Skip to main content
. 2020 May 5;128:109041. doi: 10.1016/j.ejrad.2020.109041

Table 2.

The performance of the single-view model and multi-view fusion model.

Dataset Model AUC* Accuracy* Sensitivity* Specificity* P value
Training set Single-view 0.767
(0.718 - 0.816)
0.686
(0.685 - 0.687)
0.663
(0.609 - 0.717)
0.752
(0.668 - 0.873)
< 0.001
Multi-view 0.905
(0.871 - 0.939)
0.833
(0.832 - 0.834)
0.823
(0.780 - 0.867)
0.861
(0.794 - 0.929)
Validation set Single-view 0.642
(0.465 - 0.820)
0.640
(0.631 - 0.649)
0.676
(0.525 - 0.827)
0.538
(0.267 - 0.809)
0.423
Multi-view 0.732
(0.569 - 0.895)
0.700
(0.692 - 0.708)
0.730
(0.587 - 0.873)
0.615
(0.351 - 0.880)
Testing set Single-view 0.634
(0.469 - 0.799)
0.620
(0.611 - 0.629)
0.622
(0.465 - 0.778)
0.615
(0.351 - 0.880)
0.08
Multi-view 0.819
(0.673 - 0.965)
0.760
(0.753 - 0.767)
0.811
(0.685 - 0.937)
0.615
(0.351 - 0.880)

Note: Delong test is used to test the differences between the AUC of single-view model and multi-view model.

*

Quantitative data were presented as value (95% confidence interval).