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Prediction of the Mortality Risk 
in Peritoneal Dialysis Patients 
using Machine Learning Models: A 
Nation-wide Prospective Cohort in 
Korea
Junhyug Noh1,10, Kyung Don Yoo   2,10, Wonho Bae3, Jong Soo Lee2, Kangil Kim   4,  
Jang-Hee Cho5, Hajeong Lee6, Dong Ki Kim   6,7, Chun Soo Lim   7,8, Shin-Wook Kang9,  
Yong-Lim Kim5, Yon Su Kim6,7, Gunhee Kim   1 ✉ & Jung Pyo Lee   7,8 ✉

Herein, we aim to assess mortality risk prediction in peritoneal dialysis patients using machine-learning 
algorithms for proper prognosis prediction. A total of 1,730 peritoneal dialysis patients in the CRC for 
ESRD prospective cohort from 2008 to 2014 were enrolled in this study. Classification algorithms were 
used for prediction of N-year mortality including neural network. The survival hazard ratio was presented 
by machine-learning algorithms using survival statistics and was compared to conventional algorithms. A 
survival-tree algorithm presented the most accurate prediction model and outperformed a conventional 
method such as Cox regression (concordance index 0.769 vs 0.745). Among various survival decision-tree 
models, the modified Charlson Comorbidity index (mCCI) was selected as the best predictor of mortality. 
If peritoneal dialysis patients with high mCCI (>4) were aged ≥70.5 years old, the survival hazard ratio 
was predicted as 4.61 compared to the overall study population. Among the various algorithm using 
longitudinal data, the AUC value of logistic regression was augmented at 0.804. In addition, the deep neural 
network significantly improved performance to 0.841. We propose machine learning-based final model, 
mCCI and age were interrelated as notable risk factors for mortality in Korean peritoneal dialysis patients.

The prevalence of dialysis was calculated as 296 per million people (pmp), and that of renal replacement therapy 
(RRT) was assumed to be 709 pmp worldwide in 20101; moreover, the incidence of end-stage renal disease (ESRD) is 
increasing steadily. Peritoneal dialysis (PD), a well-established RRT modality for patients with ESRD, varies greatly 
from country to country2. The prevalence of PD has been influenced by national policies of reimbursement, and 
there are differences in prevalence rates between countries3. Despite its clinical advantages, PD has been declining 
globally3, including in the Republic of Korea, where the proportion of PD decreased from 15% in 1990 to 7% in 
20164. PD versus hemodialysis (HD) has traditionally been of major benefit regarding residual renal function5–7, and 
recent studies showed that cognitive dysfunction improved relative to HD8. In addition, recent studies attempted 
remote monitoring with automated PD for home dialysis9. Even though it has many advantages, PD use has been 
limited in elderly debilitated patients and in those with comorbid diseases. To achieve the benefits of PD, it is neces-
sary to accurately upgrade predictive risk factors for hard outcomes in PD patients.
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Artificial intelligence algorithms in ESRD patients for predicting prognosis have been designed mainly 
to understand allograft outcomes in kidney transplant recipients10–13, because the immunologic and 
non-epidemiologic risks of renal transplant patients are complicated and affect prognosis14. Initially, attempts 
were made to predict early death in dialysis patients using a scoring system15. Subsequently, the number of studies 
for dialysis patients increased with the development of forecasting algorithms16,17. Most attempts were made to 
predict treatment responses to erythropoietin (EPO), an agent used to treat renal anemia in HD patients18, and 
these efforts were supported in multinational studies19. The reasons suggested were that EPO is relatively uniform 
in its capacity, treatment guidelines are clear-cut, and the artificial intelligence algorithm is easy to apply.

However, there is little use of artificial intelligence for diagnostic, therapeutic, and prognostic purposes in 
PD. In a recent report, three different machine-learning models, support vector machine (SVM), random forest 
(RF), and single-hidden-layer artificial neural network (ANN), were used to find immunologic biomarkers and 
report outperforming results20. Further, studies published in the Republic of Korea attempted to improve the 
discrimination index by using the modified Charlson-comorbidity index (mCCI) in incident PD patients21. In a 
later study, recalibration of mCCI was validated in incident PD patients and showed a different prognostic factor 
than in HD patients22. Therefore, in our study, we propose a novel prediction approach to PD patients’ survival, 
based on machine-learning techniques using nationwide prospective observational data for the augmentation 
of treatment strategies for PD patients in the Republic of Korea. In this study, we tried to demonstrate a novel 
data-driven approach using survival statistics to predict mortality.

Results
Baseline characteristics.  Attributes used for modeling were presented according to mortality in PD 
patients (Table 1). Of the total 5223 dialysis patients, final analysis included 1,730 PD patients. A total of 343 
patients (19.8%) died during the mean observation period of 30.18 ± 18.25 months (Fig. 1). The mean age was 
62.3 ± 10.8 years for the non-survivor group and 50.3 ± 11.8 years for the survivor group (p < 0.001). Male 
patients in the non-survivor group were 63.3% (N = 217), and 55.2% of patients started dialysis due to diabetes 
(Table 1). Patients in the non-survivor versus survivor group had a significantly greater history of cardiovascular 
disease, diabetes, and increased mCCI scores. There were no differences between groups in body mass index 
(BMI), systolic blood pressure (SBP), and use of renin-angiotensin-aldosterone system blockade. Regarding lab-
oratory findings at dialysis initiation, blood urea nitrogen (BUN), creatinine, phosphorus, and uric acid concen-
trations were all significantly lower in non-survivors than survivors (Table 1). Tables S1 and S2 presented the 
detailed protocol for missing data and follow-up patients’ data in online supplemental material.

Results of a conventional algorithm for predicting 5-year patients’ survival.  In this study, we 
presented the results chosen for model parameters, including imputation method, weighting methods, validation 
method and ratio, test-set size, training and test performance of the test set, and validation of the mixed dataset 
(Fig. 2). The performance of the machine-learning algorithm for classification is compared in Table 2, Table S3, 
and S4, according to test performance using the area under the curve (AUC) with different settings. These tables 
show predictive performances of the binary classification tree, derived from the dataset with the conventional 
multiple-learning method, for the expected probability of death after 5 years (%).

Figure 3 presents findings from the clinical decision model for the probability of death. From a range attrib-
ute of an existing decision-tree model, mCCI in the first node was the most important risk factor for mortality 
in PD patients. This revealed that the 5-year estimated mortality rate was only 10.5%, if mCCI was <2 and was 
used in preference to age at dialysis initiation and various other risk factors. Age at the start of PD was chosen 
as the next node. If PD was started at 56.5 years, the 5-year mortality rate was expected to be 37.5% if starting 
creatinine value was ≥11.35 mg/dL. If it was <11.35 mg/dL, BMI was determined to be the next node. If BMI was 
≥ 22.85 kg/m2, the 5-year mortality rate was expected to be as high as 100% (Fig. 3). If age at the start of PD was 
>56.5 years, and if SBP at the start of dialysis was ≥153 mmHg, the expected 5-year mortality rate was 63.6%. For 
SBP < 153 mmHg, hemoglobin (Hb) value affected SBP. If Hb at the start of dialysis was <12.25 mg/dL, there was 
a high expected mortality risk of 95.5%.

Results of Survival decision tree modeling for predicting patients’ survival hazard ratio.  We 
applied additional machine-learning algorithms such as SDT, bagging, random forest, and ridge and lasso mod-
els. These models used survival analysis statistics instead of Gini indexes or entropy indexes in partitioning rules 
for existing tree algorithms. Table 3, and S5 show the final results for survival model parameters as concordance 
index (C-index). The survival tree algorithm performed better than the conventional survival modeling such as 
a Cox regression (0.769 vs. 0.745) (Table 3). The predicted death risk in the SDT model was a survival risk HR, 
compared to mean survival hazards for the entire patient population.

The most important factor in our additional analysis model was mCCI (Fig. 4). Companion comorbidities 
were divided into ≤4 and >4 (Fig. 4). Mortality was lowest, at HR 0.104, for all patients, regardless of other fac-
tors, in the mCCI ≤2 group. Conversely, there was a significant correlation with age from mCCI score ≥5 points. 
When mCCI score was ≥5 points and patients were aged >70.5 years of age, the HR for death was 4.614 times 
greater than that for overall mortality.

In patients with an mCCI score ≥5 but who were aged <70.5 years, uric acid level at the start of dialysis was 
the next decision node. If uric acid was >7.75 mg/dL, the survival HR was relatively low at 0.197 (for mCCI score 
of 5–6) but increased to 1.888 (for mCCI score ≥7.0). If uric acid levels in these patients were <7.75 mg/dL, the 
next node was age 44.5 years (Fig. 4). When age was <44.5 years and mCCI score was >5, there was a low mor-
tality HR of 0.326, even when uric acid was <7.75 mg/dL at PD initiation. If patients were aged >44.5 years, the 
next node was Hb. If Hb was >9.55 g/dL, the HR of death was 1.47, but this increased to 3.182 if Hb was <9.55 g/
dL (Fig. 4).
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Variables All (N = 1730)(%)
Non-survivor 
(N = 343)(%)

Survivor 
(N = 1387)(%) P

Age (years) 52.7 ± 12.6 62.3 ± 10.8 50.3 ± 11.8 <0.001

Sex (male) 991 (57.3) 217 (63.3) 774 (55.8) 0.012

BMI (kg/m2) 23.3 ± 3.2 23.5 ± 3.2 23.2 ± 3.2 0.133

Primary renal disease <0.001

Diabetes 617 (35.7) 179 (52.2) 438 (31.6)

Hypertension 382 (22.1) 61 (17.8) 321 (23.1)

Glomerulonephritis 292 (16.9) 30 (8.7) 262 (18.9)

Cystic kidney disease 32 (1.8) 6 (1.7) 26 (1.9)

Unknown 117 (6.8) 29 (8.5) 88 (6.3)

Others 290 (16.8) 38 (11.1) 252 (18.2)

History of CVD 461 (26.6) 149 (43.4) 312 (22.5) <0.001

History of DM 712 (41.2) 209 (60.9) 503(36.3) <0.001

Dialysis duration (months) 59.1 ± 46.3 59.9 ± 46.2 58.9 ± 46.3 0.727

Smoking history (%) 151 (8.7) 18 (5.2) 133 (9.6) 0.011

Modified CCI 4.4 ± 2.0 5.9 ± 2.0 4.0 ± 1.8 <0.001

Use of RAAS blockade 963 (55.7) 191 (55.7) 772 (55.7) 0.993

Systolic BP (mmHg) 133 ± 21 132 ± 21 134 ± 21 0.134

Diastolic BP (mmHg) 79 ± 22 76 ± 13 80 ± 23 0.005

Laboratory findings at dialysis initiation

Hemoglobin (g/dL) 10.1 ± 3.4 10.3 ± 1.5 10.1 ± 3.7 0.344

BUN 64.5 ± 31.3 55.8 ± 28.7 66.5 ± 31.6 <0.001

Creatinine 8.9 ± 4.5 7.7 ± 3.9 9.1 ± 4.5 <0.001

Calcium 8.4 ± 0.9 8.5 ± 0.9 8.3 ± 1.0 0.070

Phosphorus 5.2 ± 1.6 4.7 ± 1.5 5.3 ± 1.6 <0.001

Uric acid 7.4 ± 2.0 7.0 ± 1.9 7.5 ± 2.0 <0.001

Total cholesterol 171 ± 44 168 ± 43 172 ± 44 0.195

Albumin 3.69 ± 2.19 3.67 ± 3.43 3.69 ± 1.79 0.908

Intact-PTH 290.6 ± 297.7 247.8 ± 282.1 300.8 ± 300.3 0.016

β2-microglobulin 51.2 ± 82.3 48.9 ± 70.6 51.8 ± 85.3 0.697

Table 1.  Baseline characteristics of study patients for peritoneal dialysis. CVD, cardiovascular disease; DM, 
diabetes mellitus; MCCI, modified Charlson comorbidity index; RAAS, renin-angiotensin-aldosterone system.; 
SBP, systolic blood pressure; DBP, diastolic blood pressure; BUN, blood urea nitrogen; PTH, parathyroid 
hormone. *Values are presented as n (%) for categoric variables, and mean ± standard deviation for continuous 
variables.

Figure 1.  Patients’ follow up after peritoneal dialysis initiation. (A) Number of patients at the year of follow 
up at 1 year after peritoneal dialysis (PD) initiation (B) Ratio of non-survivor and survivor at 1 year after PD 
initiation.
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Results of subgroup analysis for high risk patients.  Next, additional analysis was performed in high 
risk subgroup using conventional Cox regression to find the effect of MCCI risk on each subgroup. We divide 
MCCI to groups according to the result of Figs. 3 and 4, and the risk group was collected into three groups, Low 
group MCCI 0–2; Moderate group 3–5; High group, MCCI score 6. Table 4 presented the results of Cox regres-
sion analysis. Multivariate analysis was performed with adjustment confounding, including such as age, sex, 

Figure 2.  Model structure.

Validation 
method Validation ratio Test set size Main algorithm Hyperparameters* Test performance

One validation 0.285 95 Bagging nbagg = 10 0.6863

Cross-validation 95 Bagging nbagg = 70 0.7407

One validation 0.285 95 Decision tree cp = -1/maxdepth = 4 0.5782

Cross-validation 95 Decision tree cp = -1/maxdepth = 4 0.7222

One validation 0.285 95 Lasso lambda = 2e-04 0.8105

Cross-validation 95 Lasso lambda = 0.05 0.7979

95 Logistic regression Nothing 0.8219

One validation 0.285 95 Random forest ntree = 800 0.7258

Cross-validation 95 Random forest ntree = 1000 0.7535

One validation 0.285 95 Ridge /lambda = 2e-04 0.8105

Cross-validation 95 Ridge /lambda = 0.09 0.8164

Table 2.  Performance of the 5-year classification model without weighting methods in PD patients. Test 
ratio fix 0.3, and test performance were presented asAUC. *We add explanation of the hyperparameters in the 
supplementary material.

Figure 3.  The 5-year mortality prediction after PD initiation using a decision tree (DT) model. The 5-year 
mortality of prediction rate is reported as a percentage (%). Decision tree for the training, test and validation 
data set, after stratified sampling, with ‘Y’ indicating a positive conclusion and ‘N’ a negative conclusion.
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primary renal disease, smoking history, dialysis duration, BUN, systolic BP, BMI, Hb, calcium, history of DM, 
CVD, usage of RAAS blockade, and serum albumin. Table 4 showed that high MCCI group is an independent 
risk factor for PD patients after adjustment confoundings. Univariate analysis showed that high MCCI group have 
increased for the mortality risk in low albumin group and male gender. However, in old age group, there was no 
significant association of MCCI group and mortality risk.

Results of deep learning algorithm for predicting 5-year patients’ survival.  We finally per-
formed additional analysis to apply deep learning algorithm using longitudinal data to further enhance the 
prediction model. Mortality risk model was validated by the deep neural network algorithms, compare to con-
ventional algorithms. Our proposed deep learning model is composed of Long Short-Term Memory networks 
(LSTM) and autoencoder. LSTM was introduced to deal with time-series data and autoencoder to deal with 
missing data.

We analyze records of 1,127 prevalent and 603 incident PD patients, among which we use 26 independent 
attributes to learn this deep learning models including. The repeated measured data include 24-hour urine vol-
ume, RAAS blockade use, and dialysis efficiency (weekly KT/V). The study protocol of this study cohort was 
measured KT/V after 3 months of study enrollment, and the detailed protocol was presented in Table S2. Among 
the various conventional algorithms, the AUC value of logistic regression was the best at 0.804. Using these lon-
gitudinal data, the AUC of DT was also improved to 0.801 (Fig. 5). Our proposed deep learning model showed 
0.840 when using only LSTM, and 0.858 when combined with an autoencoder (Table 5). Figure 5 presented the 
result of DT using longitudinal data (AUC 0.801). The most important factor in our additional analysis model 
was also found as mCCI (Fig. 5). Companion comorbidities were divided into ≤6 and >6 (Fig. 5), and age at the 
start of dialysis was the next decision node.

Validation method
Validation 
ratio

Test set 
size Main algorithm Hyperparameters*

Test 
performance

Cross-validation 357 Survival tree cp = 0.016/maxdepth = 6 0.7914

One validation set 0.285 357 Survival tree cp = 0.014/maxdepth = 6 0.7693

Cross-validation 357 Survival ridge /lambda = 0.07 0.7610

One validation set 0.285 357 Survival ridge /lambda = 0.09 0.7593

Cross-validation 357 Survival random 
forest splitrule = logrank/ntree = 1000 0.7479

One validation set 0.285 357 Survival random 
forest splitrule = logrank/ntree = 800 0.7477

Cross-validation 357 Survival Lasso lambda = 0.05 0.7599

One validation set 0.285 357 Survival Lasso lambda = 0.07 0.7576

Cross-validation 357 Survival bagging nbagg = 150 0.7631

One validation set 0.285 357 Survival bagging nbagg = 10 0.7505

357 Cox regression Nothing 0.7458

Table 3.  Performance of the prediction models for mortality by survival statistics without imputation 
methods in PD patients. Test ratio fix 0.3, and test performance were presented as concordance index. *We add 
explanation of the hyperparameters in the supplementary material.

Figure 4.  The patients’ survival prediction after PD initiation using survival hazard ratio modeling. The 
relative mortality risk is presented as a survival hazard ratio (HR). The survival decision tree for the training, 
test and validation data set, after stratified sampling, with ‘Y’ indicating a positive conclusion and ‘N’ a negative 
conclusion.
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Discussion
The purpose of this study was to accurately evaluate prognosis in PD patients using a nationwide prospective 
cohort and to select a machine-learning algorithm and neural network as novel tools. To the best of our knowl-
edge, this is the first study to predict prognosis in PD patients using various machine-learning algorithms. The 
main conclusion of our study is that the presence and severity of comorbid diseases using mCCI is the first deci-
sion aid in determining future mortality risk in PD patients. Until now, studies attempting to predict prognosis 
using comorbidity index have been limited to HD patients and have lacked information about the predictive 
performance of specific score cutoffs and risk thresholds that could affect clinical applications23. According to the 
final conclusion of this study using survival statistics, the HR of death was only 0.104 for all patients with two or 
less comorbidities, regardless of age (Fig. 3). If there were two or less comorbidities at PD initiation, the predicted 
5-year risk of death was only 10.5%, according to the decision-tree analysis (Fig. 2).

Subgroup Model

Univariate Multivariate

HR 95% CI P HR 95% CI P

Overall group Low Ref. Ref.

Moderate 6.135 (3.318, 11.342) <0.001 2.700 (0.911, 7.997) 0.073

High 17.708 (9.632, 32.557) <0.001 4.618 (1.398, 15.256) 0.012

Male group Low Ref. Ref.

Moderate 3.456 (1.742, 6.905) <0.001 1.549 (0.509, 4.713) 0.441

High 9.236 (4.691, 18.186) <0.001 2.565 (0.735, 8.957) 0.140

Age ≥ 60 
group Low Ref. Ref.

Moderate 0.528 (0.073, 3.804) 0.526 0.417 (0.050, 3.496) 0.420

High 0.988 (0.138, 7.068) 0.990 1.031 (0.116, 9.138) 0.978

History of DM 
group Low Ref. Ref.

Moderate 1.506 (0.208, 10.888) 0.685 0.522 (0.067, 4.075) 0.535

High 4.063 (0.568, 29.057) 0.162 0.757 (0.096, 5.998) 0.757

Low albumin 
group (≤3.5 g/
dl)

Low Ref. Ref.

Moderate 2.792 (0.974, 8.004) 0.056 1.726 (0.468, 6.364) 0.412

High 9.182 (3.342, 25.229) <0.001 3.114 (0.744, 13.027) 0.120

Table 4.  Cox regression analysis for the mortality according to the modified Charlson comorbidity index 
(mCCI) group in the high risk patients. mCCI group; Low, mCCI score 0–2; Moderate, mCCI score 3–5; 
High, mCCI score ≥6. Multivariate analysis was done with adjustment confounding including such as age, 
sex, primary renal disease, smoking history, dialysis duration, BUN, systolic BP, BMI, Hb, Calcium, history of 
DM, CVD, usage of RAAS blockade, and serum albumin. CVD, cardiovascular disease; DM, diabetes mellitus; 
RAAS, renin-angiotensin-aldosterone system.; SBP, systolic blood pressure; DBP, diastolic blood pressure; BUN, 
blood urea nitrogen; PTH, parathyroid hormone.

Figure 5.  The 5-year mortality prediction after PD initiation using a decision tree (DT) model with repeated 
measured data. The repeated measured data include 24-hour urine volume, RAAS blockade use, and dialysis 
efficiency (weekly KT/V). The 5-year mortality of prediction rate is reported as a percentage (%). Decision tree 
for the training, test and validation data set, after stratified sampling, with ‘Y’ indicating a positive conclusion 
and ‘N’ a negative conclusion.
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PD and HD each have advantages and disadvantages, and the survival rate in PD patients is comparable to that 
in HD patients in the Republic of Korea. However, there were inconsistent results in recent studies: for example, 
one report revealed better survival with PD than HD in the early period24, whereas another documented compa-
rable mortality rates in PD and HD patients25. In elderly patients, there was no survival benefit for PD over HD 
in either study24,25. In the United States, there were at least 6,538 PD patients in 2007, and increased to 12,095 
by 201626–28; in the Republic of Korea, the corresponding at 2016 was 6,842 patients, only 7% of the total RRT 
population4,29,30. The rapid decline in PD patients in the Republic of Korea is probably due to the aging of patients 
with ESRD. PD is a patient-centered treatment, so it is difficult to attempt in elderly patients31,32 or those with a 
rapid decline in functional status33. Thus, updated prognostic tools are urgently needed and have not been tried 
in Korean patients. In particular, the absence of such prognostic tools has led to a reluctance of nephrologists 
to discuss post-dialysis prognosis with their patients34,35. Therefore, accurate prognostic tools are required, not 
only for PD patients, but also for patients with advanced chronic kidney disease and renal physicians, to facilitate 
shared-decision making.

In this study, we suggest that age itself is not the only important prognostic factor. We also suggest a cutoff in 
comorbidity index, related to age, which may help in selecting patients for PD. In a recent meta-analysis23, CCI 
was the best predictor of mortality, and CCI can be easily calculated in the clinical setting and provide meaningful 
information. CCI is a method of classifying patient complications based on ICD (International Classification of 
Diseases) diagnostic codes found in administrative data, such as hospital summary data36. Each complication 
category has associated weighting (from 1–6) based on the adjusted risk of death or resource use, and the sum of 
all weightings is each patient’s single complication score.

The CCI was originally developed in 1987. Charlson et al.36 identified 19 categories of associated diseases 
and weights for each category based on the adjusted 1-year relative risk of mortality. The sum of each weight is 
summed to yield a single equality score for each patient. However, this method has been criticized for applying 
CCI values directly to ESRD patients. Among the chronic disease indices validated in the dialysis population, CCI 
has been most widely used in statistical analyses due to its simplicity and ability to predict mortality; the original 
CCI has been validated in PD patients37,38. However, use of the original CCI has been questioned in patients with 
ESRD because of the proportion of complications within the CCI: there has been criticism that death in ESRD 
patients will not reflect the differences in effectiveness due to complications. In previous studies, a modification 
of CCI based on the proportion of relapsed complications, called mCCI, improved the predictability of mor-
tality in dialysis populations. In these studies, complications such as cerebrovascular disease, congestive heart 
failure, diabetes, and myocardial infarction were reassigned to higher proportions of patients38,39. These patterns 
were observed in studies performed between 1999 and 2001 that applied mCCI in both HD and PD patients39. 
However, this study involved HD39, and studies involving only incident patients with PD in the Republic of Korea 
had a lower risk of comorbidities associated with cardiovascular disease21. This reflects the fact that PD patients 
have lower cardiovascular risk than HD patients.

One important meaning of our study is that machine-learning has increased usefulness of the mCCI, because 
the original CCI was designed to include only combinations identified from ICD-10 codes; however, there could 
have been clinical situations where it was necessary to consider all diagnoses of items not covered by the original 
CCI36. Because the original CCI was designed for use with very specific ICD coding found in hospital abstracts 
data, the medical conditions not covered in ICD coding could be overlooked. However, in our study cohort of 
ESRD patients, mCCI was calculated more accurately by the clinical research coordinator interviewing patients 
individually and then checking comorbidities. For example, if the cause of ESRD was diabetes, two points were 
allocated, as before, but if diabetes developed after ESRD, one point was allocated and two points were assigned 
for moderate or severe renal disease.

In the final SDT model (Fig. 4), the group with mCCI score >4 had the highest mortality among patients 
aged ≥70.5 years, as we expected (HR 4.614). Interestingly, uric acid level was determined as the next decision 
node in the group with mCCI score >4 points and aged <70.5 years. In this group, patients with the higher the 
concentration of uric acid at the start of dialysis (cutoff 7.75 mg/dL) showed the lower the risk of death (HR 
0.197–1.888). In a previous study from the CRC for ESRD cohort, low uric acid level was associated with higher 

Imputation 
method Validation method

Validation 
ratio

Test set 
size Main algorithm Hyperparameters*

Test 
performance

MICE/CART One validation set 0.1 174 Decision Tree cp = −1/maxdepth = 4 0.8012

MICE/CART 174 Logistic Regression Nothing 0.8045

MICE/CART One validation set 0.1 174 Ridge /lambda = 0.02 0.8236

MICE/CART One validation set 0.1 174 Lasso lambda = 0.02 0.8193

MICE/CART One validation set 0.1 174 Bagging nbagg = 30 0.8332

MICE/CART One validation set 0.1 174 Random Forest ntree = 500 0.8381

MICE/CART One validation set 0.1 174 Neural Networks hunits = [8] 0.8066

Autoencoder One validation set 0.1 174 Neural Networks AE hunits = [16, 16]/FC 
hunits = [16] 0.8419

Autoencoder One validation set 0.1 174 Long Short-Term 
Memory networks

LSTM hunits = 16/AE hunits 
= [16, 16]/FC hunits = [16] 0.8582

Table 5.  Performance of the 5-year prediction model by deep neural network with autoencoder tree using 
repeated measured parameter. Test ratio fix 0.3, Training ratio fix 0.6, and test performance were presented as 
AUC. *We add explanation of the hyperparameters in the supplementary material. 
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mortality in Korean dialysis patients, including PD and HD patients, after adjustment for nutritional markers, 
albumin, phosphorus, BMI, and subjective global assessment40. These results are consistent with our study find-
ings. Intermediate-risk patients (mCCI score 3 or 4) were evaluated as the next decision node, according to serum 
BUN level. These patients had an increased risk of death (HR 2.517) if BUN level at the start of dialysis was low 
(cutoff 35.55 mg/dL). Taken together, our study results implicate that the mortality of PD patients might be related 
to nutritional and performance status at the dialysis initiation, irrespective of age itself.

In this process, we have not been satisfied with the performance of the model despite the analysis process, so 
we tried to strengthen the model by solving two problems after our CRC-ESRD cohort through deep learning 
algorithm i) Time-sequential longitudinal observational nature of data was attempted for overcome and per-
formed deep learning algorism such as recurrent neural network (RNN) and Long Short Term Memory networks 
(LSTM) (ii) missing data was managed by Auto encoder (AE) were used to strengthen the model (Table 5). (i) 
The first feature of longitudinal observational cohort is the presence of time-variable attributes. The changing 
of those attributes might have played an important role in predicting the target variable. The recurrent neural 
networks (RNN) is a type of artificial neural network, and the connection between units has a cyclic structure41. 
These structures allow states to be stored inside the neural network to model time-variable dynamic attributes, 
while, unlike the conventional feed-forward artificial neural network, the RNN can process sequence-type inputs 
using internal memory. Thus, the RNN can process data with time-variable characteristics. In the case of vanilla 
RNN, gradients cannot be propagated normally, either vanished or exploded if the input sequence is long during 
the training process. This is called the problem of Long-Term Dependencies (LTD)42. To solve this problem, the 
special case of RNN, Long Short Term Memory networks (LSTM), was introduced. LSTM unit consists of an 
input gate, an output gate, a forget gate and a memory cell. The process is as follows in Figure S1. Figure S1 shows 
the structure of applying RNN/LSTM to the classification model, X is a static variable, and Xt is a time-dependent 
variable. In the study protocol of our cohort as Figure S1, time-dependent variables such as 24-hour urine vol-
ume, RAAS blockade use, and dialysis efficiency (weekly KT/V) were traced at 0/3/12 months (Table S2) and 
expressed the use of them as input values of RNN/LSTM units according to time order. (ii) The second feature of 
inevitable nature for observational cohort is the existence of various type of missing data. To solve these problems, 
we used Auto-Encoder (AE), which is a neural network that simply predicts the input value as an output value. If 
we set the number of nodes in the hidden layer to less than the input layer, AE can learn the compact representa-
tion of the input. This constraint enables us to learn how to express data efficiently, and it is possible to use this 
AE to express information including missing values as shown in Figure S2. In the training process, some input 
variable values are removed randomly, and AE is trained to restore them as the original values. In the inference 
process, the encoding value of the input is utilized regardless of the existence of the missing value.

Among the various algorithms using repeated measurement data, the AUC value of logistic regression was 
increased to  0.804. Using these longitudinal data, the AUC of DT was also improved to 0.801 (Fig. 5). Our pro-
posed deep learning model showed 0.840 when using only LSTM, and 0.858 when combined with an autoencoder 
(Table 5). Finally, deep learning algorithm such as our proposed deep learning model with LSTM and autoen-
coder, especially repeated measured parameters, showed that the mortality risk of PD patients could be utilized 
more effectively.

Recently, the use of artificial intelligence in medical research has advanced rapidly43, and the feasibility of a 
machine-learning approach has increased, especially in diseases influenced by various prognostic factors, such as 
in ESRD, where application of a machine-learning approach can now be further expanded. The purpose of this 
study was to accurately predict prognosis in PD patients by focusing on comorbidities and clinical information 
at dialysis initiation. An elderly patient with high mCCI (≥5) on PD was associated with a 4.61-fold increase in 
the risk of death, while low mCCI patients (≤2) were associated with a 0.10 hazard ratio. We suggest information 
about the predictive performance of specific score cutoffs and risk thresholds that could be feasible for clinical 
PD applications. In conclusion, older adults are not unconditionally incapable of undergoing PD, and it may be 
helpful to calculate mCCI by accurately assessing comorbidities.

Materials and Methods
Data source and study patients.  We conducted our analyses with data obtained from the database in 
the Clinical Research Center for ESRD (CRC for ESRD, NCT00931970), which is the only nationwide multi-
center and prospective cohort of Korean ESRD. Data are collected from 36 general and teaching hospitals in the 
Republic of Korea. Our study included a total of 5,223 patients enrolled in the CRC for ESRD study, with 1,730 
patients undergoing PD. All patients were aged ≥18 years and had received dialysis between August 2008 and 
December 2014. We have previously described the methods used to identify dialysis patients and their enroll-
ment in the CRC for ESRD cohort24,44,45. Data were collected using a web-based platform (http://webdb.crc-esrd.
or.kr) following the methods described in previous studies24,44,45. Out of 72 attributes in total, we analyzed 1,730 
PD patient records using machine-learning algorithms with more than 50 attributes. Among these 50 attributes, 
we chose 23 independent attributes, which could affect all-cause mortality, to build our models. The attributes 
selected to build our models are specified in Table 1. The mCCI, which has been validated for dialysis patients36, 
was derived by reviewing patients’ medical histories and interviewing each patients by clinical research coordi-
nator at enrollment.

Problem statement and attributes used for modeling.  In this study, we conducted a thorough analy-
sis of different machine-learning algorithms to predict a survival rate at N years after PD initiation. In this section, 
we explain our data in detail and describe our models in Fig. 2. Finally, we provide comprehensive results of our 
experiments using different machine-learning methods. Outcome measurements for detecting mortality events, 
we had an approach to the mortality event and cause of death within 1 month after the event by the study proto-
col24 via clinical research coordinator (CRC), and re-assured by merging data from Statistics Korea with informed 
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consents every end-of-year in study observation46. In our study patients’, a total of 156 patients were dropped out 
for kidney transplantation, and censored. When estimating the survival prediction at N years later, using data 
from people who have not been followed up after N years results in distortion. We tried to overcome the disad-
vantages with various methods. The previous study of our research had presented for detailed methods for using 
survival statics13. In brief, if the patient has already experienced an event (mortality) even though the follow-up 
period is short, it is used as a positive example. If the patient’s follow-up period is short, they are used both as 
positive and negative examples and give different weights to each, so-called instance weighting method (Fig. 2).

Statistical analysis.  In the present study, continuous and categorical variables were compared between the 
groups using the t-test and chi-square test, respectively. For the multivariate Cox model, we did not include MCCI 
as an adjusting covariate because of multicollinearity issues. We performed a stratified subgroup analysis using 
Cox regression model by age (>60 years), sex, and high risk groups (history of diabetes mellitus, low albumin 
level at dialysis initiation).

For extended methods related to the treatment of missing values, modeling process with data splitting, weight-
ing method for classification, and detailed algorithm process including logistic regression, decision-tree, neural 
network, and deep learning algorithm process including recurrent neural network with autoencoder imputation, 
please refer to online supplemental data.

All of the statistical analyses were conducted using R statistical language (Version R 3.0.2, The Comprehensive 
R Archive Network: http://cran.r-project.org), and the MICE package was used as features for imputing missing 
values on continuous and categorical data. To implement the deep learning models, we use Python 3.6.5 and 
TensorFlow 1.14.0.

Ethic statement.  All patients were informed about the study, participated voluntarily, and provided written 
informed consent. Also, the institutional review board of each center approved the study. All investigators con-
ducted this study in accordance with guidelines of the 2008 Declaration of Helsinki. Seoul National University 
Hospital Institutional Review Board approved the study (IRB number H-0905–047–281). The study was 
approved by the institutional review board at each center as follows [The Catholic University of Korea, Bucheon 
St. Mary’s Hospital; The Catholic University of Korea, Incheon St. Mary’s Hospital; The Catholic University of 
Korea, Seoul St. Mary’s Hospital; The Catholic University of Korea, St. Mary’s Hospital; The Catholic University 
of Korea, St. Vincent’s Hospital; The Catholic University of Korea, Uijeongbu St. Mary’s Hospital; Cheju Halla 
General Hospital; Chonbuk National University Hospital; Chonnam National University Hospital; Chung-Ang 
University Medical Center; Chungbuk National University Hospital; Chungnam National University Hospital; 
Dong-A University Medical Center; Ehwa Womens University Medical Center; Fatima Hospital, Daegu; Gachon 
University Gil Medical Center; Inje University Pusan Paik Hospital; Kyungpook National University Hospital; 
Kwandong University College of Medicine, Myongji Hospital; National Health Insurance Corporation Ilsan 
Hospital; National Medical Center; Pusan National University Hospital; Samsung Medical Center, Seoul; Seoul 
Metropolitan Government, Seoul National University, Boramae Medical Center; Seoul National University 
Hospital; Seoul National University, Bundang Hospital; Yeungnam University Medical Center; Yonsei University, 
Severance Hospital; Yonsei University, Gangnam Severance Hospital; Ulsan University Hospital; Wonju Christian 
Hospital (in alphabetical order)].
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