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Abstract

Transcription factors have roles at focal points in signaling pathways, controlling many normal 

cellular processes such as cell growth and proliferation, metabolism, apoptosis, immune responses, 

and differentiation. Their activity is frequently deregulated in disease and targeting this class of 

proteins is a major focus of interest. However, the structural disorder and lack of binding pockets 

have made design of small molecules for transcription factors challenging. Here, we review some 

of the most recent developments for small molecule inhibitors of transcription factors emphasized 

in James Darnell’s vision 17 years ago. We also discuss the progress so far on transcription factors 

recently nominated by genome-scale loss of function screens from the cancer dependency map 

project.
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Targeting transcription factors

Transcription factors, or proteins that bind DNA to regulate transcription, are frequently 

aberrant in disease. In 2002, James Darnell argued that targeting transcription factors 

overactive in diseases such as in human cancers provides the most direct strategy for 
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therapeutics [1]. This class of proteins contains fewer possible targets and multiple signaling 

pathways can converge on the same transcription factor, which exists at focal points in 

signaling pathways [1]. However, this class of proteins is also challenging to target. These 

proteins lack enzymatic activity and unlike enzymes with active sites, they also lack obvious 

binding pockets for small molecule design. Instead, their activity depends on association 

with other proteins and these interactions occur over large surfaces that generally contact at 

multiple points and lack hydrophobic folds [2,3]. Thus, modulation of transcription factor 

activity requires disruption of DNA-protein or protein-protein interactions [4]. Additionally, 

many transcription factors exhibit conformational plasticity as they engage in a variety of 

biomolecular interactions and may be disordered when isolated from their cognate binding 

partners, presenting further challenges in developing chemical probes (Box 1) [5–7].

There are many strategies to regulate transcription with small molecules, including 

recruitment of E3 ubiquitin ligases to hijack proteasomal degradation [8,9], and targeting 

nuclear hormone receptors and upstream proteins [10]. This review will survey some of the 

most recent updates on inhibitors of transcription factors highlighted by Darnell in 2002 [1], 

with many developments focused on perturbing protein-protein interactions. Examples will 

include inhibitors of the signal transducer and activator of transcription (Stat) family, NF-

ĸB, and Myc with a focus on small molecules that most closely fit the requirements of a 

chemical probe [11]. We will conclude with emerging targets recently nominated or 

reiterated by the cancer dependency map project (DepMap) (https://depmap.org/portal), a 

combination of 501 genome-scale loss of function screens to discovery 426 dependencies in 

a wide variety of human cancer cell lines [12]. For one of the classes of marker dependency 

pairs with dependency related to elevated expression, 45% of this class included 

transcription factors. This dataset nominates a variety of transcription factors including Myb 

for which chemical probes need to be developed. Many of these transcription factors have 

lineage-specific dependencies and chemical probes will help clarify their potential as 

therapeutics targets and facilitate the trend toward personalized medicines for cancer [12] 

(see Clinician’s Corner).

Small molecule inhibitors of the Stat family

The Stat family of proteins includes seven members of cytoplasmic transcription factors that 

are activated via phosphorylation by Janus kinases (JAKs), receptors with kinase activity, or 

non-receptor kinases. Upon phosphorylation, Stat proteins dimerize through SH2 

interactions. Following importin binding, the phosphorylated Stat proteins translocate to the 

nucleus and activate transcription to regulate – in the case of Stats 1, 3 and 5 – genes 

involved with cell cycle, survival and angiogenesis (Figure 1) [1,13,14]. Stats3 and 5 are 

overactive in many human cancer cell lines as well as primary tumors and have been shown 

to demonstrate oncogene addiction [15,16].

Many small molecule inhibitors specific for Stats3 and 5 have previously been reviewed 

[13]. From fluorescence polarization screens of a 17,298 compound library for inhibition of 

binding between a peptide with a phosphotyrosine and the Stat3 SH2 domain, 144 

compounds were prioritized. From these hits, Stattic was found to inhibit translocation of 

Stat3 into the nucleus and DNA binding of phosphorylated Stat3. Treatment with Stattic (10 
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μM) also led to apoptosis specifically in Stat3-dependent breast cancer cell lines [17]. 

STA-21, which was discovered from a virtual screen, inhibited Stat3 dimerization, DNA 

binding and growth of breast cancer cell lines with overactive Stat3 activity [18]. Many other 

inhibitors – such as LLL12 [19], XZH-5 [20], cryptotanshinone [21] and analogues of 

curcumin [22–24] – inhibit the phosphorylation of Stat3 with most IC50 values in a variety 

of cancer cell lines ranging from 0.16 μM to ~15 μM. Other compounds such as CPA-1, 

CPA-7 [25], and IS3 295 [26] target at the nucleus to prevent Stat3 binding to the DNA. 

Among the most potent Stat5 inhibitors, BP-1–108 and BP-1–075 inhibited Stat5 

phosphorylation, downregulated Stat5 target genes and caused apoptosis of human leukemia 

cell lines [27].

Recently, inhibition of Stat proteins is becoming a more promising strategy. TTI-101 is a 

Stat3 inhibitor that binds the SH2 domain of Stat3 to inhibit phosphorylation, activation and 

subsequent translocation of Stat3 into the nucleus. This potential drug is currently in Phase 1 

clinical trials (NCT03195699)II. Treatment with OPB-51602, a drug tested in phase I 

clinical trials (NCT01184807)III, resulted in decreases in Stat3 phosphorylation in peripheral 

blood mononuclear cells and a partial response in two of 37 patients with solid tumors 

refractory to the current standard of care [28]. Bruceantinol, a compound that was found 

from a panel of quassinoids to inhibit DNA binding of Stat3 with an IC50 of 2.4 pM, 

suppressed phosphorylation of Stat3 and downstream Stat3-dependent gene expression 

through reverse-phase protein array and immunoblot analyses. Moreover, bruceantinol 

treatment of a mouse model bearing Stat3-expressing HCT116 xenografts resulted in 

inhibition of tumor growth without general toxicity effects [29]. Another more recent Stat3 

inhibitor, Erasin, was discovered using fluorescence polarization along with molecular 

docking models to evaluate synthesized compounds. This compound inhibited Stat3 

phosphorylation in HepG2 cells dose-dependently without significantly affecting Stat1 or 

Stat5 phosphorylation, and induced apoptosis in breast cancer cell lines and non-small cell 

lung cancer cells with overactive Stat3 without affecting cancer cells that do not 

constitutively express Stat3. Interestingly, Erasin could kill HCC-827 cells with acquired 

resistance to Erlotinib, an inhibitor of the upstream EGF receptor [30]. In support of 

Darnell’s vision, this example suggests that targeting a focal point in a signaling pathway 

may be a viable strategy to overcome resistance mechanisms that arise from targeting an 

upstream pathway.

Inhibitors of NF-ĸB activity

Similar to the Stat family of proteins, NF-ĸB transcription factors control many cellular 

processes such as cell growth, apoptosis, angiogenesis and immune responses [31,32]. In the 

canonical pathway, NF-ĸB dimers (most commonly, p65/p50 heterodimers) reside in the 

cytoplasm in association with IĸB inhibitor proteins. Upon stimulation of the pathway, these 

inhibitor proteins are phosphorylated by IĸB kinase (IKK) complexes, ubiquitinated and 

degraded. The free NF-ĸB can then translocate into the nucleus and regulate gene 

expression [33] (Figure 2). As this pathway is often constitutively active in disease, these 

IIThis study is registered with ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03195699
IIIThis study is registered with ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01184807
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proteins have been a major target of interest and over 750 inhibitors have been developed 

and reviewed, including small molecules that inhibit IKK, IĸB phosphorylation and IĸB 

degradation, as well as compounds that are more direct by inhibiting NF-ĸB translocation, 

DNA binding of NF-ĸB and transactivation [31,32].

Since these reviews were published, a variety of additional NF-ĸB inhibitors have been 

discovered. Curcumin, a compound that was found to inhibit IKK activity [34] and Stat3 

phosphorylation via direct interaction with Cys259 of Stat3 [35,36], decreased NF-ĸB 

activity and cancer stem cell populations specifically in sensitive cell lines. Gene set 

enrichment analysis suggested enrichment of histone deacetylase (HDAC) I and II targets in 

curcumin-sensitive cells compared to untreated cells, and Connectivity Map analysis further 

revealed HDAC inhibitors as the compounds with the highest connectivity scores to 

curcumin [37]. In fact, treatment with both curcumin and an HDAC inhibitor significantly 

reduced colony and sphere formation of curcumin-resistant cells, suggesting potential for 

combinatory treatments for patients with liver cancer [37]. In another study, hits from a cell-

based screen for inhibitors of Toll-like receptor 7 (TLR7) or TLR7-dependent activation of 

NF-ĸB were prioritized based on potency and their structural similarity to each other. 

Following structure activity relationship studies on these hits, Z9j was discovered as an 

analogue with an IC50 of 0.26 μM for its effect on NF-ĸB activation. This compound 

appeared to inhibit IKK as well as upstream pathways such as Src/Syk and PI3K/Akt to 

affect NF-ĸB activation, although there may be other ways that the compound indirectly 

affects NF-ĸB activity [38]. Another compound acting upstream of NF-ĸB, iNUB, was 

found from a screen of a natural compound library to inhibit the interaction between IKKγ 
and ubiquitin [39]. Treatment with this compound decreased NF-ĸB activity following 

TNFα stimulation, reduced expression of NF-ĸB target genes and selectively killed 

lymphoma cells addicted to high levels of NF-ĸB signaling at 20 μM [39]. Finally, by 

binding the minor groove of DNA at promoters of NF-ĸB target genes, Py-Im polyamide 1 

inhibits the DNA binding ability of NF-ĸB and reduces expression of target genes [40]. 

Genome-wide comparison with an established IKK inhibitor (PS1145) [41] showed similar 

effects on a group of genes along with distinct regulation of other genes, suggesting that 

small molecules modulating different points of the NF-ĸB signaling pathway can potentially 

be used to answer different biological questions [40].

Modulators of Oncogenic Myc and Obligate Partner Max

The transcription factor Myc is deregulated in most of human cancers [42]. Inhibition of 

Myc in transgenic mouse models of Myc addicted cancers [43,44] and utilization of the 

dominant negative Omomyc [45,46] suggest that Myc is a promising therapeutic target. Myc 

forms a heterodimer with its obligate partner Max to bind to DNA at E-box sequences and 

regulate transcription (Figure 3) [47,48]. Thus, many research groups have focused on 

inhibiting this Myc/Max interaction, which involves a large protein-protein interface 

stretching an area of 3,206 Å2 [3,49]. Many of the resulting compounds were thus 

discovered from mechanism-specific assays focused on this Myc/Max interaction such as 

fluorescence resonance energy transfer (FRET) assays, yeast two-hybrid assays, and DNA 

binding assays, and were found to inhibit c-Myc/Max dimerization, block Myc-dependent 

oncogenic chicken embryo fibroblast transformation, and inhibit Myc-dependent 
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transcription and cell proliferation [50,51]. These molecules – including 10058-F4 [52] and 

Mycro3 [53] - have previously been reviewed [50,51] and some of the more potent IC50s are 

in the 10 to 40 μM range in a variety of cell-based assays. A more recent addition to the 

toolbox of Myc/Max disrupters is sAJM589 [54], which was discovered using a protein-

fragment complementation assay (PCA). This compound displayed potent effects on viable 

cell levels (with an IC50 of 1.9 μM in P493–6, an engineered B cell line with a Tet off 

system for Myc), affected transcription in a manner to mimic Myc depletion, and decreased 

levels of Myc protein possibly due to increased ubiquitin-mediated degradation [54].

Despite success in cell culture experiments, many Myc/Max interaction disrupters failed to 

exhibit efficacy in vivo. To our knowledge, the first small molecule inhibiting the Myc/Max 

interaction in vivo without first pre-treating tumor cells is KJ-Pyr-9 [55]. This molecule was 

identified as the most soluble in water out of four small molecules effective in a fluorescence 

polarization screen and an assay to test Myc-induced oncogenic transformation in chicken 

embryo fibroblasts. It displayed specificity for Myc and N-Myc compared to other 

oncoproteins such as v-Src, v-Jun and an H1047R mutant of PI3K. The compound inhibited 

proliferation of P493–6 cells and downregulated Myc-regulated gene expression. It also 

suppressed the growth of an MDA-MB-231 xenograft in mice treated with daily 

intraperitoneal (IP) injections at 10 mg/kg [55]. The potential of Myc/Max disrupters to 

display in vivo efficacy was also seen with Mycro3, which promoted cancer cell apoptosis, 

decreased cell proliferation and led to tumor shrinkage of mutant KRAS-driven pancreatic 

ductal adenocarcinoma when moribund mice were dosed daily with 100 mg/kg Mycro3 [56]. 

Additionally, an example overcoming obstacles delivering Myc/Max inhibitors was observed 

with a prodrug version of 10058-F4 encapsulated in nanoparticles targeting integrin-

expressing multiple myeloma cells [57]. The use of a prodrug allowed stabilization and 

encapsulation of the compound in the hydrophobic portion of the nanoparticles and 

prevented early release during delivery. The original inhibitor 10058-F4 without 

nanoparticle-aided delivery did not improve survival of mice and this study was the first to 

suggest that Myc/Max inhibitors previously limited by poor bioavailability or 

pharmacokinetics could be effective when coupled with targeted delivery [57]. Most 

recently, MYCMI-6 was discovered as another Myc/Max disrupter from a cell-based screen 

of nearly 2000 compounds based on bimolecular fluorescence complementation [58]. The 

compound bound the basic helix-loop-helix leucine zipper domain of Myc with a Kd of 1.6 

μM as measured by surface plasmon resonance (SPR), decreased tumor cell growth with 

IC50s down to 0.5 μM and inhibited Myc-driven transcription. In a mouse model of N-Myc 

amplified neuroblastoma, daily IP injections at 20 mg/kg increased apoptosis of tumor cells, 

reduced proliferation and microvasculature, and exhibited on-target effects at the tumor [58].

In addition to forming heterodimers with Myc, Max can also form dimers with itself, Mga 

and a family of Mxd proteins [59]. An alternative strategy pioneered by Vogt’s group 

involves stabilization of the Max homodimer to attenuate Myc-driven transcription by 

reducing the amount of Max available to bind Myc [60]. By conducting virtual ligand 

screens on the full structures of Myc/Max and Max/Max dimers, this group identified three 

sites that contained 85% of the compounds predicted to bind Myc/Max and Max/Max 

dimers. The lead compound NSC13728 bound to one of these binding sites, which in 

contrast to the other two sites, allowed for specificity for Max/Max dimers over Myc/Max 
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dimers. NSC13728 was observed to stabilize the Max/Max homodimer in FRET and 

analytical ultracentrifugation experiments, and was also found to directly inhibit the 

Myc/Max interaction in co-immunoprecipitation, enzyme-linked immunosorbent assay 

(ELISA) and SPR studies. It decreased the proliferation of Q8 cells – a cell line transformed 

by v-myc, decreased Myc-mediated oncogenic transformation of chicken embryonic 

fibroblasts with an IC50 of 3 μM, and lowered Myc-mediated transcription in HEK293T 

cells [60]. Additional support of stabilizing the Max/Max homodimer as an alternative 

strategy to inhibit Myc transcriptional activity came from the discovery of KI-MS2–008 

[61]. KI-MS2–008 was discovered as a Max-binding small molecule that inhibited Myc 

transcriptional activity through small molecule microarray screens of purified recombinant 

Max and dual luciferase-based reporter assays of Myc transcriptional activity. This 

compound was observed to stabilize the Max homodimer in in vitro studies, while having no 

effect on the biophysical interaction between Myc and Max. Treatment with the compound 

led to a decrease in c-Myc protein levels in P493–6 cells, as well as global changes in the 

transcriptome with specific decreases in Myc-regulated genes, and decreases in Myc binding 

and increases in Max binding at the promoters of Myc occupied genes. At relatively low 

doses of 0.06 mg/kg and 0.24 mg/kg, treatment with KI-MS2–008 resulted in suppression of 

T-cell acute lymphoblastic leukemia and hepatocellular carcinoma in mouse models [61]. As 

this compound did not directly disrupt the Myc/Max interaction, it provides even stronger 

evidence for the alternative strategy to stabilize the Max/Max homodimer proposed by the 

Vogt lab. With the extensive network in which Max is involved, it immediately follows that 

stabilization of Max/Mxd or Max/Mga heterodimers could also offer potential strategies for 

Myc inhibition.

Myb – an acute myeloid leukemia (AML) dependency reinforced by DepMap 

data

The master regulator Myb has been found to be a dependency in acute myeloid leukemia 

(AML) [62] and more recently, Myb was identified as a top dependency specifically in AML 

from analysis of DepMap data focused on lineage-specific targeting of master transcription 

factors to mitigate off-target effects [12]. In various cancers such as AML, breast cancers 

and colon cancers, overexpression of Myb can drive proliferation of tumor cells [63–65]. 

Proof of concept experiments with peptides showed that squelching of Taf12 or disrupting 

the interaction between Myb and CREB-binding protein/p300 could perturb Myb activity 

and exhibit efficacy in mouse models of leukemia [66,67]. While there are small molecules 

that inhibit Myb activity, development of small molecule probes that directly and 

specifically inhibit Myb would provide additional value for studying Myb in cancer.

The first example of a small molecule inhibitor of Myb activity was discovered from a 

screen of 30 sesquiterpene lactones using a fluorescence-based reporter of Myb activity. The 

compound mexicanin-I significantly inhibited Myb activity as well as Myb target gene 

expression at 1–3 μM and suppressed proliferation of human leukemia cell lines without 

affecting Myb expression levels [68,69]. After additional compounds were screened using 

this Myb reporter assay, two compounds – helenalin acetate and goyazensolide – were 

observed to inhibit Myb activity with IC50 values of 0.6 to 0.7 μM [70], although helenalin 
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acetate was later found to bind and target full-length C/EBPβ [71], a cooperative 

transcription factor of Myb in myeloid cells [72]. Additionally, the triterpenoid Celastrol was 

discovered from this screen to inhibit Myb activity with an IC50 of 0.85 μM [73]. The 

compound disrupted the interaction between the transactivation domain of Myb and p300’s 

KIX domain at 1 μM, decreased Myb target gene expression, and caused differentiation of 

HL60 cells in response to Myb inhibition. In a mouse model of AML, Celastrol treatment 

extended survival of mice to 10 weeks from 4 weeks [73]. Additional studies including 

reporter assays and mammalian two-hybrid experiments revealed that Celastrol also 

inhibited C/EBPβ activity in a Myb-independent manner and disrupted the interaction 

between C/EBPβ and p300’s Taz2 domain via Cys1789 or Cys1790 [74]. Similar results 

disrupting the Myb – p300 interaction, decreasing Myb target gene expression and causing 

differentiation of HL60 cells were observed with naphthoquinones [75].

Another cell-based screen for Myb inhibitors utilized HEK293 cells with a Tet-On system 

for mutant Myb with increased transactivation activity [76]. After screening a library of 120 

natural compounds at 5 μM, two compounds – toyocamycin and teniposide – were found to 

inhibit Myb activity in a dose dependent manner with submicromolar concentrations as low 

as ~30 nM. While teniposide is a known topoisomerase II inhibitor, it also inhibited the 

activity of both mutant and wild-type Myb, and caused differentiation of a promyelocytic 

leukemia cell line in a dose-dependent manner through Myb inhibition. Teniposide 

additionally decreased Myb protein levels in AML cells via proteasome-mediated 

degradation [76].

Mebendazole was discovered to drive global transcriptional changes most resembling a c-

MYB signature out of a library of 1309 CMAP drugs [77,78]. In cell culture, it inhibited 

viability (IC50 values between 0.07 and 0.26 μM) and colony formation of human AML cell 

lines at 1.25 μM, and decreased c-Myb protein levels in AML cell lines after 6 hours of 

treatment at concentrations as low as 1.1 μM. Additional studies suggested that mebendazole 

causes c-Myb to be degraded by the proteasome likely through dissociation of c-Myb from 

the Hsp70/Hsc70 chaperone complex, generally without affecting c-MYB gene expression. 

Finally, mebendazole administered orally extended life expectancy of NSG mice 

transplanted with THP1 cells [77].

Additional transcription factor targets nominated by DepMap data

To our knowledge, there are no small molecule probes available for a number of other 

targets nominated by the dependency map project such as ESR1, TFAP2C, SPDEF, FOXA1 

[79], and LYL1. Other targets have inhibitors, but no direct chemical probes. For example, 

the glucocorticoid dexamethasone dose-dependently inhibited GATA-3 transcriptional 

activity, but did not inhibit GATA-3 binding to DNA [80]. Metformin treatment led to 

decreases in N-cadherin protein levels and sarcosphere numbers to mimic shRNA-mediated 

knockdown of SATB2 in osteosarcoma cells [81]. BET bromodomain inhibitors such as 

JQ1, MA4–022-1, and MA4–022-2 could be used to decrease expression and protein levels 

of HOXB13, resulting in suppression of tumor cell growth in castration-resistant prostate 

cancers [82]. Antisense oligonucleotide targeting of IRF4 suggest its promise as a 

therapeutic target in multiple myeloma [83], while IRF4 siRNA suggests a role for inhibiting 
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IRF4 to improve liver transplant efficiency [84]. Small molecules 10-E-09, 12-P-16 and 13-

I-18 decreased IRF4 protein levels in myeloma cells and decreased viable cell levels of a 

variety of myeloma cells compared to IRF4 negative cells [85]. As mentioned previously, 

many cancer types were dependent on specific transcription factors nominated by the 

dependency map project [12]. Indeed, there is a general trend toward higher specificity of 

dependence within specific lineages of cancer compared to other cancer types for these new 

transcription factor targets (Figure 4) [12,86]. Establishing chemical probes for these 

transcription factors may lead to drugs and strategies that have fewer side effects due to the 

specificity of targeting limited tissues.

Concluding Remarks

Overall, the toolbox of small molecule probes discovered for transcription factors originally 

suggested by Darnell – including the Stat family of transcription factors, NF-ĸB and Myc – 

has been drastically improved. Among the compounds that most closely match the 

description of a chemical probe [11], there are small molecules that selectively inhibit their 

target over structurally related proteins with IC50 values equal or more potent than single 

digit micromolar range. For many of these small molecules, however, one of the major 

shortcomings is lack of understanding for the precise mechanism of action and/or target 

identification profile in cells. For example, knowledge of how the small molecule binds the 

target protein or how selective the compound is in cellular contexts will improve 

characterization to help meet criteria of a high quality chemical probe. This additional 

information will allow scientists to study specific functions of a protein of interest, such as 

disruption of a particular protein-protein interaction rather than general changes such as an 

overall protein level decrease. As the nuanced differences of individual cancer subtypes 

become clearer, this knowledge will also be critical in predicting how patients will respond 

to a given small molecule in the clinical setting.

While this characterization of existing small molecules, and better understanding of the 

biology and models related to transcription factor targets will improve the toolkit for 

studying those transcription factors (see Outstanding Questions), DepMap has uncovered a 

number of dependencies in cancer cell lines in an unbiased manner – many of which are 

specific to certain tissue types. Moving forward, these additional transcription factors may 

become potential therapeutic targets of high interest, but many lack tools for effective 

research. This gap between the knowledge gained from genome-scale screens and 

capabilities to act on these observations has slowed scientific research [87]. In July 2018, 

scientists gathered to plan how to generate tools for understudied proteins of high interest. 

As a result, Target 2035 was established as a global federation with an ambitious vision to 

create a chemical probe and/or antibody to interrogate the entire proteome through open 

science [87]. The additional transcription factors nominated and reinforced by DepMap 

should be prioritized among the first wave of proteins for which chemical probes will be 

developed under Target 2035.
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Box 1.

Chemical Probes

Chemical probes are small molecules that specifically modulate a protein of interest to 

allow interrogation of its function in vitro, in cells and/or in animals. These compounds 

provide an orthogonal tool to CRISPR and RNAi to study the roles of proteins of interest, 

and they have advantages in their ability to rapidly and reversibly affect that protein with 

tunable dose-responsive and temporal effects [88]. With characteristics such as high 

potency, known mechanism of action, activity in cellular contexts, easy accessibility [11], 

and potential to modulate specific functions of a protein [89], chemical probes are 

valuable resources in scientific research and in some cases, have potential for 

translational applications. However, the high bar for a chemical probe combined with 

challenges in targeting transcription factors translates to a low number of high-quality 

chemical probes for this class of proteins.
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Box 2.

Clinician’s Corner

• Transcription factors are located in a central node in signaling pathways to 

regulate transcription of target genes. Many transcription factors are master 

regulators, controlling a host of different cellular processes such as cell 

growth and proliferation, metabolism, apoptosis, immune responses, and 

differentiation.

• Aberrant transcription factor activity, often due to elevated levels or 

translocation of a transcription factor, is associated with a majority of human 

cancers. In these cancers, high transcription factor levels can drive expression 

of target genes that enable tumor cells to grow rapidly and proliferate.

• Many proof of concept experiments have suggested various transcription 

factors as promising therapeutic targets. In the phenomenon of oncogene 

addiction, cancer cells can become dependent on an oncogene for survival. 

Inhibition of transcription factor activity can lead to selective killing of cancer 

cells compared to normal cells. However, targeting transcription factors has 

traditionally been challenging due to disordered structures and the necessity 

to modulate large protein-protein or protein-DNA interfaces. Rules for 

rational drug design do not exist for transcription factors and this class has 

often been regarded as “undruggable.”

• Thus, screens of large compound libraries are typically performed to discover 

small molecules with desirable properties. These screens may generally select 

compounds that inhibit transcriptional activity or viable cell counts, or may be 

designed to home in on a specific mechanism of action such as inhibition of a 

protein-protein interaction or post-translational modification. Some of the 

major challenges facing researchers are understanding mechanism of action 

and target identification. For example, screens for compounds that inhibit the 

transcription factor activity or have a specific mechanism of action in solution 

may in fact be acting through an off-target in cells.

• If the target protein of a small molecule is known, one of the most exciting 

advances toward clinical application is the development of a degrader by 

linking the small molecule to a molecule that recruits an E3 ubiquitin ligase. 

These degraders catalyze loss of target protein and the first of these degraders 

to enter clinical trials is currently in phase I (NCT03888612)I.

• The toolbox of small molecules to inhibit various transcription factors has 

been vastly expanded over the last 17 years, and as our ability to understand 

transcriptional signatures and transient protein-protein interactions improves, 

this toolbox will continue to grow. The trend in the research community has 

IThis study is registered with ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03888612
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been that we are closer and closer to making this “undruggable” class of 

proteins chemically tractable, if not druggable.
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Outstanding Questions Box

• Which biological functions of transcription factors implicated in disease 

should we consider more for targeting? Is it functionally or technically more 

desirable to target a transcription factor directly or to target other proteins that 

interact closely with the implicated transcription factor (e.g. targeting Myb 

through C/EBPβ, Myc through Max or Mxd proteins, androgen receptor 

through CDK9)?

• What factors govern sensitivity of a cell line toward a compound? 

Transcription factors function primarily via protein-protein and protein-DNA 

interactions. In some scenarios, the ratio between various proteins may be 

more indicative of the cell state than absolute protein levels. Understanding 

such factors may be critical in predicting response to an inhibitor.

• Which cell line models are most appropriate for each disease when studying 

aberrant transcription factor activity? Using representative cell lines with 

natural levels of transcription factors may be key in modeling the disease, 

rather than using engineered cell lines with overexpressed protein that are 

commonly used for research. Additionally, transcription factors may regulate 

different sets of genes depending on cellular context. Thus, use of cell lines 

that most closely mimic the target disease will be critical to translate research 

findings to therapeutic applications.

• Can current chemical probes or modulators of transcription factors be 

translated into clinically relevant drugs? Cancer cell dependence on a 

deregulated transcription factor may provide a therapeutic window in which 

treatment specifically kills cancer cells, but side effects may still be a major 

concern for small molecules targeting master regulators. Additionally, while 

current small molecule inhibitors are useful as research tools, many lack the 

pharmacological properties to translate into a drug. A handful of transcription 

factor inhibitors are currently in clinical trials, including inhibitors of protein-

protein interactions.
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Highlights

• Transcription factors have previously been nominated as targets in disease due 

to their location in focal points of signaling pathways.

• Significant progress has been made for many of these previously suggested 

transcription factors, including the STAT family, NF-ĸB and Myc, resulting in 

small molecules inhibiting transcription factor activity in cell culture and in 

some cases, in vivo.

• The cancer dependency map project uncovered many critical proteins in 

human cancers based on genome-wide loss of function screens, and 

transcription factors represent a large class of the dependencies. Among these, 

a number of transcription factors including Myb have limited or no suitable 

small molecule probes, and chemical probe research on these transcription 

factors will be a major area of interest moving forward.
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Figure 1. Inhibitors of the Stat family of transcription factors.
Upon stimulation, kinases such as JAKs phosphorylate Stat proteins, which can then 

dimerize via SH2 domains. Binding to importin allows translocation of phosphorylated Stat 

dimers into the nucleus, where they bind DNA and regulate transcription. Inhibitors of the 

Stat family of transcription factors have been found to affect various aspects of this pathway 

directly or indirectly.
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Figure 2. Modulators of NF-ĸB activity.
NF-ĸB is inactivated by association with IĸB proteins. Upon stimulation, IKK complexes 

phosphorylate IĸB proteins, leading to their degradation and allowing NF-ĸB to translocate 

to the nucleus and activate transcription. Inhibitors of NF-ĸB activity have been discovered 

to act directly or indirectly at various aspects of this pathway.
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Figure 3. Modulators of Myc-driven transcription.
A simplified diagram of Myc-driven transcription in which Myc/Max dimers generally 

activate transcription, while Max/Max homodimers attenuate Myc-driven transcription. 

While the majority of inhibitors of Myc-driven transcription disrupt the Myc/Max 

heterodimer, NSC13728 (which also has roles in affecting Myc/Max heterodimers) and KI-

MS2–008 stabilize the Max homodimer to indirectly attenuate Myc activity.
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Figure 4. 
Significance of tissue specificity for targets nominated by the dependency map project. –log 

(P values) for P values computed between cancer cell lines of a specific type and all other 

cancer cell lines using empirical Bayes statistics. Data points were selected in October 2019 

from specific types that were statistically different and more dependent than the rest of the 

cancer cell lines, using (A) CRISPR (Avana) data, (B) CRISPR (Sanger) data and (C) 

combined RNAi data from the Broad, Novartis, and Marcotte.
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