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Abstract

Extracellular vesicles (EVs), derived from cell membranes, demonstrate the potential to be 

excellent therapeutics and drug carriers. Although EVs are promising, the process to develop high-

quality and scalable EVs for their translation is demanding. Within this research, we analyzed the 

production of EVs, their purification and their post-bioengineering, and we also discussed the 

biomedical applications of EVs. We focus on the developments of methods in producing EVs 

including biological, physical, and chemical approaches. Furthermore, we discuss the challenges 

and the opportunities that arose when we translated EVs in clinic. With the advancements in 

nanotechnology and immunology, genetically engineering EVs is a new frontier in developing new 

therapeutics in order to tailor to individuals and different disease stages in treatments of cancer and 

inflammatory diseases.
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1. Introduction

Nanotechnology has been exploited in pharmaceutical industries for several decades in order 

to improve the efficacy of drug administration [1–4]. For example, liposomes[5] and 

polymeric nanoparticles [6, 7] have been used to encapsulate drugs for improving their 

solubility and bioavailability. Targeting ligands (e.g. antibodies and peptides) are conjugated 

to the surface of nanoparticles[6, 8] to allow the delivery of nanoparticles to specific cell 

types in diseased tissues. Although there are advances in synthetic chemistry and 

bioengineering for design of targeted drug delivery systems[6, 7, 9, 10], the simple bio-

functionalization of nanoparticles could not avoid the rapid clearance by immune systems. 

The human body is a complex system, thus it is challenging that pre-designed nanoparticles 

can efficiently deliver therapeutics to disease lesions[11–13].
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Cells in the body constantly release cell membrane compartments to deliver signaling 

molecules (such as proteins or DNA) to adjacent cells or in distant organs. These 

compartments are called extracellular vesicles (EVs). EVs have been utilized in 

diagnosis[14], and drug delivery[15, 16] due to their exceptional biocompability, 

intrinsically targeting specific molecules and maintaining long circulation times [17].

According to ISEV (The international Society for Extracellular Vesicles), EVs are broadly 

defined as naturally released particles, which are comprised of the lipid bilayer 

membrane[18]. Specifically, EVs are spherical membrane compartments, which contain 

lipids, proteins and various nucleic acid species from their parent cells, acting as critical 

mediators between cells that regulate both physiological and pathological conditions in the 

body [19, 20]. Based on their biogenesis and sizes, EVs are categorized into three types: 

exosomes, microvesicles, and apoptotic bodies. Exosomes are produced from endosomal 

compartments in the cells. The sizes of exosomes are 30 to 100 nm in diameter. 

Microvesicles are directly generated through outward budding and fission of the cell plasma 

membrane with sizes that range between 50–2000 nm. When cells are dying, the cell 

membrane is disrupted to form apoptotic bodies with the sizes of 50 to 5000 nm [21, 22]. 

Due to the size similarity in EVs, it is challenging to separate the subpopulations of EVs 

[21]. The biomarkers of EVs may be used to differentiate between the three types of EVs 

based on their biogenesis.

Both eukaryotic and prokaryotic cells can produce EVs[23], but prokaryotic cells (such as 

gram-positive and gram-negative bacteria) generate a unique structure in which bacteria bud 

their outer membrane to form nanosized vesicles, called the outer membrane vesicles 

(OMVs). OMVs have been developed for drug delivery and vaccination[24, 25]. In this 

review, our focus is to discuss the current developments in EVs. The EVs were first observed 

in culture media. The generation of EVs using cell culture techniques remains challenging to 

translate EVs in the clinic due to their low production and reproducibility[26]. Therefore, it 

is urgent to develop new and innovative technologies to generate high-quality, reproducible 

EVs that could be scaled up for the advancement of biomedical applications.

Herein, we will review the current technologies and approaches used in the production of 

EVs for drug delivery. We also discuss what types of cells have been utilized to generate 

EVs, and summarize their biomedical applications in a wide range of disease models. 

Finally, we address the current challenges in technologies and methods in the translation of 

EVs and the future directions for EVs-based personalized and precision nanomedicine. Fig. 

1 is the summary of the current status on EVs technologies and their biomedical 

applications.

2. Generation of EVs

EVs were first discovered in reticulocytes in the early 1980s. The progress in the instruments 

of ultracentrifugation and electron microscopes enabled to visualize the structures of 

EVs[27]. Since then, a wide range of cells showed to secrete EVs, such as tumor cells and 

immune cells. The recent findings showed that EVs can transport signaling molecules 

(proteins and nucleic acid contents) to regulate physiological functions. Thus, EVs may be a 
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novel drug delivery platform. However, there are many limits in the current technologies 

used in the production of EVs. The natural secretion of EVs is a very slow process and the 

compositions and structures of EVs are heterogeneous. Therefore, it is difficult to translate 

EVs to the clinic, and demanding to develop other methods to generate EVs. The following 

summarizes three major approaches: 1) biological methods; 2) physical methods; 3) 

chemical methods.

2.1. EVs Produced by Biological Methods

2.1.1. Cell Secretion—When cells grow in culture media, they spontaneously release 

EVs. Using this approach, EVs can be generated from a wide range of cells: human primary 

bronchial epithelial cell[28], epithelial cells[29], EBV(Epstein-Barr virus)-immortalized B 

cells[30], HUVECs (Human umbilical vein endothelial cells)[31], leukocytes[32], 

platelets[33], stem cells[34], cancer cells[35] and even neural cells[36]. Secretion of EVs is 

a slow and costly process. To scale up the production of EVs, it is required to increase 

culture media volumes. The purification of EVs requires to concentrate the culture media.

2.1.2. Environmental Induction—Under certain culture conditions, cells can speed up 

the release of EVs and their compositions are strongly dependent on culture conditions. The 

radiation or serum starvation can promote the secretion of EVs containing unique surface 

markers. Kucharzewska et al. [37]reported that TSAP6, a p53-regulated gene product, 

triggered the exosome release from lung cancer cells after γ-radiation. Aharon et al.[38] 

reported that monocyte cells (THP-1) after the treatment by serum starvation or the 

stimulation by endotoxin and calcium ionophore A23187 resulted in the release of 

microvesicles that expressed several exosome markers, such as Tsg 101, leaflet 

phospholipids, and monocyte markers (CD18, CD14).

In case of in vivo studies, some disease conditions can dramatically increase the 

concentrations of EVs in the body fluids[38, 39]. Baran et al[39] found that the number of 

microvesicles in cancer patients was significantly elevated in all stages compared to that of 

all healthy persons, and the microvesicles possessed membrane proteins of CCR6 and 

HER-2/neu as the biomarkers.

Although it is interesting to study the secretion of EVs in disease conditions for diagnosis 

[40], the increased production of EVs and their upregulated targeting proteins may allow to 

exploit these EVs for development of EVs-based drug delivery systems. A discussion on the 

body fluids that are collected to isolate EVs for drug delivery is discussed in the following 

sections.

2.1.3. 3D Culture System—To solve the low yield of EVs in 2D cell culture systems, 

3D cell culture systems or hollow fiber culture systems have been established [41–43]. 

Rocha et al. [43] established a 3D cell culture microwell array for EV production and 

compared EVs derived from gastric cancer cells in a 2D culture system to those made in a 

3D culture system by analyzing RNA and proteins. They found that the 3D culture system 

was more efficient to produce EVs than the 2D culture system. Interestingly, the 

upregulation of microRNA and downregulation of some proteins were observed in the 3D 

system, suggesting that the cellular architecture plays a central role in regulating cellular 
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functions. The data may imply that the 3D architecture in vivo could generate the unique 

EVs compared to those in vitro.

2.1.4. Bioreactor System—To scale up the production of EVs in a cell culture system, 

a bioreactor system was proposed to continuously generate EVs. Watson et al. [41] 

developed a hollow-fiber bioreactor comprised of a pump, a medium reservoir and a cell 

culture cartridge cylinder (Fig. 2a). HEK293 cells were grown on hollow fiber surfaces and 

the medium circulated through the hollow fibers. The result showed that the production of 

EVs using a bioreactor system was 5 times higher than that made using flask cell culture 

(Fig. 2b). CD63 and Alix are the markers of EVs released from the multivesicular body and 

plasma membrane. The bioreactor system more efficiently produced EVs compared to the 

conventional cell culture after the analysis of Western blots of the biomarkers of CD63 and 

Alix (Fig. 2c). The bioreactor system demonstrates a potential tool to scale up the 

production of EVs in the clinic.

2.1.5. Biological Fluid Isolation—Recent studies show that the body fluid samples 

contain a lot of EVs because cells constantly release EVs into the bloodstream. EVs have 

been found in tears[44], urine[45], salivary[46], blood [47–50] and even milk[51], which are 

strongly correlated with physiological and pathological conditions. For example, cancer 

patients highly secrete the unique EVs that possess the tumor cell markers. Because the 

pathological conditions promote the expression of disease proteins in EVs, the collection of 

biological fluids may be used to enrich these EVs for targeted drug delivery [48].

2.2. EVs Produced by Physical Methods:

The central component of EVs is made of cell membrane and the cell plasma membrane-

formed vesicles are dominant in EVs[15, 16]. EVs made using natural secretion approaches 

have the low yield, the heterogeneity in their compositions and the less reproducibility [16]. 

It is urgent to develop new and novel methods to solve these problems. The recent physical 

methods to make EVs with nitrogen cavitation, membrane porous extrusion and sonication 

will be discussed. These methods rely on the physical forces to break cell membrane, 

allowing cytosol contents to be released from a cell. The disrupted cell membrane then 

reform to small vesicles. This physical method may have the advantage to make a large 

amount of EVs used in clinic.

2.2.1. Nitrogen Cavitation—Cavitation is a physics term meaning that a rapid pressure 

change in a liquid causes the formation of many small vapor-filled cavities. When these 

cavities (so-called “bubbles” or “voids”) collapse, they can generate an intense shock forcing 

objects to break. Nitrogen cavitation means that nitrogen gas is chosen to generate the 

pressure to form cavitation forces. Nitrogen cavitation was first used to generate EVs from 

white blood cells in the Wang’s group[15, 16]. This process allows a cell suspension to take 

place in a cavitation chamber and nitrogen to be filled, which increases the pressure, 

diffusing nitrogen inside the cells. When the pressure suddenly dropped, nitrogen came out 

to form bubbles inside the cells, generating a strong force to break them. Cytosol contents 

were quickly released from the cells, and the vesicular structures of the cell membrane were 

formed.
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To prove this concept, Gao et al. [15] performed nitrogen cavitation to generate neutrophil-

derived membrane nanovesicles and studied their biological compositions (Fig. 3a). They 

found that 50–75% of cell plasma membrane formed the vesicles with diameters of 180–200 

nm, suggesting that nitrogen cavitation is a novel method to generate the high-purity of EVs 

from neutrophils. Furthermore, they compared the production yield of EVs using nitrogen 

cavitation to that using the natural secretion approach [16] (Fig. 3b). They found that the 

yield of EVs made by nitrogen cavitation increased by 16 folds. They also performed the 

Western blots and proteomics of EVs, finding that the nitrogen cavitation approach generates 

the pure plasma membrane-formed vesicles without cellular organelles (such as ER, 

lysosomes, mitochondria). These studies show that nitrogen cavitation is a new method to 

produce EVs from a wide range of cell lines and it is ready to scale up their production.

2.2.2. Extrusion via Porous Membrane—Extrusion is a process that allows soft 

materials to maneuver through a porous membrane to make nanoparticles such as liposomes, 

emulsion nanoparticles, nanofibers, and nanotubes[52, 53]. Jang et al. [54] used a serial 

porous membrane with the pore sizes of 10 to 1000 nm to break monocytes to form 

nanoscale vesicles, which were loaded with chemotherapeutics. The results showed that EVs 

made by the extrusion approach were similar to naturally secreted exosomes. Interestingly, 

the yield of EVs using extrusion was 100 times higher than that using culture secretion. 

Although they showed high production rate of EVs, the authors did not analyze the 

biological compositions of EVs produced by extrusion method. The extrusion approach 

cannot eliminate intracellular components, which can cause toxicity when these EVs are 

used in clinic.

2.2.3. Sonication—Sonication is a commonly used tool for the preparation of liposomes 

[55], and it was also exploited for the EV preparation. Thamphiwatana et al.[56] developed 

macrophage derived biomimetic nanoparticles using the sonication approach. In their 

studies, the mouse macrophages were disrupted under sonication to form nanosized vesicles. 

The nanovesicles showed the improved treatment of sepsis in the mouse model.

2.3. EVs Produced by Chemical Methods

2.3.1. High pH Solution Induced Formation of EVs—Chemical agents may be used 

to peel the cell membrane, such as alkaline solution can dissolve the cell membrane. After 

the cell membrane suspension was neutralized, the membrane components may self-

assembly to form EVs under sonication. Using the method, Go et al. [57] prepared 

extracellular vesicle–mimetic ghost nanovesicles from human U937 monocytes and the 

vesicles were loaded with dexamethasone. The authors showed that the nanovesicles had 

similar physical features when compared with naturally released EVs. Interestingly there 

was a 200‐fold increase in production of EVs compared to that using the cell culture 

method. Furthermore, they showed that the nanovesicles did not contain intracellular 

compartments, such as cytosolic proteins and nucleic acids. The nanovesicles was capable to 

mitigate OMV‐induced SIRS (systemic inflammatory response syndrome).

2.3.2. Chemically-induced Formation of EVs—Chemical agents can cause the cell 

membrane blebbing to form plasma membrane-derived vesicles. Recently, Ingato et al. [58] 
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proposed to use sulfhydryl-blocking agents to peel cell membrane and they found that this 

chemical approach can generate the EVs using DTT (dithiothreitol) and PFA 

(paraformaldehyde) in 2 h at 10 times higher than those using natural secretion in 48 h. 

Their studies showed that chemical methods could be a novel approach for the rapid and 

large-scale generation of EVs in the future. In addition, saturated fatty acid can stimulate 

renal tubular epithelial cells to allow the cells to secrete EVs[59].

2.4. Artificial Biomimetic EVs

Cell-derived EVs are promising for the next generation of nanomedicines, but it remains 

unknown whether current technologies enable EVs to move to the clinic because of limited 

cell resources and unknown immunotoxicity. Inspired with the structure of EVs, a top-down 

synthetic strategy to make EVs-like nanoparticles was proposed. In the study [60], the 

authors incorporate leukocyte plasma membrane proteins into lipid-formed nanovesicles 

(Fig. 4). Leukosomes, proteolipid vesicles, were formulated similar to that of liposomes, but 

they have the tissue targeting capability. For examples, these leukosomes preferentially 

targeted inflamed vasculature, improving the delivery of dexamethasone to inflamed tissues. 

This study may offer another option to generate EVs-like vesicles in order to help solve the 

translation barriers for EVs.

3. Purification of EVs

EVs are secreted from culture media, which make their compositions complex and 

heterogeneous. It is important to develop novel approaches to isolate EVs and concentrate 

them. Several approaches and methods have been reported, such as differential 

centrifugation, density gradient centrifugation, chemical precipitation, microbead capture 

technology, size exclusion chromatography, and membrane filtration[61]. Here, we review 

several approaches in purifying EVs.

3.1. Serial Centrifugation

After culture media containing naturally secreted EVs are collected, the differential 

centrifugation is used to eliminate dead cells, cell debris and some organelles. To obtain 

EVs, the high-speed centrifugation is used at 100 000 g to obtain a pellet of EVs. Due to the 

large centrifugation force, it is likely that pelleted EVs form a lump, which may be difficult 

to resuspend. Overall, the timing and the speed of centrifugation are critical [16].

3.2. Density Gradient Centrifugation

Density gradient centrifugation is a method in which the components of a sample are 

separated based on their density. Iwai et al. [46] performed a step gradient media comprised 

of sucrose (2.0, 1.6, 1.18 and 0.8 M), iohexol (50, 40, 30, and 20%) and iodixanol solution 

(47, 37, 28 and 18%), and subsequently the sample was centrifuged at 160,000×g for 17 h at 

4°C to isolate EVs. The results showed that this technique can produce high-quality EVs 

based on the analysis of markers of EVs using Western blots and other tools. The problem of 

this method is costly and time-consuming.
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3.3. Membrane Filtration and Size Exclusion.

Heinemann et al.[62] developed a three-step protocol to isolate exosomes from either cell 

culture media or large volumes of biofluid. This method was comprised of dead-end pre-

filtration, tangential flow filtration (TFF) and low-pressure track-etched membrane filtration. 

TFF is a pressure-driven separation process to concentrate a suspension. When the fluids 

flow across the membrane surface, the solvent and small objects pass through the membrane, 

but larger particles stay, and then they can be concentrated. The study showed that this 

method can efficiently purify exosomes and remove cell debris and other organelles. Blans 

et al. [63] successfully isolated EVs from human body fluids using the size-exclusion 

chromatography.

3.4 Other Methods:

Affinity chromatography is exploited to isolate EVs. The concept is based on the binding 

ligands highly expressed on EVs to enrich them. Several affinity methods have been 

established to isolate EVs, such as using antibodies to target membrane proteins (e.g. CD63)

[64]. The annexins can bind to phosphatidylserine on EVs [65], allowing them to be used for 

purification of EVs. Moreover, proteoglycans[16, 66] can interact with concanavalin A or 

heparin, so the coating of concanavalin A was used to isolate the EVs with the high 

expression of proteoglycans.

The precipitation[67] is an uncommon method used for the purification of EVs. EVs have 

negative charges, which allow positively charged protamine that may bind to the EVs to 

isolate them. Adding of polyethylene glycol (PEG) can induce the precipitation of EVs, thus 

this method has been used to isolate EVs. While the precipitation approaches were efficient 

to isolate EVs, it may be difficult to separate the precipitation inducers from EVs. In 

addition, magnetic nanowire[68] and microfluidic device[69] have also been developed to 

purify EVs.

In general, serial centrifugations and density gradient centrifugations may be good methods 

to purify EVs [70, 71], but the times and costs are the barrier to apply those technologies in 

the clinic. In contrast, the membrane filtration and size exclusion possess a narrow range of 

size distribution in EVs and may be likely translational. Currently, purifying EVs is a 

challenging topic in EVs, but it is the most important research area.

4. Engineering EVs

Post modifications of EVs are important for targeted drug delivery and imaging. In this 

section, we will discuss several strategies and approaches to engineer EVs for their 

biomedical applications.

4.1. Ligand-linked EVs

The process to increase circulation time and enhance the targeting of diseased tissues was to 

link targeting molecules to EVs in order to improve the properties of EVs in vivo. However, 

binding chemicals to EVs is not a good approach since this causes the change in the 

structures of EVs. EVs are made of a lipid bilayer, therefore inserting targeting ligand 
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molecules into a bilayer of EVs makes it an easy method for biofunctionalization of EVs. 

Cholesterol[53] or long chain fatty acid[72] are designed to hook targeted molecules to the 

surface of EVs. For example, Kooijmans et al.[72] demonstrated that epidermal growth 

factor receptor (EGFR) conjugated with phospholipid-polyethylene glycol (PEG) complexes 

can be incorporated into the bilayer of EVs. The results showed that these modified EVs can 

improve their circulation and the targeting capacity to tumor tissues.

4.2. Hybrid Membrane of EVs

EVs as endogenous communication systems attract strategies for improved drug delivery, 

but the loading of therapeutics and imaging agents to EVs still remains a barrier in 

exploiting EVs as drug delivery systems. Fusion of functionalized liposomes with EVs 

combines the advantages of liposomes and EVs, so-called hybrid EVs. The recent study[73] 

demonstrated this concept, and the proposed fusion strategy enables the efficient loading of 

therapeutics to EVs. Moreover, this allows EVs to merge the current mature liposome 

technology in pharmaceutical industries.

4.3. Coating of EVs to NPs

The proposition of encapsulating nanoparticles with cell-membrane-derived nanovesicles or 

EVs is to increase drug loading inside the nanovesicles, which improves the ability to target 

nanoparticle delivery systems. This strategy shows a broad range of biomedical applications 

of EVs[74]. For example, Illes et al. [75] coated Hela cell-derived exosomes to metal-

organic framework NPs by the fusion approach. Thamphiwatana et al. [56] reported a core-

shell structure comprised of poly (lactic-co-glycolic acid) (PLGA) NP as a core and EVs 

derived from mouse macrophages (cell line J774) as a shell, called Mø-NPs. The results 

showed that Mø-NPs possess antigens with the same orientation as their parent cells, which 

can act as macrophage decoys to neutralize endotoxins. Furthermore, Mø-NPs can sequester 

proinflammatory cytokines, which inhibit the progression of sepsis. Mø-NPs in a mouse 

Escherichia coli bacteremia model that shows a reduction in the proinflammatory cytokine 

levels and bacterial dissemination, thereby liberating the mouse from bacterial infections.

Other nanomaterials: gold[76], gelatin[77], silica[78], and iron oxide nanoparticles[14], are 

coated by EVs. In addition, nanogel[79], nanomotors[80] and nanosheets[78] are loaded in 

the EVs to improve nanoparticle biological properties. The studies show that coating EVs to 

nanoparticles may be a novel approach to biofunctionalizing nanoparticles in targeted drug 

delivery.

4.4. Drug-loaded EVs

Like liposomes, EVs can be loaded with therapeutics via the active or passive approaches for 

their biomedical applications [81]. Here, we categorize them into endogenous loading, 

biological, physical and chemical approaches, and summarize the current approaches to 

loading cargos in Table 1.

4.4.1. Endogenous Loading—EVs can contain many signaling molecules from donor 

cells during the cell secretion, such as proteins, RNA[95], and DNA[96]. These endogenous 

biomolecules act as bioactive cargos to transport signals to adjacent cells or in distant 
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organs. The studies show that these EVs play many roles in cell differentiation[97], 

metastasis and angiogenesis[98] and immune regulation[99]. EVs may also be utilized as 

biomarkers for diagnosis [100]. This is a spontaneous process, therefore it is difficult to 

control the loading contents and efficiency.

4.4.2 Biological Methods—With advances in biotechnology, some membrane proteins 

can be expressed in the cells, and these proteins on EVs can be used in therapies, such as 

using cell transfection techniques [8, 96]. Zhang et al. [8] reported cellular nanovesicles 

(NVs) expressed with PD-1 receptors on their membrane to enhance antitumor responses by 

disrupting PD-1/PD-L1 immune checkpoints. Furthermore, the authors loaded 1-methyl-

tryptophan, an inhibitor of indoleamine 2,3-dioxygenase, into PD-1 engineered NVs to 

synergistically enhance the anti-immunity. These nanovesicles increased CD8+ cell 

infiltration in tumor microenvironments to kill tumor cells.

Delivery of therapeutic macromolecules via EVs is a promising strategy in drug delivery 

[101–104]. For example, Kojima et al. [104] proposed a genetic device (so-called Exosomal 

transfer into cells (EXOtic) device) that can engineer the production of designer exosomes 

using cells. This device can package specific mRNA in exosomes and deliver them to the 

targeted cells. The authors designed catalase mRNA and packaged them in exosomes. In a 

Parkinson’s disease mouse model, they showed that their exosomes can attenuate 

neurotoxicity and neuroinflammation.

4.4.3. Physical Methods—Similar to that of liposomes, therapeutics can be loaded on 

the surface of EVs or in a bilayer of EVs. Energy and forces are needed to incorporate 

therapeutics in EVs. Thus, sonication[89], electroporation[86, 87], saponin treatment[88], 

and incubation at the high temperature [88] are applied to load drug cargos into EVs. For 

instance, Gao et al. [105] designed a peptide, CP05 that can specifically bind to CD63 highly 

expressed on exosomes. Using this peptide, the authors can link therapeutics to the exosomal 

surface. For example, dystrophin splice–correcting phosphorodiamidate morpholino 

oligomer (PMO, a muscle-targeting peptide) can be linked to the exosomes via CP05 to treat 

Duchenne muscular dystrophy. The study shows that design of exosomal anchor peptides 

enables effective functionalization of exosomes for drug delivery. In addition, the bilayer of 

EVs may incorporate hydrophobic molecules. Gao et al. [15] loaded the EV with 5-(p-

Fluorophenyl)-2-ureido-thiophene-3-carboxamide (TPCA-1) an anti-inflammatory drug, 

which resulted with a loading of 2% efficiency.

4.4.4. Chemical Methods—Chemical conjugation is a promising approach to modify 

EVs for therapeutic loading. Wang M. et al. [84] proposed a general strategy to conjugate 

chemicals to proteins on EVs. In this study they conjugated azides to newly synthesized 

proteins or glycan/glycoproteins on exosomes during the formation of exosomes. Through a 

bioorthogonal click chemistry, the azides link a wide range of drugs and proteins. This 

strategy provides a new platform for chemically remodeling EVs.

It is challenging to load hydrophilic drugs inside EVs since the membrane is the barrier for 

their membrane permeability. Gao [16] proposed a remote loading of hydrophilic drugs 

based on the pH gradient between inside and outside of EVs. In this study, they prepared 
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EVs in the alkaline buffer to produce an inside and outside pH gradient. A weak acid drug 

(piceatannol used for anti-inflammation therapy) can penetrate the membrane of EVs 

allowing an accumulation inside the EVs. This approach resulted in a loaded piceatannol 

inside EVs, which increased the efficiency 3 times more compared to that of a method 

without the use of a pH gradient.

Engineering EVs is critical to their biomedical applications. For example, encapsulating 

drug-loaded polymer nanoparticles inside EVs is a novel method in order to increase 

therapies of EVs. Liposomes have been used in the clinic. Combining liposomes and EVs 

may enable the rapid translation of EVs technologies in the clinic using hybrid membrane 

structures of liposome/EVs. The remotely loading of hydrophilic therapeutics inside EVs 

based on the pH gradient is a new direction to encapsulate a wide range of clinical drugs 

inside EVs, and it may be ready to translate them in the clinic. Together, post-engineering of 

EVs will increase the capability of EVs in drug loading and targeted delivery, thus enabling 

them in biomedical applications.

5. Biomedical Applications

Since EVs possess many unique characteristics for targeted drug delivery and diagnosis, 

they have shown a wide range of biomedical applications. Here, we select several diseases 

that have been intensively studied, such as cancer and infectious diseases. Table 2 is the 

summary of current disease models that were treated with the use of EVs.

5.1. Anti-inflammation Therapies

Inflammation is the immune response to bacterial and viral infections, and tissue injury to 

protect the body homeostasis[113]. Sometimes, overreactive inflammation responses can 

lead to many acute and chronic inflammatory diseases [114, 115]. The vascular 

inflammation is one of features of inflammation responses that activate white blood cells to 

migrate to infectious sites. For example, endothelium lining the lumen of blood vessels 

upregulates intercellular adhesion molecule 1 (ICAM-1) to bind to neutrophils (a type of 

white blood cells) via integrin β2 on the neutrophils[116–119]. Inspired with the unique 

interaction between cells during inflammation response, Gao et al. [15] designed 

nanovesicles derived from activated neutrophils using nitrogen cavitation. In addition, 

another study by the same group[16] show that these nanovesicles are similar to EVs in size 

and structure, and the yield of EVs produced using nitrogen cavitation was much higher. 

They also demonstrated that these EVs made from neutrophils can specifically target 

inflamed lung vasculature and mitigate inflammation response to prevent acute lung injury. 

The studies reveal a new strategy to develop targeted EVs in order to treat inflammatory 

diseases.

5.2. Cancer Therapies

EVs have been applied to treat cancer. For example, Zhang et al.[94] reported a therapeutic 

usage of red blood cell (RBC) membrane formed EVs on a 4T1 breast cancer model. After 

remote-loading of doxorubicin (Dox), the authors achieved a significant therapeutic efficacy 

where 33% of the mice receiving nanoparticles had complete regressions and remained 
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tumor-free. Additionally, the application of PD-1-integrated biomimetic EVs[8] resulted in 

the similar outcomes. In this study, engineered biomimetic EVs derived from PD-1 

transfected HEK293 cells presented PD-1 receptors on their membrane, with enhanced 

antitumor responses by disrupting the PD-1/PD-L1 immune inhibitory axis. The EVs 

exhibited a long circulation and could bind to the PD-L1 on melanoma cancer cells.

5.3. Infectious Diseases

Inspired by the natural pathogen–host interactions and adhesion, Angsantikul et al. [112] 

reported the development of a novel targeted nanotherapeutic for the treatment of 

Helicobacter pylori infection. They collected plasma membrane of gastric epithelial cells 

(e.g., AGS cells) to obtain EVs and loaded antibiotic-encapsulated polymeric NPs to EVs. 

The biomimetic nanoparticles (denoted AGS-NPs) possessed the same surface antigens from 

the AGS cells allowing them to interact with H. pylori bacteria. The results showed that the 

complex EVs can effectively treat infections from Helicobacter pylori, demonstrating the 

potential to develop targeted drug delivery to treat a wide range of pathogens.

5.4. Neurological Diseases

Neurological diseases are the huge burden due to ageing, and it is needed to develop novel 

technologies to treat them, such as stroke and Parkinson’s disease. Ischemic stroke is an 

acute and severe brain disease, leading to disability and death[120, 121]. In clinic, 

reperfusion of blood to ischemic brain is the only option to reverse brain damage after a 

stroke. Reperfusion processes cause an inflammation response that further damages the 

brain. During the reperfusion, brain endothelium strongly interacts with neutrophils to cause 

brain injury. Dong et al. [108] proposed an idea that neutrophil membrane-derived 

nanovesicles may deliver anti-inflammation agent (such as Resolvin D2 (RvD2)) to inflamed 

cerebral endothelium to prevent ischemia/reperfusion to lead to the brain damage (Fig. 5a). 

In this study, they demonstrated that nanovesicles can specifically bind to blood vessel in the 

ischemic brain using intravital microscopy (Fig. 5b). When they loaded RvD2 to 

nanovesicles and delivered them to a mouse that had a stroke, they observed that 

nanovesicles dramatically decreased the inflammation response (such as TNF-α) as shown 

in Fig. 5c. In addition, the histology of the brain (Fig. 5d) showed a reduction in the infarct 

volume after the mice were treated with RvD2-loaded nanovesicles. This study offers a new 

strategy in the inhibition of neuroinflammation using neutrophil-derived nanovesicles for 

stroke therapies.

6. Challenges and Perspectives in Their Translation

6.1. Scalability

While a substantial progress on EVs has been seen in the past decades, there are several 

barriers in translating EVs-based therapies. First, it is needed to develop reproducible and 

scalable approaches to generate clinic-grade EVs [122]. In order to improve the generation 

of natural EV, culture conditions such as hypoxia[40], increased calcium concentrations in 

medium[123, 124] and serum starvation [38] should be analyze because these may increase 

the production of EVs. In addition, the continuous culture system has shown the high yield 

of EVs by 40 times compared to traditional culture flask settings [41]. Gao et al. [16] have 
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developed a nitrogen cavitation approach to generate neutrophil-derived cell membrane 

nanovesicles, which resulted in the reproduction of EVs that were 16-fold higher than 

naturally secreted EVs[16]. In addition, Gho et al. [54, 57] utilized extrusion and sonication 

to achieve the highest production of EVs by 100–200 folds compared to naturally secreted 

EVs. However, the authors did not study the compositions of their EVs, and the purity of 

EVs was unknown. The self-assembly of phospholipid and membrane proteins can form 

EVs-like nanoparticles[60]. This self-assembly process cannot warrant the surface 

orientation of membrane proteins and isolated membrane proteins may not maintain 

conformations after they leave the cell membrane. To meet the basic requirements of 

biopharmaceuticals (such as repeatability, efficiency and costs), the bioreactor system and 

nitrogen cavitation approach may hold the most promising perspectives in the 

commercialization of EVs.

6.2. Stability

Another problem is the instability of membrane proteins in EVs. Since most proteins are 

very sensitive to the environments (such as pH, temperature and buffers), the conditions of 

generation of EVs and their drug loading are critical [125, 126]. Unlike liposomes, some 

buffers aggregate EVs, which can be avoided if chosen an appropriate buffer for either 

generation of EVs or loading of drugs to EVs. The long-term storage of EVs is a factor for 

their biomedical applications because proteins on EVs may lose their functions [127].

6.3. Targeting Ability

The third issue in clinical applications is the targeting ability of EVs. Native EVs generally 

possess the capacity to target certain tissues, such as the brain and muscle etc. In the 

work[15, 16], the authors differentiated the HL60 cells to upregulate the expression of 

integrin β2, a ligand of activated endothelium, which increase the targeting ability of EVs 

that are derived from HL-60 cells. To increase tissue targeting, EVs can be modified using 

physical, chemical and biological methods as discussed in this manuscript. It is not clear 

whether these modifications can cause off-targeting and increased clearance.

6.4 Heterogeneous Compositions of EVs

The current most studies on EVs focused on developing approaches to generate EVs and 

their new biomedical applications, but few studies investigated how the compositions and 

structures of EVs affect their applications in clinic. No matter using biological, chemical or 

physical methods to produce EV, the intracellular components from their parent cells may 

remain in the EVs. Do they cause immunotoxicity? How do they affect the functions of EVs 

in terms of therapies? The recent studies [15, 16] tried to address this gap in the field of EVs 

by comparing the protein profiles of naturally secreted EVs and nitrogen cavitated EVs. The 

finding shows that nitrogen cavitation approach can dramatically remove intracellular 

components (such as DNA and organelles), and the EVs maintain all surface proteins of 

their parent cells. It is imperative to develop systemic approaches to study the biological 

compositions of EVs that are made by using physical, chemical and biological methods.
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7. Conclusion

The research on EVs in the past decades shows that unique features of EVs are transforming 

the traditional nanoparticle-based drug delivery. EVs have supreme biocompatibility, long 

circulation times, low immunogenicity, and most importantly parent cell features that make 

them novel drug carriers. Different to the conventional drug carriers, EVs act similar to that 

of bioactive drugs. These features show EVs may be novel drug carriers and therapeutics.

The three major strategies to the generation of EVs are biological methods, physical 

methods and chemical methods. To scale up and reproduce EVs, nitrogen cavitation, 

sonication and extrusion approaches have demonstrated the potential in EVs translation. To 

increase therapeutic outcomes, many post-engineered EV approaches have been developed. 

Remotely loading of therapeutics inside EVs, genetic modifications of EVs and hybrid 

membrane components of EVs have demonstrated great opportunities to improve therapeutic 

outcomes in a wide range of diseases, such as cancer, infectious diseases and neurological 

diseases.

Although EVs have shown the translational potential to develop personalized and precision 

nanomedicines, the reproducibility and scalability of production of EVs should be 

addressed. In particular, it is required to develop innovative strategies for the production of 

EVs. In addition, the rigorous proteomics analysis should be developed to determine 

biological compositions of EVs, and different approaches to produce EVs will be analyzed 

to address whether the compositions of EVs are dependent on EVs production methods. 

Investigating the trafficking of EVs and their biodistribution is critical to understand how 

interactions of EVs conduct within the body. To do so, it is needed to develop advanced 

imaging systems, such as intravital microscopy and in vivo imaging[23, 118, 128].

In summary, this review summarizes the current status on strategies and approaches to 

produce EVs, and their biomedical applications. With advances in nanotechnology and 

immunology, genetically engineering EVs may be a new frontier in developing therapeutics 

tailored to individuals and disease stages, further improving treatments of cancer and 

inflammatory diseases.
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Abbreviations:

EVs extracellular vesicles

HUVECs human umbilical vein endothelial cells

3D three-dimension

TFF tangential flow filtration

DNA Deoxyribonucleic acid
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RNA ribonucleic acid

siRNA small interfering RNA

NPs nanoparticles

PD-1 Programmed cell death protein 1

PD-L1 Programmed death-ligand 1

MSCs mesenchymal stem cells

HIV human immunodeficiency virus

PMO phosphorodiamidate morpholino oligomer

HEK Human embryonic kidney

Dox Doxorubicin

ICAM-1 Intercellular adhesion molecule 1

RBC Red blood cell

DTT dithiothreitol

PFA paraformaldehyde

EBV Epstein-Barr virus

OMV outer membrane vesicle

SIRS systemic inflammatory response syndrome

DPPC 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine

DSPC 1, 2-distearoyl-sn-glycero-3-phosphocholine

DOPC 1, 2-dioleoyl-sn-glycero-3-phosphocholine

PEG polyethylene glycol
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Key nouns:

Natural EVs are naturally secreted from cells

Artificial EVs are self-assembled by membrane lipids and proteins.

Engineered EVs are modification of cells or EVs for biomedical applications.
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Fig. 1. 
Schematic illustration of approaches and technologies used in the generation of EVs, their 

purification and their bioengineering for a wide range of biomedical applications. In 

addition, artificial EVs are self-assembled using phospholipids and cell membrane proteins.
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Fig. 2. 
Bioreactor system for improved production of EVs. (a) Schematic of a hollow fiber 

bioreactor system comprised of a pump, a medium reservoir and a cell culture cartridge 

cylinder. (b) HEK293 cells cultured in a hollow fiber bioreactor produced EVs with 5 fold 

higher than using tissue culture flasks. Data presented as mean ± SEM and statistical 

significance was compared by ANOVA. (c) Western blot analysis showed 7.6-fold and 2.1-

fold increase in EV-associated markers of EVs made by hollow-fiber bioreactor compared to 

that using tissue culture flask. CD63 and Alix are markers for EVs. Adapted from Watson et 

al. 2016 [41].
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Fig. 3. 
Generation of EVs by nitrogen cavitation. (a) Scheme of a preparation process of EVs by 

nitrogen cavitation and their purification. Adapted from Gao et al. 2016 [15]. (b) Yield of 

EVs generated by nitrogen cavitation (NC-EVs) and by natural secretion (NS-EVs), and 

quantified by the amount of proteins in EVs. Adapted from Gao et al. 2017 [16].
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Fig. 4. 
Leukosome synthesis and formulation. (a) Extraction of proteolipid material from murine 

J774 macrophages. (b) Protein enrichment of the phospholipid film. (c) Vesicular 

formulation of leukosomes. DPPC, 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine; DSPC, 1, 

2-distearoyl-sn-glycero-3-phosphocholine; DOPC, 1, 2-dioleoyl-sn-glycero-3-

phosphocholine; CHOL, cholesterol. Adapted from Molinaro et al. 2016 [60].
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Fig. 5. 
Neutrophil membrane-derived nanovesicles target inflamed cerebral endothelium to treat 

ischemic/reperfusion injury. (a) Scheme of the preparation process and the administration of 

nanovesicles into animals. (b) Intravital images of fluorescently labeled-nanovesicles (red) 

binding to ischemic brain endothelium (pink) instead of normal brain endothelium. (c) 

Resolvin D2 loaded-nanovesicles (RvD2-EVs) significantly reduced the TNF-α level in 

brain tissue, indicating that they reduced the local inflammation. (d) Brain sections histology 

after several treatments. RvD2-EVs significantly improved the infarct volume on mice. 

*p<0.05 and ***p<0.001. Reprinted with permission from [108]. Copyright (2019) 

American Chemical Society.
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Table 1

Strategies for loading cargos and targeted ligands in EVs

Loading stages No. Method Cargo Ref.

Source cells 1 Condition induction Membrane ligands [33, 82]

2 Transfection Membrane ligand, siRNA [8, 83]

3 Donor cell metabolism Link molecule, siRNA [84, 85]

EVs 1 Electroporation DNA, siRNA, chemical [86–88]

2 Sonication Chemical, siRNA [89, 90]

3 Incubation Chemical [91]

4 Freeze and thaw cycles Enzyme [92]

5 Saponin treatment Chemical [88]

6 Extrusion Chemical [88]

7 Fusion Macromolecule, chemical [73]

8 Lyophilization Chemical [88]

9 Chemical conjugation Link molecule, antibody, enzyme, diagnostic agent [84]

10 Dialysis Chemical [88]

11 Remote loading Chemical [16, 93, 94]
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Table 2

Summary of Biomedical Applications of EVs

Types Source Target Diseases Ref.

Natural EVs Monocyte/macrophage Neuron Parkinson’s disease [92]

Monocyte/macrophage Cancer cell Tumor [54, 89]

HEK293 -HetIL-15 Cancer cell Tumor [41]

MSCs Endothelium Lung inflammation and injuries [106]

HEK293 -CD3-anti-EGFR Cancer and T cells Tumor [13]

Biomimetic EV

Neutrophil Endothelium Inflammation, sepsis, arthritis, ischemia/
reperfusion

[16, 91, 107, 108]

Neutrophil Cancer cell Tumor, Metastasis [109]

Monocyte/macrophage Endothelium Inflammation, sepsis [57, 78]

Monocyte/macrophage Endotoxins, cytokines Inflammation, sepsis [56]

T cell HIV Infection [110]

Red blood cell Cancer cell Tumor [94]

Red blood cell Bacteria infection [79]

Platelet Cancer cell, bacteria Infection, tumor [93]

Platelet Macrophage Immune thrombocytopenia [111]

Platelet, Neuro cells Cancer cell Cancer [72]

Epithelial cell Bacteria infection [112]

HEK293 -PD-1 Cancer cell Tumor [8]

Artificial EVs None Endothelium inflammation [60]
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