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Abstract

Single-cell transcriptomics (scRNAseq) holds the promise to generate definitive atlases of cell 

types. We review scRNAseq studies of conventional CD4+ αβ T cells performed in a variety of 

challenged contexts (infection, tumor, allergy) that aimed to parse the complexity and 

representativity of previously defined CD4+ T cell types, lineages and cosmologies. With a few 

years’ experience, the field has realized the difficulties and pitfalls of scRNAseq. With the very 

high-dimensionality of scRNAseq data, subset definitions based on low-dimensionality marker 

combinations tend to fade or blur: cell types prove more complex than expected; transcripts of key 

defining transcripts (cytokines, chemokines) are distributed as broad and partially overlapping 

continua; boundaries with innate lymphocytes are blurred. Tissue location and activation, either 

cytokine- or TCR-driven, determine Teff heterogeneity in sometimes unexpected ways. Emerging 

techniques for lineage and trajectory tracing, and RNA-protein connections, will further help 

define the space of differentiated CD4+ T cell heterogeneity.

Introduction

CD4+ T cells initiate and orchestrate immune responses to a wide array of pathogens by 

detecting non-self antigens, help humoral and cellular responses, orchestrate tissue repair, 

and have even more esoteric effects on the homeostasis of organs systems outside the classic 

confines of Immunology. This range of functions and response abilities has long raised the 

question of their heterogeneity: are diverse functions all mediated by one multifunctional 

cell, or do distinct subsets possess specific effector functions, like helping B cell responses 

or provoking delayed-type hypersensitivity. Single-cell transcriptomics holds the promise to 

reopen this long-standing question from a radically different perspective and to provide a 

genome-scale parsing of true identities in the CD4+ T cell subsets.

Address correspondence to: Christophe Benoist, Department of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, 
Boston, MA 02115, cbdm@hms.harvard.edu, Phone: (617) 432-7741, Fax: (617) 432-7744.
1Present address: Immunai, 180 Varick Street, NYC, NY 10014
*These authors contributed equivalently

Declaration of interests
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Curr Opin Immunol. Author manuscript; available in PMC 2021 April 04.

Published in final edited form as:
Curr Opin Immunol. 2020 April ; 63: 61–67. doi:10.1016/j.coi.2020.02.004.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Almost half a century ago, it was shown that different T cell clones can have different 

functions, with a division of labor between cells responsible for cell-mediated immunity and 

for help to antibody responses [1,2]. Mosmann and co-workers [3] were the first to classify 

different CD4+ T cell clones by the cytokines they produce, a fundamental notion that is 

followed to this day, and spread to classifications of other immunocytes such as innate 

lymphoid cells (ILCs), gamma delta T cells or non-conventional T cells. They analyzed 

independent T cell clones in culture and noted that their cytokine secretion profiles could 

distinguish them in relation to their functional ability [3]: Th1 cells responsible for cellular 

immunity against intracellular pathogens, Th2 cells that orchestrated the antibody response 

by B cells [4]. It was soon realized that naïve T cells could also be induced to adopt these 

biased cytokine-producing phenotypes by culture with cocktails of inducing cytokines [5].

The CD4+ T effector (Teff) cosmology has since expanded beyond the Th1/Th2 dichotomy, 

which was quickly found to be too constraining, with identification of Th17, Tfh, Th9, or 

Th22 (and further “sub-subsets” thereof, like Th17*, Tfh2, etc), and with the reallocation of 

several functions (i.e. Tfh are now seen as the main B cell helpers). These distinctions 

remain primarily based on cytokine but now bolstered by “master” transcription factors 

which are thought to anchor these programs[6]. Moreover, sub-subsets such as pathogenic 

and non-pathogenic or homeostatic and inflammatory Th17s have been identified[7–9]. 

Conventional gene expression profiling of in vitro polarized T cell cultures were used to 

identify differentially expressed signatures[10–14], or differential epigenetic marks and 

chromatin states[15,16], but usually from cells derived in biasing tissue culture, rather than 

from ex-vivo cell populations. Importantly, it has proven impossible to identify cell surface 

markers that reliably and consistently identified Th-x subsets (some chemokine receptors 

have been proposed, but proved not to have unequivocal expression).

In hindsight, was there an obligate reason why cytokine expression had to be the organizing 

principle for CD4+ T subset distinction? Cytokines are certainly essential to T cell function, 

but other functionally important molecules might have served. Indeed, an orthogonal frame 

of reference for Teff heterogeneity was developed, based primarily on organismal location 

and the expression of chemokine receptors and adhesion molecules that drive it[17,18], 

distinctions that have direct relevance to the rapid detection of pathogens or inflammation 

states in the tissue where they occur. As for CD8+ T cells, CD4+ T cells have been 

distinguished as TN, TCM, TEM, TRM (but also less frequently used categories like TEMRA, 

TPM, etc[19], a classification orthogonal to the Th-x nomenclature and that also relies on 

very few (low dimensionality) flags.

Against this background, several groups have begun to apply single-cell (sc) RNAseq to 

probe T cell populations more deeply in the context of various challenges, to chart the 

relationships between subsets, to search for unrecognized heterogeneity within subsets, or 

perchance to discover entirely new planets in the CD4+ system. We will focus here on 

effector CD4 T cells but occasionally refer to regulatory T cells and CD8+ T cells for 

comparisons or parallels.
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Caveats and pitfalls

Several good recent reviews have discussed the revolutionary potential of single-cell 

RNAseq in parsing the complexity of cell-types and -states[20–22]. Overcoming the 

averaging that occurs during gene expression profiling of sorted cells, scRNAseq has the 

potential to reveal hidden heterogeneity in cell populations, characterize distinct cell subsets, 

and map the trajectories of cell differentiation. So, much exciting promise.

The field having a few years’ experience, it is important to avoid rose-colored glasses and be 

conscious of the caveats and pitfalls of scRNAseq. Not so much the question of its 

sensitivity, as one still hears occasionally: low abundance transcripts are indeed difficult to 

analyze robustly in individual cells, owing to the high probability of technical dropouts as 

well as biological noise in the low expression range. But the scRNAseq process (in its 

different variants) is actually remarkably faithful: aggregation of cells into microclusters, 

and/or imputation of missing values[23–26], yields profiles akin to conventional RNAseq, 

showing that rare transcripts are correctly detected.

A key obstacle is that scRNAseq data are simply difficult to grasp and handle: defining a 

cell-type based on a multi-dimensional transcriptome is more difficult, conceptually and 

experimentally, than from a handful of flow cytometry markers. Computational pipelines 

have been developed to process, verify, and analyze scRNAseq data and are well codified by 

now (e.g. Seurat[27]). But the follow-up, the interpretation of the results is far less codified 

and can be misleading. For instance, 2-dimensional projections (tSNE, UMAP) are 

commonly used to summarize and make human-readable multidimensional complexity. But 

those maps are by no means to be taken as gold-standard representations of the reality (play 

with https://distill.pub/2016/misread-tsne/ for sobering examples). Similarly, partition 

clustering tools produce groupings (e.g. the colored outputs of common processing 

pipelines) that may, or may not, have anything to do with biological reality. Clustering tools 

accurately distinguish distant cells, neurons from hepatocytes, B from T cells, but are far less 

trustworthy when trying to parse closely related cells - one should remember that a 

clustering algorithm will always return clusters (conditioned by its set parameters), even 

when there aren’t any biologically compelling or rational ones [28]. Inferring precursor-

product relationships between cells using the early “trajectory” tools can be hazardous (fine 

to map intermediates in a transition sequence that is known beforehand, haphazard if trying 

to infer an unknown relationship)[29]. Annotation of cell types (regions in a 2D projection, 

or clusters) is surprisingly challenging; quick and superficial annotation based on 

recognizing a handful of favorite transcripts is too often used, but rigorous annotation based 

on defining signatures is much more challenging[30]. Finally, the common experience is that 

distinction between cells that one would imagine should be readily distinguished (e.g. NK 

and T cells) are often not straightforward: T cells and ILCs differ fundamentally by the 

rearrangement and expression of TCR genes, but much less when the rest of the functional 

transcriptome is taken into account. Whether a cell’s identity should be defined by one or 

two key functional genes that deeply condition the cell’s function, or by the fingerprint of its 

entire transcriptome, is a question that the field is still grappling with.
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Did scRNAseq reveal novel CD4+ T cell-types: “Tis”

Discovering new cell-types is a long-established tradition in Immunology, and a novel CD4+ 

T cell would be a valuable trophy. In other domains, scRNAseq has allowed the discovery of 

rare but important cell types, primarily epithelial: CFTR-expressing ionocytes in the lung 

surface, tuft-like cells in the thymic epithelium[31–33]. For CD4+ T cells, there may be one 

such revelation: in several scRNAseq studies, a minor but very distinct population of CD4+ 

T cells showed an inordinately high expression of Interferon-stimulated Genes (ISGs), with 

no other notable characteristic. These cells (hereafter “Tis”) (for T interferon signature) were 

observed in a range of immunologic challenges: in airways after allergic sensitization with 

house dust mites or Alternaria extract[34,35], in kidney infiltrates of lupus nephritis[36], or 

in colon lamina propria of Salmonella- or Citrobacter- infected mice[37]. With the exception 

of the lupus kidney, these are not contexts where Type-1 interferon would be expected. Tis 

were rare or absent in lymphoid tissues at baseline, however, indicating that they are induced 

or summoned during active immune defenses. The origin of their high ISG expression is 

mysterious. Their Interferon (IFN) signaling pathway may be unusually sensitive; Tibbitt et 

al. [34] showed that the Type-I IFN receptor is not over-expressed in Tis, but other signaling 

molecules might be involved (e.g. MyD88). Alternatively, Tis cells may reside in micro-

compartments that contain high levels of IFN, a reaction that can occur in any tissue. 

Interestingly, though, a similar population was also seen observed in thymic CD4+ single-

positive, suggesting that Tis may differentiate as an independent branch in the thymus [38]. 

Finally, the interferon-activated transcriptional module may have been activated in Tis but 

never switched off. Tis function is totally unknown (and may prove difficult to explore, 

given their characteristics and rarity), but one might speculate that constitutively high ISG 

expression may have pathological consequences (e.g. participating in lupus pathogenesis?).

Discrete subsets or a continuum of states?

Several studies took the unbiased approach of analyzing the entire pool of CD4+ T cells in a 

given location, in the context of a tumor or some immune challenge[34,36,37,39–41]. A 

strong effect of location was commonly observed, an anticipated conclusion based on much 

conventional profiling.

Ciucci et al.[41] performed scRNAseq on splenic activated (CD44hi) T cells, 7 days after 

LCMV infection, polyclonally or after tetramer selection of cells reacting to the 

immunodominant GP66 peptide. Although polyclonal splenocytes appear to split into 

clusters according to conventional Th1/Tfh/Tmem phenotypes, the GP66-specific population 

proved more continuous, with few or no well-defined and reproducible clusters (perhaps an 

illustration of issues with default clustering and coloring), and with overlapping 

representations of transcripts classically used to identify T subsets (Tbx21, Bcl6, Ccr7). In a 

study of activated CD4+ T cells from bronchoalveolar lavage after house dust mite re-

challenge[34], clustering only poorly resolved cell subsets (other than Tregs and Tis). Cells 

producing IL13 and IL5 were predominantly found in one corner of the tSNE plot, but the 

expression of Gata3 (highly represented) or Tbx21 (less common) was spread among the 

clusters. Similarly, in a study of colon lamina propria T cells after challenge with a panel of 

bacteria or parasites known to induce Th1, 17 or 2 biased responses, Kiner et al.[37] found 
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that Teff could not be parsed into discrete Th cell clusters, even with pliable artificial 

intelligence tools, cytokine and other signature transcripts being distributed along biased but 

continuous gradients. Variance in expression was tied to that infecting pathogen, more than 

to the cytokines produced or to any classic Th signature. Thus, in these several conditions 

where pathogenic challenges might have been expected to elicit distinct Th-x subsets, more 

complex populations of responding CD4+ T cells were observed [34,37,41]; cell 

distributions were biased in accordance with the challenge, but with far “messier” 

representations of key transcripts, and no distinct cell-types.

Several studies undertook single-cell analyses in tumors in order to study tumor 

heterogeneity as well as the heterogeneity of the immune response to tumors. Zheng et al.

[39] profiled single T cells from hepatocellular carcinoma patients and found several clusters 

amongst CD4+ T cells, including naive CD4s, Tregs, Teffs, exhausted T cells, as well as 

cytotoxic CD4+ T cells. As expected from conventional profiling, they observed a strong 

tissue effect that differentiated the transcriptomes of peripheral blood T cells and tumor-

infiltrating T cells. Azizi et al.[40] profiled total CD45+ cells from breast tumor patients and 

described 21 CD4+ clusters, which were split into 9 naive, 7 central memory, 15 effector 

memory, and 5 Treg clusters (over-clustered?). Tumor-specific signatures were not found in 

discrete cell state clusters, but rather along “gradual trends of variation”, or a single 

continuous trajectory.

Other scRNAseq studies drilled down into subsets of T cells, identified by knockin reporters 

driven by cytokine-encoding genes and/or marker combinations, aiming to uncover further 

heterogeneity within CD4+ T cell subtypes. In a pioneering study, Gaublomme et al.[42] 

used scRNAseq on IL17-producing cells derived in vitro and from the central nervous 

system of EAE-bearing mice. This allowed for the unbiased characterization of cell-states 

within Th17 cells, which had been previously described to vary phenotypically, with regard 

to their exposure to IL23 and on their pathogenicity[8]. Indeed, variation within Th17s was 

observed, in vivo and in vitro, but as a phenotypic continuum rather than discrete sub-

subsets. The variation could be decomposed into several components: overall activation; a 

module containing classic Th1 transcripts including Ifng, and one linked to the IL23 

signature or pathogenicity. These results were paralleled by IL17-producing CD8+ T cells in 

the skin, after challenge with S. epidermis[43] where a significant proportion of the cells 

could also co-express type 2 cytokines. Two other studies similarly revealed heterogeneity 

within IL10-producing CD4+ T cells in anti-CD3 treated or LCMV infected mice[44,45]. 

Xin et al. showed a dominant population of IL10-producing cells with several characteristics 

related to Th1 cells (Tbx21, Id2) but also an outlier cluster with classic Tfh transcripts (Il21, 
Cxcr5, Bcl6). Building on the scRNAseq data, elegantly constructed mixed bone-marrow 

chimeras were then used to show the functional relevance of these IL10-producing Tfh in the 

humoral response to LCMV. These studies, focused on cells making an individual cytokine, 

illustrated that cytokine production does not result from a single and discrete cell population.

Gowthaman et al.[35] took apart the Tfh subset (strenuously purified as 

CD44hiPD1hiCXCR5hi) elicited in an intranasal model of allergic sensitization. What might 

have been expected to be a well-defined group of cells actually contained a number of 

distinct cell-types: some Tis cells (confirming that the Tis phenotype cuts across marker-
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identified subsets), groups of cells superficially annotated as IL4-producing Tfh2, and a 

small but distinct group of cells with dual production of IL4 and IL13 (follow-up 

experiments showed that IL13+ cells were indeed essential for allergic sensitization and 

anaphylactic IgE production; other allergy models may use other phenotypes for Type 2 

cytokine production, however). In a similar vein, Patil et al.[46] sorted classic fractions of 

effector/memory cells (Tcm, Tem, Temra) from human donors originating from different 

continents, also based on low dimensionality flow cytometry criteria (CD45RA and CCR7). 

The Temra pool proved to contain several different clusters, although it was not clear how 

much of the clustering was driven by inter-donor differences vs true cell-states. Some of 

these clusters were hypothesized to represent effector or precursor pools, based on the 

differential representation of some homeostatic or precursor transcripts, although these 

relationships remain to be substantiated experimentally. Thus, both these studies illustrate 

that previously defined cell-types that rest on limited marker combinations actually hide far 

more extensive complexity when analyzed in the multidimensional transcript space.

Taken together, these results imply that Teff states are non-discrete, vary between tissues of 

residence, and are strongly influenced by cytokine- or TCR-induced activating signals. The 

variation in gene expression between T cells distributes as broad continua, rather than as 

discrete entities. Conversely, populations that were thought to be well-defined turned out to 

be more complex than anticipated. We have proposed elsewhere[37] a “Cloud Model” for 

Teff cell heterogeneity, wherein cytokines or other key functional or regulatory molecules 

are expressed along partially overlapping gradients, rather than in discrete Th-x entities. This 

concept is different from the “plasticity” that has been often evoked over the last decade, in 

that plasticity implies defined states or lineages between which T cells could switch. The 

Cloud Model raises conceptual difficulties. It is easier to think of interactions between well-

defined and consistent cell types than between proteoform cell populations, in which the 

expression of any one effector or regulatory molecule is loosely distributed. It raises 

practical difficulties for experimentation: for instance, it was comfortable to sort CCR6+ 

cells to test their activity and properties, under the assumption that they represented a 

coherent functional cell entity. But how does one sort a segment of a cloud?

Do variations in TCR clonotypes drive CD4+ T heterogeneity?

T cells see the world through their TCR. Other factors (inductive influences in specific tissue 

locations, microbe-derived ligands, cytokines, etc) can sway T cell phenotypes, but a key 

question is how much of the phenotypic choice rests in the characteristics of signals caused 

by TCR engagement (affinity, avidity, duration). ScRNAseq, and in particular its recent 

advances[40,47,48], allows the determination of TCR sequences (both chains) while 

evaluating the cells’ transcriptomes. Several scRNAseq studies have addressed these 

questions, in localized settings (tumors, infection, immunization) where clonotype 

expansion allows the comparison of several cells that express the same TCR (noting that this 

focus on expanded clones may introduce an experimental bias).

The overall conclusion is that the TCR does influence phenotypes, but to varying degrees 

according to location. Very demonstrative were the results of Azizi et al. in breast cancer 

infiltrates, where cells expressing the same αβ TCR clonotype tended to occupy confined 
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regions of the tSNE projection, although to variable extent for different TCRs[40,49]. A 

multiple regression procedure estimated that 30–50% of the T cell diversity could be 

explained by TCR clonotype. Similarly, among ~3,000 CD4+ T cells infiltrating basal cell 

carcinoma tumors, Yost et al. found no clonotypic overlap between cell regions annotated as 

Treg, Tfh and Th17, contrary to some CD8 subsets that transitioned from memory or 

effector to activated phenotypes[50]. On the other hand, Pratama et al.[51] reported some 

sharing of TCR clonotypes between Treg and Tconv pools in the colonic lamina propria of 

ex-germ-free mice colonized with a single microbe. Several of the highly represented clones 

evidenced by Tu et al.[48] after immunization with HPV-E7 were also spread throughout the 

phenotypic space. Overall, these studies show that the TCR is not the only driver of T cell 

heterogeneity but definitely an important factor.

Mechanistically, TCR signals may control the transcriptional programs directly or indirectly. 

Early TCR signaling is almost always the most variable gene module in single-cell surveys 

of T cell populations [42,44,45,49,52,53]. Zemmour et al.[49] tested the connection between 

signaling intensity and phenotypes in Tregs, using Nr4a1-gfp reporter mice in which the 

reporter intensity was directly related to the strength of TCR signals[54]. Cells belonging to 

different windows of GFP intensity were analyzed by scRNAseq. GFP levels proved highly 

related to the position of the cells in the multidimensional phenotypic space. These results 

suggest that TCR signals are intrinsically related to phenotypes. On the other hand, the same 

range of phenotypes was found in Treg cells of the adipose tissue, whether they were 

polyclonal or expressed a single transgenic TCR [53], showing that extrinsic cues can 

dominate in some contexts.

What lies ahead?

Single-cell transcriptomics is a recent and very fast-moving technology, and novel 

approaches to study T cells at a single-cell level are continuously emerging. “CITE-Seq” 

uses DNA-tagged antibodies that recognize molecules on the cell surface, and the tags are 

then quantitated in the same microfluidic process as mRNAs[47,55,56]. This allows the 

simultaneous quantitation of surface proteins and mRNAs and can be scaled to tens or even 

hundreds of cell surface proteins. CITE-seq promises to be invaluable for T cell biology, 

connecting complex structures in the transcriptome with the surface markers that can be 

used to select cells for functional experiments. Along the same lines, tagging reagents that 

enable input multiplexing (“hash-tags”) can be used for creative experimental designs, 

combining controls with experimental variants, time- or dose-shifted points, to enable direct 

comparisons and alleviate dreaded batch effects [37,47,55]. Single-cell analysis of chromatin 

accessibility is also coming of age[57], with new versions that associate chromatin and 

transcriptome data on the same cells. T cell differentiation and heterogeneity can be probed 

at the more “primordial” chromatin level, free of confounders from variation in RNA 

stability or transcriptional bursting. Finally, spatially-resolved transcriptomics (e.g.[58,59]) 

will shed light on the locations within organs where T cells of particular phenotypes live 

(building here on an already extensive knowledge from multi-color imaging), and on 

transcriptional changes happening in T cells in situ. One should acknowledge that spatial 

transcriptomics may be of more value to study immobile cells (neurons) than for T cells that 

are highly mobile, constantly probing other cells in search of excitement. Finally, new 
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experimental supports for cell and lineage tracing (e.g.[60–63]), and more performant 

computational tools[29] should build on early explorations [64] and allow a robust analysis 

of differentiation trajectories, what paths and fluctuations are followed by a T cell during 

activation, holding a key for understanding the molecular underpinnings of T cell 

differentiation and immune or autoimmune responses
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Highlights

• Single-cell transcriptomics can reveal unrecognized heterogeneity and CD4 T 

subsets.

• An unexpected CD4+ T population with high levels of IFN-I responsive 

transcripts.

• Previously defined CD4 subsets more complex than anticipated.

• The end of Thx: continuous, rather than discrete, distribution of key 

cytokines.

• Phenotypes are driven by TCR signals, but not solely.
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