked noncoding summary statistics described
above (Figure 4C). Under nonequilibrium demography, the
estimation error for the strongly deleterious class of muta-
tions is larger. The absolute differences between true and
estimated values were 0.019, 0.027, 0.033, and 0.034 for
the four DFE classes, respectively; the errors in ancestral
and current sizes were 10.1 and 7.3%, respectively. The r2

values between the true and estimated values of f0, f1, f2, f3,
Nanc, and Ncur were 0.97, 0.97, 0.95, 0.95, 0.99, and 0.99,
respectively.

The performance of the full six-parameter estimation pro-
cedure is good, without relying on the usual stepwise ap-
proach of first utilizing putatively neutral sites to fit a
demographic model, and then using this model to estimate
DFE parameters. Interestingly, joint estimation is almost as
accurate when using statistics from functional regions alone
(Figure 4D), although it inflates the errors in the estimates of
f2 and f3. The absolute differences between the true and es-
timated values of f0, f1, f2, and f3 were 0.015, 0.025, 0.054,
and 0.049, respectively, while the errors in estimates of pop-
ulation sizes increase to 23 and 8% for Nanc and Ncur, respec-
tively. Thus, the error in ancestral population size is quite
large if only functional regions are used to coestimate all
six parameters. Further, unlike the case of demographic equi-
librium, statistics in linked regions alone can no longer be
used to accurately infer parameters of the DFE (Figure S8).

Effect of misspecification of mutation rate:Weevaluated the
effect of having incorrect estimates of mutation rate by in-
ferring all six parameters under a scenario in which the
assumed mutation rate is one-half of or twice the true value.
Under all demographic scenarios, if the assumed mutation
rate was one-half of the true rate, our method correctly
estimated f0, f1, and Ncur (Figure S9). However, the strongly
deleterious class 3 is consistently underestimated, the mod-
erately deleterious class 2 is overestimated, and Nanc is bi-
ased toward a strong population size decline. A comparable
magnitude of misinference is observed when the assumed
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mutation rate is twice the true value (Figure S9). Thus, the
ABC method described in this study is sensitive to large mis-
matches between the true and assumed mutation rates, and
is thus best suited to organisms in which pedigree- and/or
mutation accumulation-based estimates are available.

Statistics important for distinguishing different classes of
the DFE and demography: As it is important to understand
which statistics are needed to distinguish between the effects
of demography and the different classes of the DFE, two
different approaches were used to rank statistics by their
importance. First, statistics were simply ranked by their re-
gression coefficient with respect to each parameter sepa-
rately. Nonlinear relationships were taken into account by
using Box–Cox transformation, as suggested by Wegmann
et al. (2009). With stationary population size, most of the
top predictors of the fraction of neutral (f0) and strongly
deleterious (f3) sites are statistics summarizing the functional
region (Table S3). The top four statistics for each parameter
are displayed in Figure S10. In addition, a modification of
the method of Joyce and Marjoram (2008) was also employed
to rank statistics (Table S4) for equilibrium demography.

As expected, the statistics that correlatemost stronglywith
the fraction of neutral mutations are the levels of divergence
and the fraction of high-frequency derived alleles, as summa-
rized by uH (Fu 1995; Fay and Wu 2000) in functional re-
gions. As the weakly deleterious class of mutations generate
BGS effects at closely linked sites, statistics for the functional
and linked region are most strongly correlated with f1. This
also correlates most with H9 in functional regions, a statistic
that contrasts the proportion of high-frequency derived var-
iants with those of derived variants segregating at interme-
diate frequency (Fay and Wu 2000). Although this statistic
was designed to identify selective sweeps, which tend to in-
crease the proportion of high-frequency derived alleles, it is
highly predictive of the fraction of the weakly deleterious
class of mutations in the absence of positive selection. As
shown above, larger f1 generates a stronger skew in the
linked neutral SFS toward rare variants and is thus also
reflected in the values of Tajima’s D in the linked neutral
region. Measures of linkage disequilibrium in the functional
and linked neutral regions are also correlated with the fre-
quency of the weakly deleterious class of mutations.

Because the moderately deleterious class of mutations
generates BGS effects that extend for larger distances than
themore-weakly selected class, the strongest correlates of this
class are generally statistics from the neutral region furthest
from the directly selected sites. All the different summaries of
the SFS—uW,p, and uH—correlate with this parameter, as well
as the total reduction in linked neutral diversity (given by
the intercept of the regression fit of p = slope*ln (distance) +
intercept, where p is the diversity in linked neutral regions).
The strongly deleterious class of mutations is correlated with
the number of singletons and uw.

A similar analysis was performed on simulations with de-
mographic nonequilibrium. Here, the DFE parameters are

significantly correlated only with the statistics for functional
regions (Tables S5 and S6). As expected intuitively, the
statistics most highly correlated with the two demographic
parameters are for the neutral linked regions. Ancestral
population sizes correlate best with statistics that capture
high-frequency derived alleles in linked neutral as well as
functional regions, as these represent older mutations; cur-
rent population sizes correlate most with statistics that sum-
marize linkage disequilibrium. The same is true when ranked
statistics are obtained only from functional regions. Because
the class of moderately deleterious mutations and ancestral
population sizes are correlated with overlapping sets of sta-
tistics, the estimates of these two parameters are partially
confounded. As such, linkage disequilibrium-based statistics
are essential for distinguishing between demography and
purifying selection, and in estimating ancestral and current
population sizes. In addition, although the variances and
means of the statistics are highly correlated, the variances
play a more important role in estimating current population
sizes.

Comparison with DFE-a: Because there are no other pro-
grams that simultaneously coestimate both demographic
and selection parameters, we compared the performance of
our method to the stepwise approach of DFE-a (Keightley
and Eyre-Walker 2007; Eyre-Walker and Keightley 2009;
Schneider et al. 2011), a program used widely for the infer-
ence of the DFE. DFE-a assumes that synonymous sites are
neutral and uses their SFS to infer changes in population size.
Conditional on the inferred demography and under the as-
sumption that the deleterious selection coefficients follow a
given distribution (generally g), the program infers the shape
and scale parameter of the assumed distribution.

We simulated demographic equilibrium, twofold popula-
tiongrowth, and twofoldpopulation contraction, and inferred
the change in population size and theDFEusing bothABC and
DFE-a. Because DFE-a uses neutral sites to infer demography,
in all cases we simulated a DFE consisting of 30% neutral
mutations, which are a proxy for synonymous sites. These
simulations were performed exactly as described previously
for nonequilibrium conditions. Exon sizes between 500 and
2000 bp with flanking 4-kb linked neutral regions were sim-
ulated with recombination rates specific to the selected
94 exons (and a total of 940 replicates for every parameter
combination). DFE-a performs slightly better than ABC if the
true DFE is indeed g distributed (Figure S11), although our
method is able to infer the DFE with very similar accuracy.

For adiscreteDFE that is skewed towardhighly deleterious
mutations, DFE-a and ABC perform with similar accuracy.
However, our method performs better if the DFE is skewed
toward slightly deleterious mutations as shown in Figure
S12. It is important to note that, for the purpose of this com-
parison, simulations were run with numbers of directly se-
lected sites between 500 and 2000 bp, with 30% ofmutations
being neutral, because neutral mutations are required to es-
timate demographic parameters with DFE-a. Under these
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conditions, BGS results in a relatively small skew in the neu-
tral SFS (Campos and Charlesworth 2019).

As noted previously, a potential advantage of the method-
ology proposed here is that, by simultaneously estimating
selection and demography, one is not required to make any
assumptions about the neutrality of synonymous sites. We
evaluated this feature by simulating a scenario where 33% of
the assumed neutral sites were actually experiencing weak
direct selection.Asweakpurifying selectiongenerates a larger
fraction of rare variants than stronger selection, programs
based on neutrality would be likely to falsely infer growth. As
expected, DFE-a inferred twofold growth under demographic
equilibrium, and in fact inferred slight growth even for a two-
fold contraction (Figure 5). The resulting DFE overestimated
the fraction of neutral mutations and underestimated the
fraction of weakly deleterious mutations. As noted previ-
ously, such misinference will increase with the density of
selected sites. However, our ABC approach accurately esti-
mated the proportion of neutral mutations present in the
selected region (Figure 5), illustrating the importance of joint
inference.

Application to D. melanogaster: When simulating genomic
regions, the presence of nearby coding regions that are not
included in the models can generate additional BGS effects
and thus bias inference. We thus restricted our analyses to
protein-coding exons in theD.melanogaster genome between
500 and 2000 bp in length that are single-exon genes, and are
flanked on both sides by intergenic regions . 4 kb, so that
effects of linkage with other nearby functional elements are
avoided. It should be noted that any genic structure could
readily be chosen for inference by directly simulating the
associated details when constructing the priors; we have
simply chosen this realization to provide an illustrative
application.

The recombination rates of both the 59 and 39 flanking
intergenic regions are highly correlated (Figure S13), and
span a considerable magnitude (Figure S14) with a mean
rate of 2.78 cM/Mb (i.e., the average recombination rate
for these chosen single-exon genes is very near the autosomal
genome-wide average of 2.32 cM/Mb). We also verified that
this set of genes was not unusual with respect to genome-
wide coding sequence divergence (Figure S15). Further-
more, because sites in intergenic regions in D. melanogaster
may also experience direct selection (Halligan and Keightley
2006; Casillas et al. 2007), we used phastCons scores to ex-
clude intergenic sites that might potentially be functionally
important. All sites with a phastCons score larger than 0.8
were excluded (Siepel et al. 2005).

Table 1 provides the observed summary statistics for each
region class, where intergenic sites that had an$ 80% prob-
ability of belonging to a conserved element (i.e., with phast-
Cons score$ 0.8) were excluded. It should be noted that the
absence of a large difference between divergence (i.e., num-
ber of fixed substitutions specific to D. melanogaster) in ex-
onic vs. intergenic regions is consistent with previous studies

[table 1 in Andolfatto (2005)]. In addition, because we have
restricted our analyses to sites where the ancestor of D. mel-
anogaster could be predicted with high confidence, our anal-
yses may be skewed toward more conserved sites, potentially
resulting in lower divergence in intergenic regions. Previous
estimates of divergence along the D. melanogaster lineage at
fourfold degenerate sites were �0.05–0.06 (Halligan and
Keightley 2006; Langley et al. 2012; Charlesworth et al.
2018), while that in coding regions was 0.023 (Langley
et al. 2012). Although our estimates are lower than previous
estimates, this discrepancy is explained by the larger number
of individuals used to subtract polymorphic sites in this study
(Table S7). With a sample size of 1 allele (corresponding to
pairwise divergence), our estimates of divergence at fourfold
degenerate and in coding regions are 0.05 and 0.023, respec-
tively, consistent with previous studies. In addition, a very
similar relation between pairwise divergence and polymor-
phism-adjusted divergence is found with simulated data (Ta-
ble S8).

Interestingly, although previous studies have inferred
�two- to fourfold growth in the Zambian population of D.
melanogaster (Ragsdale and Gutenkunst 2017; Kapopoulou
et al. 2018), we infer only 1.2-fold growth, with an ancestral
Ne of 1,225,393 and currentNe of 1,357,760. Our estimates of
ancestral Ne are comparable to those inferred by previous
studies of African populations of D. melanogaster (Li and
Stephan 2006; Laurent et al. 2011; Duchen et al. 2013;
Arguello et al. 2019; Figure 6). As shown in Figure 6, we infer
a much larger proportion of mildly deleterious mutations and
a smaller proportion of highly deleterious mutations than in
previous studies (Keightley and Eyre-Walker 2007; Huber
et al. 2017), with f0 = 24.7%, f1 = 49.4%, f2 = 3.9%, and
f3 = 21.9%, but this reflects the fact that our procedure in-
cludes synonymous sites among the total. Because we have
inferred the DFE for a select class of single-exon genes, which
have slightly higher than average divergence (Figure S15), it
is possible that these exons are experiencing weaker purify-
ing selection than the genome-wide mean. Furthermore, be-
cause we have obtained the DFE of both coding sequences
and UTR regions, fourfold degenerate and UTR sites com-
prise 12 and 29% of the total, respectively. Previous studies
have estimated 6–10% of all mutations at nonsynonymous
sites to be effectively neutral. Thus, assuming that all fourfold
degenerate sites are neutral, �40% of UTR regions are neu-
tral (Andolfatto 2005; Campos et al. 2017), and �6–10% of
nonsynonymous mutations are neutral, we expect f0 to be
�27–30%. Encouragingly, we infer f0 = 25%. This observa-
tion implies that the majority of synonymous sites are not
experiencing direct selection, consistent with previous results
for D. melanogaster (Jackson et al. 2017). Further, although
we infer a larger proportion of weakly deleterious mutations
than previous studies from the distribution of g = 2Nes, the
distribution of s is quite comparable (Table S9) to that
inferred by Huber et al. (2017).

To test whether our inferred parameters explain the ob-
served D. melanogaster data, we simulated 10 replicates of
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each of the 94 exons using the parameter estimates, and
evaluated whether the means of the observed D. mela-
nogaster values are in the 5% tails of the simulated distribu-
tion of statistics. Our parameter estimates result in a very
good fit to empirical D. melanogaster population data (Fig-
ure 6 and Figure S16) for all three categories—functional
(i.e., exonic), linked (i.e., noncoding region adjacent to
exons), and neutral (i.e., noncoding region adjacent to the
linked region)—except for Tajima’s D (linked region P =
0.011 and neutral region P = 0.010) and divergence (linked
region P = 0.029 and neutral region P = 0.0) in intergenic
regions, although these statistics are well fitted in functional
regions.

As both positive selection in exons and purifying selection
in noncoding regions could partially drive these patterns, we
investigated both of these model violations. Noncoding re-
gions flanking 2 kb of the selected exons (which were used to
perform inference) were found to have 777 sites that had
phastCons scores . 0.8, with a mean and median length of

25 and 15 bp, respectively.We therefore simulated conserved
elements in noncoding regions that were 20 bp in length,
uniformly distributed, and which made up 40% of the flank-
ing neutral sites (i.e., 800 sites in total). Conserved elements
were simulated with either weak (f1 = 1), moderate (f2 = 1),
or strong (f3 = 1) purifying selection. Upon masking these
sites, as was done in our Drosophila data analysis, there was
no observed difference in the distribution of all statistics (Fig-
ure S17), suggesting that BGS caused by small conserved
elements does not significantly affect our inference, and in
fact does not alter the fit of our inferred model to the data.
Interestingly, without masking sites—that is, by allowing
sites that experience direct weak purifying selection to re-
main in the flanking sequences—our model is much better
able to explain the lower Tajima’s D and divergence in inter-
genic regions (Figure S18). Thus, it appears likely that weak
purifying selection on sequences in intergenic regions could
contribute to the discrepancies between observed and
expected.

Figure 5 Comparison of the performance of the
proposed ABC approach in the current study with
DFE-a (when there is selection on synonymous
sites), under (A) demographic equilibrium, (B) expo-
nential growth, and (C) exponential decline. In all
cases, 30% of sites were assumed to be synony-
mous, out of which 33% were weakly selected.
Solid black bars are the true simulated values, dark
blue bars give the ABC performance using ridge
regression, and light blue bars give the ABC perfor-
mance using linear regression aided by neural nets.
Patterned bars show the performance of DFE-a. A
total of 998,300 sites were analyzed in the func-
tional region for each parameter combination, with
�332,767 representing synonymous and 665,533
representing nonsynonymous sites. ABC, approxi-
mate Bayesian computation; DFE, distribution of fit-
ness effects.
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Next,wesimulatedpositiveselectionwithselectioncoefficient
sb for beneficial mutations under four different scenarios, repre-
senting rare and strong (1% of all mutations in exonic regions
are beneficial with 2Nesb = 1000), common and strong (5% of
mutations in exonic regions are beneficial with 2Nesb = 1000),
common and weak (5% of mutations in exonic regions are ben-
eficial with 2Nesb=10), and rare and weak (1% of mutations in
exonic regions are beneficial with 2Nesb=10) selection.We find
that, although strong positive selection, whether common or
rare, better explains the lower Tajima’s D values in intergenic
regions, it also drastically alters the distribution of most other
statistics, resulting in anoverallmuchpoorerfit (Figures S19and
S20). For instance, common and strong positive selection re-
duces uH by an order of magnitude relative to our fitted model,
and drastically increases the variancewhile decreasing themean
of haplotype diversity. In contrast to strong positive selection,
weakly positively selectedmutations do not alter the distribution
of Tajima’s D in intergenic regions, but slightly increase uH in
functional regions, which improves the fit to the observed data
(Figures S21 and S22). In addition, all cases of positive selection
significantly increase divergence in functional regions. For com-
parison,we also simulated the two scenarios of positive selection
used by Lange and Pool (2018): 0.2% of all mutations are ben-
eficial with 2Nesb = 60, and 0.00013% of all mutations are
beneficial with 2Nesb = 10,000. As the frequency of positively
selected alleles is lower in these scenarios, therewas noobserved
difference between the distribution of statistics resulting from
including or excluding positive selection (Figures S23 and
S24). Thus, if the frequency of strongly positively selected mu-
tations ismuch lower than 1%, aswas proposed by Campos et al.
(2017), our estimates of both demography and DFE shape
should be unbiased, and beneficial fixations would be virtually
undetectable. Future studies will investigate the ability of our
approach to quantify the properties of beneficial mutations.

Conclusion

Independent of specific views on the roles of adaptive vs.
nonadaptive explanations for observed levels and patterns

of DNA sequence variation and divergence, it has beenwidely
accepted that natural populations are not at demographic
equilibrium, but are often characterized by fluctuating pop-
ulation sizes and other demographic perturbations. Addi-
tionally, a rich empirical and experimental literature has
demonstrated the pervasive importance of purifying selection
in eliminating the constant input of deleterious variants. It
has also been found that ignoring direct effects of purifying
selection and its impact on linked sites can strongly bias de-
mographic inference (Ewing and Jensen 2016), and that ig-
noring demographic effects biases estimates of parameters of
selection (Jensen et al. 2005; Thornton and Jensen 2007;
Crisci et al. 2012, 2013). Yet, despite agreement that these
processes are certain to be occurring constantly in popula-
tions and shaping patterns of variation and evolution, the
construction of a statistical approach capable of simulta-
neously estimating parameters of the concerned processes
has been difficult. Here, we provide one such approach, for
which we demonstrate an ability to coestimate the parame-
ters of a generalized DFE along with those underlying the
population history.

By fitting a four-parameter DFEmodel that includes weak,
intermediate, and strong purifying selection, as well as neu-
trally evolving sites, this approach avoids two common, and
potentially perilous, assumptions: (1) synonymous sites are
not assumed to be neutral, consistent with a growing body of
literature (Chamary and Hurst 2005; Lynch 2007; Zeng and
Charlesworth 2010a; Lawrie et al. 2013; Choi and Aquadro
2016; Jackson et al. 2017), and (2) the DFE is not assumed
to follow a specific parameterized distribution, such as the
widely-used g distribution.

Our resultsdemonstrate that it is possible to jointly infer the
deleterious DFE and past demographic changes using an ABC
framework, by including various summary statistics capturing
aspects of the SFS, linkage disequilibrium, and divergence,
comparedbetweencodingandflankingnoncoding sequences.
Ancestral population sizes and the frequency of the most
deleterious classes of the DFE are estimated with relatively

Table 1 Statistics calculated for the 94 single-exon genes including their 39 flanking intergenic sequences, for 76 haploid genomes (devoid
of any inversion) from the Zambian population of D. melanogaster

Mean SD

Functional Linked Neutral Functional Linked Neutral

p 0.0083 0.0106 0.0107 0.0039 0.0042 0.0038
uW 0.0120 0.0166 0.0162 0.0045 0.0053 0.0049
uH 0.0088 0.0098 0.0097 0.0054 0.0053 0.0056
H9 20.0633 0.0871 0.1169 0.5371 0.4118 0.3829
Tajima’s D 21.0537 21.1469 21.1103 0.5338 0.4874 0.4694
Singleton density 0.0215 0.0303 0.0307 0.0086 0.0116 0.0117
Haplotype diversity 0.9711 0.9680 0.9762 0.0452 0.0458 0.0444
r2 0.0328 0.0364 0.0363 0.0109 0.0136 0.0128
D 0.0005 0.0005 0.0006 0.0009 0.0010 0.0012
Branch-specific divergence 0.01378 0.0156 0.0159 0.0075 0.0077 0.0071

Sites with phastCons scores . 0.8 were excluded. Functional refers to exons, linked refers to intergenic region (�1 kb) adjacent to exons, and neutral refers to intergenic
regions further away from exons that are adjacent to linked regions (Figure 4A). Derived alleles were identified by polarizing alleles with respect to the ancestral sequence of
D. melanogaster obtained from ancestral reconstruction over 15 insect species.

186 P. Johri, B. Charlesworth, and J. D. Jensen



low accuracy, whereas the current population sizes and the
neutral mutation class are estimated with high accuracy. In
addition, we demonstrated that, if synonymous sites are in-
deed experiencing substantial purifying selection, existing
programs such as DFE-a will overestimate recent growth
and underestimate the proportion of mildly deleterious mu-
tations. Importantly, the approach proposed here performs
equally well regardless of whether synonymous sites are neu-
tral or selected. However, our approach continues to assume
the neutrality of flanking noncoding regions, though puta-
tively conserved sites were masked; the impact of this mask-
ing on inference was thoroughly assessed via simulation.

Because we make no assumptions about which sites in the
functional region of interest are neutral, it is in principle
possible to estimate the DFE for any functional element using
thismethodology.The results further suggest that theaccurate
coestimation of these parameters is possible using only func-
tional regions. Such an approach may be extremely useful in
genomes for which it is difficult to characterize putatively
neutral sites, as well as for compact genomes in which non-
coding regions may be limited. However, we have only tested
relatively simple demographic models, and future studies
evaluating our ability to jointly estimate more complex pop-
ulation histories would be of value.

Figure 6 Joint inference of demography and
purifying selection in the Zambian population
of D. melanogaster. (A) Demographic model
inferred in previous studies of the Zambian pop-
ulation (blue lines), the Zimbabwe population
(green lines), and the current study (black lines).
(B) The DFE for deleterious mutations in coding
regions (including synonymous and nonsynony-
mous sites) as inferred by previous studies of
other populations (colored bars) and at exonic
sites of single-exon genes as inferred in the cur-
rent study (black bars). The x-axis is for f0: 0 #

2Nes , 1, f1: 1 # 2Nes , 10, f2: 10 # 2Nes ,
100, and f3: 100 # 2Nes , 10,000. For the
previous studies, the DFE shown in this figure
includes the fraction of synonymous sites in
the neutral f0 class. (C) Distribution of key sum-
mary statistics (p, uW, and r2) for functional,
linked, and neutral regions when simulating
100 replicates of 94 exons each using the in-
ferred parameters. The vertical lines represent
values of the statistics obtained from 76 individ-
uals of D. melanogaster from Zambia, after ex-
cluding noncoding sites with phastCons score
$ 0.8. DFE, distribution of fitness effects.
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This approach can, in principle, be applied to any organism
and functional class of interest, although power analyses
suggest the utility of prior knowledge of the boundaries of
functional regions as well as mutation and recombination
rates. Here, we have provided an illustrative example with
D. melanogaster. The results suggest that the Zambian pop-
ulation of this species has been largely stable in size, and that
exonic regions have a large proportion of mildly deleterious
mutations. Although this result might seem surprising, the
DFE inferred by the current method provides the distribution
of selective effects over all sites, including synonymous sites
and sites in UTRs. Hence, in comparing the DFE estimated in
the current study with previous estimates of the neutral class
of mutations, it appears unnecessary to invoke widespread
selection on synonymous sites in D. melanogaster. This result
is consistent with most previous studies (Akashi 1995;
Jackson et al. 2017), and our estimate of the strength of
purifying selection acting on synonymous sites in the Zam-
bian population is in line with earlier estimates for African
populations (Zeng and Charlesworth 2010a; Jackson et al.
2017).

In addition to the proposed inference framework, we have
derived an analytical expression for the reduction in variation
caused by BGS at neutral sites outside functional regions for
the case of a discrete DFE, making it feasible to obtain
analytical predictions for any chosen DFE. Not only does a
discrete DFE provide flexibility in inference, it may also be a
more realistic representation of the true DFE (Kousathanas
and Keightley 2013; Bank et al. 2014b). Although gamma
distributions represent a reasonably good fit to the DFE
inferred from genome-wide studies (Eyre-Walker and
Keightley 2007), the DFE will be misinferred if the true dis-
tribution is multimodal (Kousathanas and Keightley 2013),
as has been widely observed [e.g., in yeast (Bank et al.
2014a), viruses (Sanjuán 2010), and Escherichia coli
(Jacquier et al. 2013)]. In addition, the best-fitting parame-
terized continuous distribution appears to be extremely spe-
cific to the particular data set being tested, and most
alternative distributions fit the data nearly as well as the
best-fitting distribution (Huber et al. 2017; Kim et al.
2017). The discrete DFE proposed here thus reduces the
number of necessary assumptions, and has been shown to
perform well in the plausible scenario in which common as-
sumptions are indeed violated (e.g., if the true DFE is not
gamma-distributed). Both the analytical results under demo-
graphic equilibrium and simulations under demographic
nonequilibrium show that the number of selected sites, and
the specific shape of the DFE (for instance, the frequency of
mildly andmoderately deleterious mutations), both decrease
linked neutral variation around functional regions more than
previously appreciated, and skew the SFS even when there is
no reduction in diversity. Such variation in exon lengths and
DFE shapes across a genome can increase the variance of
statistics in linked neutral regions, which could contribute
to false positives when detecting positive selection using out-
lier approaches.

Thereareat least three important caveats,whichwill be the
subject of future study. The first concerns the estimates of
ancestral and current effective population sizes. As the effec-
tive population size varies across the genome in a fashion
correlated with local recombination rates (Becher et al.
2020), the estimates provided here ought to be viewed as a
mean across the loci in question. While we have improved
upon the common assumption of a singular genome-wide
value by directly modeling each locus-specific recombination
rate when performing inferences, the general importance of
this effect in demographic modeling remains in need of fur-
ther study. The second caveat concerns biases in inference
using ABC-based methods under model violations, such as
a misspecification of the mutation or recombination rate. As
the method is sensitive to such violations, it will be best ap-
plied to organisms in which these parameters have been ex-
perimentally measured. Moreover, we have not included
other types of mutations such as insertions/deletions, gene
duplications, and transposable element insertions, all of
which will increase the deleterious mutation rate and thus
the effects of BGS (Comeron 2014).

The third caveat concerns inferences about selection. This
study represents a proof-of-concept in demonstrating that the
simultaneous inference of demography and the DFE is feasi-
ble, thereby avoiding commonassumptionsunderlying a step-
wise inference approach. While this interplay of genetic drift
and purifying selection is in fact alone sufficient to fit all
features of the data (consistent with previous claims:
Comeron 2014, 2017; Harris et al. 2018; Jensen et al.
2019), this is not the same as claiming that positive selection
is not also occurring. As our simulation results demonstrate,
the presence of rare, weakly beneficial mutations is consis-
tent with the data, though the inclusion of these parameters
does not result in an improved fit. The question is less about
presence/absence, than it is about statistical identifiability.
Conversely, the addition of a strongly beneficial mutational
class was found to be inconsistent with observed data. To
investigate this further, future work will evaluate the ability
to coestimate a beneficial class of fitness effects within this
framework. It should also be noted that the example chosen
to highlight our approach focuses on only a subset of genes in
the D. melanogaster genome, and the observed DFE in this
class is not necessarily universal across all coding regions in
the population under consideration. In fact, the means of the
scaled selection coefficients of deleterious mutations have
been shown to be negatively correlated with divergence at
nonsynonymous sites (Campos et al. 2017). However, impor-
tantly, a general inference approach that incorporates these
two dominant processes will be a valuable tool in future ge-
nomic scans, and our appropriate null is anticipated to
greatly reduce the notoriously high false-positive rates asso-
ciated with the identification of positively selected loci. The
ability of our approach to reject the hypothesis of frequent
hard selective sweeps involving strongly selected beneficial
mutations is encouraging, as hypothesis rejection is often
scientifically more robust than model fitting.

188 P. Johri, B. Charlesworth, and J. D. Jensen



Acknowledgments

We thank Rebecca Harris for discussions related to this
project. This research was conducted using resources pro-
vided by Research Computing at Arizona State University
(http://www.researchcomputing.asu.edu) and the Open
Science Grid, which is supported by the National Science
Foundation and the U.S. Department of Energy’s Office of
Science. We especially thank Lauren Michael and Christina
Koch from the Open Science Grid for their efforts to provide
technical assistance. This work was funded by National In-
stitutes of Health grant R01 GM-135899 to J.D.J. The au-
thors declare no conflicts of interests.

Literature Cited

Akashi, H., 1995 Inferring weak selection from patterns of poly-
morphism and divergence at “silent” sites in Drosophila DNA.
Genetics 139: 1067–1076.

Andolfatto, P., 2005 Adaptive evolution of non-coding DNA in
Drosophila. Nature 437: 1149–1152. https://doi.org/10.1038/
nature04107

Arguello, J. R., S. Laurent, and A. G. Clark, 2019 Demographic
history of the human commensal Drosophila melanogaster. Ge-
nome Biol. Evol. 11: 844–854. https://doi.org/10.1093/gbe/
evz022

Assaf, Z. J., S. Tilk, J. Park, M. L. Siegal, and D. A. Petrov,
2017 Deep sequencing of natural and experimental populations
of Drosophila melanogaster reveals biases in the spectrum of
new mutations. Genome Res. 27: 1988–2000. https://doi.org/
10.1101/gr.219956.116

Bank, C., R. T. Hietpas, A. Wong, D. N. Bolon, and J. D. Jensen,
2014a A Bayesian MCMC approach to assess the complete
distribution of fitness effects of new mutations: uncovering
the potential for adaptive walks in challenging environments.
Genetics 196: 841–852. https://doi.org/10.1534/genetics.113.
156190

Bank, C., G. B. Ewing, A. Ferrer-Admettla, M. Foll, and J. D. Jensen,
2014b Thinking too positive? Revisiting current methods of
population genetic selection inference. Trends Genet. 30: 540–
546. https://doi.org/10.1016/j.tig.2014.09.010

Beaumont, M. A., W. Zhang, and D. J. Balding, 2002 Approximate
Bayesian computation in population genetics. Genetics 162:
2025–2035.

Becher, H., B. C. Jackson, and B. Charlesworth, 2020 Patterns of
genetic variability in genomic regions with low rates of recom-
bination. Curr. Biol. 30: 94–100.e3. https://doi.org/10.1016/
j.cub.2019.10.047

Campos, J. L., and B. Charlesworth, 2019 The effects on neutral
variability of recurrent selective sweeps and background selec-
tion. Genetics 212: 287–303. https://doi.org/10.1534/genetics.
119.301951

Campos, J. L., L. Zhao, and B. Charlesworth, 2017 Estimating the
parameters of background selection and selective sweeps in
Drosophila in the presence of gene conversion. Proc. Natl. Acad.
Sci. USA 114: E4762–E4771. https://doi.org/10.1073/pnas.
1619434114

Casillas, S., A. Barbadilla, and C. M. Bergman, 2007 Purifying
selection maintains highly conserved noncoding sequences in
Drosophila. Mol. Biol. Evol. 24: 2222–2234. https://doi.org/
10.1093/molbev/msm150

Chamary, J., and L. D. Hurst, 2005 Evidence for selection on
synonymous mutations affecting stability of mRNA secondary

structure in mammals. Genome Biol. 6: R75. https://doi.org/
10.1186/gb-2005-6-9-r75

Charlesworth, B., 1996 Background selection and patterns of ge-
netic diversity in Drosophila melanogaster. Genet. Res. 68: 131–
149. https://doi.org/10.1017/S0016672300034029

Charlesworth, B., 2012 The effects of deleterious mutations on
evolution at linked sites. Genetics 190: 5–22. https://doi.org/
10.1534/genetics.111.134288

Charlesworth, B., 2013 Background selection 20 years on. The
Wilhelmine E. Key 2012 invitational lecture. J. Hered. 104:
161–171. https://doi.org/10.1093/jhered/ess136

Charlesworth, B., M. T. Morgan, and D. Charlesworth, 1993 The
effect of deleterious mutations on neutral molecular variation.
Genetics 134: 1289–1303.

Charlesworth, B., J. L. Campos, and B. C. Jackson, 2018 Faster-X
evolution: theory and evidence from Drosophila. Mol. Ecol. 27:
3753–3771. https://doi.org/10.1111/mec.14534

Charlesworth, D., B. Charlesworth, and M. T. Morgan, 1995 The
pattern of neutral molecular variation under the background
selection model. Genetics 141: 1619–1632.

Choi, J. Y., and C. F. Aquadro, 2016 Recent and long term selec-
tion across synonymous sites in Drosophila ananassae. J. Mol.
Evol. 83: 50–60. https://doi.org/10.1007/s00239-016-9753-9

Comeron, J. M., 2014 Background selection as baseline for nucle-
otide variation across the Drosophila genome. PLoS Genet. 10:
e1004434. https://doi.org/10.1371/journal.pgen.1004434

Comeron, J. M., 2017 Background selection as null hypothesis in
population genomics: insights and challenges from Drosophila
studies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372: 20160471.
https://doi.org/10.1098/rstb.2016.0471

Comeron, J. M., and M. Kreitman, 2002 Population, evolutionary
and genomic consequences of interference selection. Genetics
161: 389–410.

Comeron, J. M., R. Ratnappan, and S. Bailin, 2012 The many
landscapes of recombination in Drosophila melanogaster. PLoS
Genet. 8: e1002905. https://doi.org/10.1371/journal.pgen.
1002905

Crisci, J. L., Y.-P. Poh, A. Bean, A. Simkin, and J. D. Jensen,
2012 Recent progress in polymorphism-based population
genetic inference. J. Hered. 103: 287–296. https://doi.org/
10.1093/jhered/esr128

Crisci, J. L., Y.-P. Poh, S. Mahajan, and J. D. Jensen, 2013 The
impact of equilibrium assumptions on tests of selection. Front.
Genet. 4: 235. https://doi.org/10.3389/fgene.2013.00235

Crow, J. F., 2008 Mid-century controversies in population genet-
ics. Annu. Rev. Genet. 42: 1–16. https://doi.org/10.1146/an-
nurev.genet.42.110807.091612

Csilléry, K., O. François, and M. G. B. Blum, 2012 abc: an R pack-
age for approximate Bayesian computation (ABC). Methods
Ecol. Evol. 3: 475–479. https://doi.org/10.1111/j.2041-210X.
2011.00179.x

Cutter, A. D., and B. A. Payseur, 2013 Genomic signatures of se-
lection at linked sites: unifying the disparity among species. Nat.
Rev. Genet. 14: 262–274. https://doi.org/10.1038/nrg3425
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Appendix

Derivation of the Analytical Expression for the Reduction in Diversity due to BGS

We assume a discrete DFE with four bins, such that t is uniformly distributed within each bin. The expectation of E(t) within
each bin is proportional to its integral with respect to t. The overall expectation of E(t) is given by:

EðtÞ ¼
X3
i¼0

fi
tiþ1 2 ti

Z tiþ1

ti
EðtÞ  dt (A1)

where the ti correspond to the boundaries of the discrete bins. These are such that 0# 2Nes# 1, 1# 2Nes# 10, 10# 2Nes#
100, and 100# 2Nes# 10,000, respectively. In our case, these correspond to t0 = 0, t1 = 0.00005, t2 = 0.0005, t3 = 0.005, and
t4 = 0.5. While this mirrors the DFE considered here, a similar procedure can be used for any set of bins for a given DFE.

To determine E(t) from the first line of Equation 2 of themain text, wewrite a= g+ rcy and b= g+ rc (y+ l), and note that:Z
t  dt

ð12 tÞ½aþ tð12 aÞ� ¼
Z (

t
12 t

þ tð12 aÞ
½aþ tð12 aÞ�

)
dt (A2)

The second integral on the right-hand side of this equation can be evaluated by substituting u= a+ t (1 – a) for t, so that dt=
du/(1 – a). This gives:

ð12 aÞ
Z

tð12 aÞ
½aþ tð12 aÞ�dt ¼ ð12aÞ21

Z
u21ðu2 aÞdu ¼ ð12aÞ21½u2 a  lnðuÞ� (A3)

With this change in variable, the normalizing factor for the probability density function is now (u1 – u0)21= (1 – a)21 (t1 – t0)21.
The contribution of this component to the expectation of E(t) yields Equation 3a of the main text.

A similar expression can bewritten for the integral of – t/[(1 – t)[b+ t (1– b)] in the first line of Equation 2.When adding this
to the integral of t/[(1 – t)[a + t (1– a)], the integrals involving 1/(1 – t) cancel out, so that this term simply contributes
Equation 3b to the expectation of E(t).
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