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The present study examined the predictive values of amyloid PET,
18F-FDG PET, and nonimaging predictors (alone and in combination)
for development of Alzheimer dementia (AD) in a large population of

patients with mild cognitive impairment (MCI). Methods: The study

included 319 patients with MCI from the Alzheimer Disease Neuro-
imaging Initiative database. In a derivation dataset (n 5 159), the

following Cox proportional-hazards models were constructed, each

adjusted for age and sex: amyloid PET using 18F-florbetapir (pattern

expression score of an amyloid-β AD conversion–related pattern,
constructed by principle-components analysis); 18F-FDG PET (pat-

tern expression score of a previously defined 18F-FDG–based AD

conversion–related pattern, constructed by principle-components

analysis); nonimaging (functional activities questionnaire, apolipopro-
tein E, and mini-mental state examination score); 18F-FDG PET 1
amyloid PET; amyloid PET 1 nonimaging; 18F-FDG PET 1 nonimag-

ing; and amyloid PET 1 18F-FDG PET 1 nonimaging. In a second
step, the results of Cox regressions were applied to a validation

dataset (n 5 160) to stratify subjects according to the predicted

conversion risk. Results: On the basis of the independent validation

dataset, the 18F-FDG PET model yielded a significantly higher pre-
dictive value than the amyloid PET model. However, both were in-

ferior to the nonimaging model and were significantly improved by

the addition of nonimaging variables. The best prediction accuracy

was reached by combining 18F-FDG PET, amyloid PET, and non-
imaging variables. The combined model yielded 5-y free-of-conver-

sion rates of 100%, 64%, and 24% for the low-, medium- and high-risk

groups, respectively. Conclusion: 18F-FDG PET, amyloid PET, and

nonimaging variables represent complementary predictors of conver-
sion from MCI to AD. Especially in combination, they enable an

accurate stratification of patients according to their conversion risks,

which is of great interest for patient care and clinical trials.
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Amyloid PET using 18F-florbetapir and 18F-FDG PET are
established biomarkers of amyloid-b (Ab) pathology and neuronal
injury in Alzheimer disease, respectively (1). Both modalities
have shown variable performance when adopted to predict pro-
gression to Alzheimer dementia (AD) (2,3).
Stratifying mild cognitive impairment (MCI) subjects according

to their conversion risk is of great interest for clinical practice and
clinical trials (e.g., patient counseling, initiation of pharmacologic
and nonpharmacologic treatments, and inclusion in trials). A recent
study by our group evaluated 18F-FDG PET by voxelwise princi-
ple-components analysis (PCA) and validated a PCA-derived AD
conversion–related pattern (ADCRP) that showed high accuracy in
prediction of conversion from MCI to AD (4). This study was in
contrast to other studies (5–7). The difference in the results can be
explained by methodology (PCA vs. conventional 18F-FDG PET
analysis) or patient populations (highly selected research vs. re-
al-life clinical population (5)). Conversely, the aforementioned
studies favor amyloid PET over 18F-FDG PET for predicting conver-
sion (5,7).
In the present study, we extended our previous work by also

including amyloid PET and explored the predictive values of 18F-
FDG PET, amyloid PET, and nonimaging variables, alone and in
combination, in their ability to stratify MCI patients according to
their conversion risk. As in our previous study, we took advantage
of the large patient dataset of the Alzheimer Disease Neuroimag-
ing Initiative (ADNI) database, which enables proper validation by
independent derivation and validation datasets. For a fair comparison
of modalities and in additional to conventional volume-of-interest
analyses (yielding continuous and binary measures of amyloid load),
we also applied voxelwise PCA to the amyloid PET data to assess the
Ab-based ADCRP (Ab-ADCRP).

MATERIALS AND METHODS

Cohort

The present data were obtained from the ADNI database (Clinical-
Trials.gov identifier NCT00106899; further information on the ADNI

project is available at www.adni-info.org). The study was approved by
ADNI, and written informed consent was obtained by the ADNI from

all subjects at the baseline visit (study inclusion) and before protocol-
specific procedures were performed, according to the ADNI protocols.

Of the 544 subjects with MCI (suspected incipient Alzheimer disease
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with subjective and objective memory deficits) used in our previous

study (4), we included 319 patients for whom 18F-florbetapir PET at
the baseline visit was also available. Participants were evaluated at

baseline and at 6- to 12-mo intervals after initial evaluation for up to
10 y. The initial inclusion criteria were a diagnosis of MCI, a mini-

mental state examination (MMSE) score of at least 24 points at the
time of PET imaging, a minimal follow-up time of at least 6 mo, and

no bidirectional change of diagnosis (MCI to AD, and back to MCI)
within the follow-up time window. The subjects were dichotomized

into MCI patients who converted to AD (MCI converters) and those
who did not (MCI nonconverters).

The data were randomly split into derivation and validation datasets
(Table 1). Age, sex, MMSE, functional activities questionnaire (FAQ)

sum score, and median follow-up time did not differ significantly
between the 2 datasets (P . 0.1). As would be expected, the preva-

lence of high-risk apolipoprotein E (APOE) genotypes (3/4 and 4/4)
significantly differed between MCI converters and MCI nonconverters

in each of the datasets (P , 0.01), without evidence of any interaction
between subgroups and datasets (P . 0.1).

PET Analysis

The PET acquisition details have been described in the study

protocols of the ADNI project online. In the case of 18F-FDG PET,
dynamic 3-dimensional scans with six 5-min frames were acquired

30 min after injection of 18F-FDG. All frames were motion-corrected
to the first frame and added into a sum file. 18F-FDG PET scans were

spatially normalized to an in-house 18F-FDG PET template in Mon-
treal Neurological Institute space (8) and smoothed with an isotropic

gaussian kernel of 12 mm in full width at half maximum. We assessed
the pattern expression score (PES) of the previously validated ADCRP

as described before (4).
In the case of 18F-florbetapir PET, dynamic 3-dimensional scans with

four 5-min frames acquired 50–70 min after injection were used for
analysis (details are provided in the ADNI acquisition protocols). Indi-

vidual datasets were motion-corrected and summed to create single-

image files, followed by spatial normalization to an in-house 18F-florbetapir
PET template in Montreal Neurological Institute space, constructed of

both amyloid-positive (n 5 9) and amyloid-negative (n 5 7) control
scans from cognitively normal elderly people. Smoothing with an

isotropic gaussian kernel of 12 mm in full width at half maximum was

applied. For assessment of amyloid load with 18F-florbetapir PET, we

performed voxelwise PCA on the combined group of MCI converters
and nonconverters from the derivation dataset. To identify a significant

pattern, the best combination of the principal components that account
for maximal variability in the data was selected by a logistic regression

analysis with group (MCI converters and MCI nonconverters) as the
dependent variable and subject score as the independent variable (as

previously described (9)). The obtained Ab-ADCRP represents spatially
covariant voxels associated with the conversion to AD, with each voxel

being specifically weighted toward its relative contribution. For the
derivation and the validation datasets, PES of Ab-ADCRP was evalu-

ated by a topographic profile–rating algorithm (10).
Additionally, we calculated the SUV ratio (SUVR) in regions with

the highest b-amyloid burden in AD (Pittsburgh compound B volume-
of-interest mask taken from a previous publication (11)) using the

cerebellum as a reference region, yielding continuous SUVRs. As a
common, clinically used measure, we also defined a binary amyloid

status (0, amyloid-negative; 1, amyloid-positive) based on an SUVR
cutoff of 1.3. All analyses were implemented in an in-house pipeline

based on MATLAB (The MathWorks, Inc.) and Statistical Parametric

Mapping (SPM12) (https://www.fil.ion.ucl.ac.uk/spm/).

Statistical Analysis

For the derivation dataset, Cox proportional-hazards regressions

were calculated using the ‘‘survival’’ package (12) in R (http://www.
R-project.org/), each adjusted for age at baseline (years) and sex. As an

initial step, we compared the 3 outcome measures of amyloid PET
(PES of Ab-ADCRP, continuous SUVR, and binary amyloid status)

by Cox proportional-hazards regression and selected the most predic-
tive measure for further analyses. Subsequently, the predictive accu-

racy for conversion from MCI to AD was tested for 18F-FDG PET
(PES of ADCRP), amyloid PET (PES of Ab-ADCRP), and nonimag-

ing variables (FAQ, MMSE, and APOE e4 genotype [positive or neg-
ative for the presence of at least 1 e4 allele]) separately, both PES of

ADCRP and PES of Ab-ADCRP in combination with nonimaging

variables, and finally all combined in the following models: amyloid
PET (PES of Ab-ADCRP); 18F-FDG PET (PES of ADCRP); non-

imaging (FAQ, MMSE, and APOE); 18F-FDG PET 1 amyloid PET;
amyloid PET 1 nonimaging; 18F-FDG PET 1 nonimaging; and

amyloid PET 1 18F-FDG PET 1 nonimaging. Continuous covariates

TABLE 1
Clinical and Demographic Characteristics of Derivation and Validation Datasets

Derivation dataset (n 5 159) Validation dataset (n 5 160)

Characteristic

MCI converters

(n 5 41)

MCI nonconverters

(n 5 118)

MCI converters

(n 5 33)

MCI nonconverters

(n 5 127)

Age (y) 72 ± 7 73 ± 8 73 ± 8 73 ± 8

Sex (n)

Male 14 55 18 49

Female 27 63 16 111

Mean FAQ ± SD 2.4 ± 3.8 2.7 ± 3.7 2.3 ± 3.5 2.4 ± 3.8

Mean MMSE ± SD 27.8 ± 1.8 27.7 ± 1.8 28.1 ± 1.6 28.1 ± 1.5

APOE ε4–positive rate 78% 49% 90% 40%

Amyloid-positive rate 87% 48% 94% 52%

Mean time to conversion (mo) 41 — 37 —

Follow-up time (mo)

Median 48 47

95% confidence interval 36–51 35–52
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were standardized by dividing the individual value by 2 times the SD

of the respective variable to make the variables approximately equally
scaled for appropriate comparison. Because conventional receiver-

operating-characteristic analysis does not include time-to-event infor-
mation, Harrell concordance was used instead to evaluate the goodness

of the fit of the models.
In the validation dataset, the constructed Cox models were validated

by means of offsetting the coefficients evaluated in the derivation data-
set. For each model, the change in the Akaike information criterion

(AIC) was computed using the model with the lowest AIC (i.e., best
model) as a reference. Analysis of deviance was conducted for pairwise

comparison between models.
Finally, the prognostic index (PI) (13) for conversion from MCI to

AD was calculated for each subject using the regression coefficients
gained by the respective models on the derivation dataset. Here, the PI

is the sum of the product of the regression coefficients bi and predictor
variables xi (with i being the index for the order of predictors in the

model): PI 5 b1x1 1. . .1 bixi. The PI for each subject was calculated
separately for each model. The validation dataset was stratified into 3

equally sized risk groups based on derived PI values (roughly reflect-

ing the lowest, middle, and highest thirds of the total PI range for each
of the 6 models). Separation between risk groups within different

models was compared by Kaplan–Meier survival analysis. Interpret-
ability of risk strata was limited after 60 mo by the small number of

subjects with such long observation times. Thus, the display of the
results (but not the statistical analysis) was restricted to a follow-up

interval of 60 mo.

RESULTS

Aβ-ADCRP
Scaled subprofile model PCA analysis identified 2 significant

principal components (1 and 2) that accounted for a total of 37%
variability in the data. The logistic regression model including
these principal components yielded the highest significance and
lowest AIC compared with principal component 1 or 2 alone; there-
fore, they were linearly combined to construct the Ab-ADCRP
(Fig. 1A), which allows for a highly significant separation between

MCI converters and nonconverters (P 5 2 · 10212). The regions
with the highest positive voxel loads (elevated amyloid load) in-
clude the posterior cingulate cortex and precuneus, the mesial fron-
tal cortex, the insular region, the ventral striatum, and, to a slightly
lesser extent, the lateral frontal, temporal, and parietal cortices.
For comparison, Figure 1B displays the previously defined 18F-

FDG PET–based ADCRP (4), which showed prominent negative
voxel loads (regional hypometabolism) in MCI converters com-
pared with nonconverters in the temporoparietal cortex and in the
posterior cingulate cortex and precuneus.

Derivation Dataset

The Cox proportional-hazards regression constructed with dif-
ferent measures of amyloid load based on 18F-florbetapir PET was
penalized for multicollinearity among predictors and identified PES
of Ab-ADCRP to have a higher hazard ratio (3.1, P , 0.002) than
continuous SUVR (hazard ratio, 1.7; P 5 0.09) or binary amyloid
status (hazard ratio, 1.4; P 5 0.33). Therefore, PES of Ab-ADCRP
was used as a measure of amyloid load in all subsequent analyses.
Model characteristics and comparisons are summarized in Sup-

plemental Table 1 (supplemental materials are available at http://jnm.
snmjournals.org). Because we observed significant, although weak,
correlations between PES of ADCRP and PES of Ab-ADCRP
(r5 0.33, P, 0.001), PES of ADCRP andMMSE, FAQ, and APOE
(r 5 20.22, P 5 0.003; r 5 0.24, P 5 0.002; and r 5 0.23, P 5
0.003, respectively), and PES of Ab-ADCRP and MMSE, FAQ, and
APOE (r 5 20.22, P 5 0.005; r 5 0.28, P , 0.001; and r 5 0.47,
P , 0.001, respectively), the models were computed using the ridge
regression option to account for multicollinearity. Both the 18F-FDG
PET and the amyloid PET models significantly predicted conversion
to AD (both P , 0.001). The combined amyloid PET 1 18F-FDG
PET 1 nonimaging model showed the highest concordance (Harrell
concordance, 0.87; P , 0.001) among constructed models.

Validation Dataset

The constructed Cox models were applied to the validation
dataset (Table 2). Comparisons were done in 3 sequential steps, in

which the most accurate model of the pre-
vious step served as the basis for more com-
prehensive models in subsequent steps (age

and sex served as baseline variables). Change

in AIC (DAIC) was calculated with reference

to the model including both imaging and the

nonimaging variables because this model

yielded the lowest overall AIC (270.0).
Step 1. The 18F-FDG PET model (DAIC,

23.9) was significantly (P , 0.001) better

than the amyloid PET model (DAIC, 25.9).

However, the nonimaging model showed a

significantly lower AIC (DAIC, 19.7) than

either the 18F-FDG PET model (P , 0.005)

or the amyloid PET model (P , 0.005).
Step 2. The 18F-FDG PET 1 nonimag-

ing model (DAIC, 8.5) and the amyloid

PET 1 nonimaging model (DAIC, 8.9)

constituted significant improvements (P ,
0.001) over the nonimaging model alone,

with the former performing significantly

better than the latter (P , 0.01).
Step 3. The complementary predictive

value of the aforementioned variables is

FIGURE 1. ADCRPs of amyloid binding and glucose metabolism. (A) Aβ-ADCRP derived by

PCA on 18F-florbetapir PET data. (B) ADCRP derived by PCA on 18F-FDG PET data. Voxels with

negative region weights (coded as z score) are given in cool colors, and regions with positive

region weights are depicted in warm colors. Data on neurologic orientation (i.e., left image side

corresponds to patients’ left body side) are presented. Regions with increased amyloid load (A)

and decreased metabolism (B) show positive and negative weights, respectively, whereas rela-

tively spared regions are loaded with opposite weights due to data normalization.
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underlined by the combined amyloid PET 1 18F-FDG PET 1
nonimaging model, which yielded the lowest AIC and was signif-
icantly superior to the 18F-FDG PET 1 nonimaging model (P ,
0.001). For reasons of comprehensiveness, Table 2 also lists addi-
tional possible comparisons.

Conversion Analysis

Each of the 6 constructed models was also applied to the
validation dataset to calculate the individual PI for each
subject and model. The resulting Kaplan–Meier plots are shown
in Figure 2. Five-year free-of-conversion rates for the low-,
medium- and high-risk groups and their comparisons are sum-
marized in Table 3. The 18F-FDG PET and amyloid PET models
showed significant (P , 0.05) strata separation only for the
high-risk group and the low-risk group, respectively, whereas
the nonimaging and the combined models showed significant
separations between all 3 groups (P , 0.05) (Fig. 2). The strata
separation was slightly better for the 18F-FDG PET 1 nonimag-
ing model than for the amyloid PET 1 nonimaging model (Table
3; Fig. 2). However, the benefit of combining all the variables for
risk group stratification was actually small based on Kaplan–
Meier curves (Figs. 2E and 2F), although the amyloid PET 1
18F-FDG PET 1 nonimaging model performed significantly
better (P , 0.001) than the 18F-FDG PET 1 nonimaging model
(Table 2).

DISCUSSION

In a large cohort of subjects, 18F-FDG PET and 18F-florbetapir
PET in combination with voxel-based PCA and nonimaging var-
iables predicted conversion from MCI to AD. Interestingly, 18F-
FDG PET outperformed amyloid PET in prediction accuracy, and
the nonimaging model (including APOE, FAQ, and MMSE) was
superior to both imaging models. Still, the nonimaging model was
improved by adding amyloid data and (even more so) 18F-FDG
PET data, and the model including amyloid PET, 18F-FDG PET,
and nonimaging variables yielded the highest prediction accuracy,
underscoring their complementary value. The only single-compo-
nent model that allowed for significant separation between all

3 risk groups was the nonimaging model, whereas the best separa-
tion between risk strata was achieved by combining predictor
variables.
To improve comparability between 18F-FDG and amyloid

PET, a sophisticated method based on voxelwise PCA was ap-
plied to 18F-florbetapir PET data. The obtained network topog-
raphy is consistent with previously published typical regions of
amyloid deposition in AD (11,14), although it revealed some
regions with unexpectedly high weighting (e.g., insular region).
Interestingly, we found that the PES of Ab-ADCRP and the PES
of the 18F-FDG PET–based ADCRP showed comparably high
correlations with MMSE and FAQ in the present sample of
MCI patients. Finally, we demonstrated that prediction of con-
version based on Ab-ADCRP was superior to conventional am-
yloid PET analyses (i.e., continuous SUVR in AD-typical regions
and binary amyloid status). Taken together, this finding strongly
supports future exploration and possible clinical use of the Ab-
ADCRP.
Our finding that amyloid PET predicts development of AD is in

line with several studies (5,15,16), with Schreiber et al. (15) and
Ben Bouallègue et al. (16) contemplating an overlapping ADNI
cohort. Previous studies compared predictive values of amyloid
PET and 18F-FDG PET in smaller patient samples: Brück et al.
(17) reported similar predictive accuracies for 18F-FDG and am-
yloid PET, whereas Frings et al. (5) and Trzepacz et al. (7) report-
ed amyloid PET to be a better predictor (18F-FDG PET being not
even a significant predictor in the study of Frings et al. (5)). In the
present study, 18F-FDG PETwas slightly superior to amyloid PET in
predicting conversion, as is in line with a study by Prestia et al.
(18), who described 18F-FDG PET as the best predictor of pro-
gression from MCI to AD among various biomarkers, including
Ab42 in cerebrospinal fluid. Variable results may be explained by
different methodologies or patient populations.
The combined set of nonimaging variables more accurately

predicted the conversion from MCI to AD than either 18F-FDG
or amyloid PET. This effect was driven by the particularly high
predictive value of the FAQ (4), probably because the clinical
decision on dementia is highly influenced by impairment of activities

TABLE 2
Comparison of Cox Predictive Models: Validation Dataset

Step Model 1 DAIC model 1 Model 2 DAIC model 2 P*

1 Amyloid PET 25.9 Nonimaging 19.7 0.001

18F-FDG PET 23.9 Nonimaging 19.7 0.004

Amyloid PET 25.9 18F-FDG PET 23.9 5 · 10−4

2 Nonimaging 19.7 Amyloid PET 1 nonimaging 8.9 1 · 10−4

Nonimaging 19.7 18F-FDG PET 1 nonimaging 8.5 8 · 10−5

Amyloid PET 1 nonimaging 8.9 18F-FDG PET 1 nonimaging 8.5 0.008

18F-FDG PET 23.9 18F-FDG PET 1 amyloid PET 10.7 2 · 10−5

Amyloid PET 25.9 18F-FDG PET 1 amyloid PET 10.7 9 · 10−6

3 18F-FDG PET 1 amyloid PET 10.7 Amyloid PET 1 18F-FDG PET 1 nonimaging 0 1 · 10−4

Amyloid PET 1 nonimaging 8.9 Amyloid PET 1 18F-FDG PET 1 nonimaging 0 2 · 10−4

18F-FDG PET 1 nonimaging 8.5 Amyloid PET 1 18F-FDG PET1 nonimaging 0 4 · 10−4

*Improvement in goodness of fit from models 1 to 2 (validation dataset).

DAIC is with reference to amyloid PET 1 18F-FDG PET 1 nonimaging model that reached lowest AIC of all models (270.0).
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of daily living, which FAQ assesses. Moreover, the predictive accu-
racy of nonimaging variables was improved by adding 18F-FDG and
amyloid PET, alone or in combination, underlining their comple-
mentary value.
Part of the validation dataset of the current study (n 5 81) is a

subset of the derivation dataset (n 5 272) of our previous 18F-
FDG PET study (4), in which the ADCRP was established.

Nonetheless, exclusion of these subjects in the current validation
dataset did not relevantly change the results. In turn, and in
contrast to the validation dataset, the amyloid PET model per-
formed slightly better than the 18F-FDG PET model on the der-
ivation dataset (Supplemental Table 1), which, however, might
well be explained by the fact that the Ab-ADCRP was defined on
this dataset.

FIGURE 2. Kaplan–Meier curves of validation dataset. Risk strata using PI are based on amyloid PET model (A), 18F-FDG PET model (B), non-

imaging model (C), amyloid PET 1 nonimaging model (D), 18F-FDG PET 1 nonimaging model (E), and amyloid PET 1 18F-FDG PET 1 nonimaging

model (F).

TABLE 3
Separation of Risk Strata by Different Models in Validation Dataset

5-y free-of-conversion
rate Pairwise log-rank P

Parameter Low Medium High Medium vs. high Low vs. medium Low vs. high

Amyloid PET 98% 54% 55% 0.331 1 · 10−4 1 · 10−5

18F-FDG PET 79% 76% 45% 0.022 0.109 6 · 10−4

Nonimaging 95% 54% 40% 1 · 10−4 0.032 7 · 10−8

18F-FDG PET 1 amyloid PET 97% 70% 33% 1 · 10−4 0.008 2 · 10−8

Amyloid PET 1 nonimaging 97% 63% 39% 1 · 10−5 0.015 8 · 10−9

18F-FDG PET 1 nonimaging 100% 74% 19% 8 · 10−6 0.003 1 · 10−10

Amyloid PET 1 18F-FDG PET 1 nonimaging 100% 64% 24% 4 · 10−6 0.002 5 · 10−11
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With this large cohort of subjects with long follow-up times
(median follow-up based on inverse Kaplan–Meier method, 48 mo
[95% confidence interval, 35–52 mo]), we demonstrated the ben-
efit of combining available imaging and nonimaging informa-
tion into a single quantifiable PI of conversion for each subject.
The combination of imaging and nonimaging variables gave the
best predictive accuracy, which is similar to the study by Ben
Bouallègue et al. (16). The separation between risk groups in-
creases significantly when imaging variables (amyloid PET and,
even more, 18F-FDG PET) are combined with nonimaging variables
into a single model or when both imaging variables are combined
together.
Biomarkers of neurodegeneration derived from modalities other

than 18F-FDG PET have also been shown to predict time to con-
version from MCI to AD, especially MRI-based biomarkers (19)
and cerebrospinal fluid total tau concentration (1). In this study, no
comparison was performed against alternative neurodegenerative
markers, and further studies are needed to compare the predictive
powers of these biomarkers.
Although both 18F-FDG PET and amyloid PET were available

for each ADNI patient analyzed in the present study, such is often
not the case in clinical routine. We have shown that the combina-
tion of 18F-FDG PET and nonimaging variables is superior to the
combination of amyloid PET and nonimaging variables. Further-
more, the risk stratification was fairly comparable between the
18F-FDG PET1 nonimaging model, the 18F-FDG PET1 amyloid
PET model, and the model combining all 3 sets of variables,
although this last model performed significantly better. Aside from
lower costs and wider availability, an additional strength of 18F-
FDG PET over amyloid PET may be the detection of neurodegen-
erative causes of MCI that are not associated with brain amyloidosis
(20,21). Thus, further prospective studies on larger patient samples
are warranted to define the predictive value and cost effectiveness of
the present imaging and nonimaging variables (alone and in com-
bination) in clinical routine.

CONCLUSION

18F-FDG PET, amyloid PET, and nonimaging variables repre-
sent complementary predictors of conversion from MCI to AD.
The PES of the ADCRP (18F-FDG PET) yielded higher predictive
accuracy than the PES of Ab-ADCRP (18F-florbetapir PET). The
combination of imaging and nonimaging variables enables accu-
rate stratification of patients according to their conversion risk,
which is of great interest for clinical practice and clinical trials.
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KEY POINTS

QUESTION: What are the predictive values of amyloid PET

with 18F-florbetapir, 18F-FDG PET, and nonimaging predictors

(APOE, FAQ, and MMSE) for development of AD in patients

with MCI?

PERTINENT FINDINGS: In a large sample of patients with MCI

(n5 319 from ADNI, split into a derivation and a validation dataset)

and ADCRPs identified by PCA, we demonstrated that 18F-FDG

PET, amyloid PET, and nonimaging variables represent comple-

mentary predictors of conversion from MCI to AD. 18F-FDG PET

yielded higher predictive accuracy than amyloid PET (each alone

and in combination with nonimaging variables). Using a PI and

Kaplan–Meier analyses, we found that risk group separation was

slightly better for the 18F-FDG PET 1 nonimaging model than for

the amyloid PET 1 nonimaging model. The additional benefit of

combining all the variables for risk group stratification was actually

small, although the combination of all variables performed signif-

icantly better than the 18F-FDG PET 1 nonimaging model.

IMPLICATIONS FOR PATIENT CARE: PCA analyses of 18F-FDG

and amyloid PET data and nonimaging variables represent com-

plementary predictors for stratifying MCI subjects according to

their conversion risk, which is of great interest for clinical practice

and clinical trials (e.g., patient counseling, initiation of pharma-

cologic and nonpharmacologic treatments, and inclusion in

trials).
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