Skip to main content
. 2020 Apr 28;8:234. doi: 10.3389/fcell.2020.00234

TABLE 3.

Unsupervised clustering tools.

ID (References) Name Short description Availability Visualization Easy to install and run Cluster # flexibility Reproducible Running time (min) ARI F-measure

Unsupervised (compatible with any # of Samples)
1. Shekhar et al., 2014 ACCENSE 1. t-SNE dimensionality reduction; 2. k-means or density-based clustering GUI application n/a Yes No No 2.48* 0.28* 0.60*
2. Anchang et al., 2014 CCAST 1. identify cell population; 2. refine cluster assignment; 3. estimate a gating scheme by decision tree; 4. optimize the decision tree R package “CCAST” Decision tree Yes Yes Yes 77.32 0.71 0.72
3. Chen et al., 2016 ClusterX 1. t-SNE dimensionality reduction; 2. local density estimation; 3. peak detection; 4. clustering assigning R package “cytofkit” n/a Yes No Yes 105.14 0.25 0.22
4. Commenges et al., 2018 Cytometree Implements a binary tree algorithm for clustering R package “cytometree” Binary tree Yes No No 12.30 0.08 0.20
5. Ding et al., 2016 densityCUT 1. density estimation; 2. density refinement; 3. local-maxima based clustering; 4. hierarchical stable clustering R package “densitycut” n/a Yes No Yes 3.94 0.78 0.34
6. Becher et al., 2014 DensVM 1. t-SNE dimension reduction; 2. density-based peak calling and clustering; 3. SVM classification for less-confident cells R package “cytofkit” n/a Yes No No 43.83* 0.71* 0.69*
7. Theorell et al., 2019 DEPECHE k-means clustering R package “depecheR” n/a Yes Yes No 3.46 0.75 0.53
8. MacQueen, 1967; Qian et al., 2010 FLOCK 1. hypergrid creation; 2. identifying dense hyperregions; 3. merging neighboring dense hyperregions; 4. clustering Available at ImmPort online n/a Yes (Need to register at Galaxy) No (can adjust # of bins and density) Yes 0.30 0.73 0.65
9. Lo et al., 2009 flowClust t-mixture models with the Box-Cox transformation R package “flowClust” n/a Yes Yes Yes 4.99 0.41 0.43
10. Ye and Ho, 2018 FlowGrid density-based clustering algorithm DBSCAN with the scalability of grid-based clustering Github (Python package “FlowGrid”) n/a Yes No (can adjust # of bins and density) Yes 0.25^ 0.54 0.48
11. Aghaeepour et al., 2011 flowMeans k-means clustering R package “flowMeans” n/a Yes Yes Yes 6.01 0.64 0.63
12. Ge and Sealfon, 2012 flowPeaks 1. k-means; 2. Gaussian finite mixture to model the density function; 3. peak search and merging; 4. cluster tightening R package “flowPeaks” n/a Yes Yes Yes 0.19 0.64 0.55
13. Van Gassen et al., 2015 FlowSOM 1. self-organization map building; 2. MST building; 3. perform meta-clustering R package “FlowSOM” and “cytofkit” MST, Chart plot Yes Yes Yes (if set a seed) 0.19 0.62 0.67
14. Li Y. H. et al., 2017 PAC-MAN 1. partitioning by density-based methods; 2. post-processing R package “PAC” n/a Yes Yes Yes 0.35 0.78 0.74
15. Levine et al., 2015 PhenoGraph 1. Construct nearest-neighbor graph; 2. community partitioning R package “cytofkit” n/a Yes No (Can adjust # of nearest neighbours) Yes 5.89 0.71 0.78
16. [github] Rclusterpp flexible native hierarchical clustering R package “Rclusterpp” Hierarchical-structure Yes (Need to manually download source file) No Yes 17.40 0.70 0.71
17. Zare et al., 2010 SamSPECTRAL Spectral-clustering with data reduction scheme R package “SamSPECTRAL” n/a No (requires manual tuning for optimal results) Yes Yes 24.70 0.57 0.33
18. Qiu et al., 2011 SPADE 1. Density-dependent down-sampling; 2. MST construction R package “spade” MST Yes Yes (given cluster number K, it can create between [k/2,3k/2] clusters No 2.83 0.58 0.66
19. Mosmann et al., 2014 SWIFT 1. Fit GMM; 2. Refine GMM; 3. agglomerative merging GUI application by Matlab n/a Yes No (can adjust # of bins and density) No 20.02* 0.06* 0.29*
20. Samusik et al., 2016 X-shift 1. estimate cell event density; 2. arrange populations by maker-based classification GUI application Divisive Marker Trees Yes Yes Yes 35.10 0.65 0.67
21. Sorensen et al., 2015 immunoClust 1. iterative model-based clustering; 2. meta-clustering R package “immunoClust” n/a Yes No Yes 82.72 0.29 0.47
22. Flock k-means k-means clustering R base package “stats” n/a Yes Yes Yes 11.68 0.63 0.63

Unsupervised (requiring multiple samples)
23. Bruggner et al., 2014 Citrus cluster identification, characterization and regression R package “Citrus” n/a n/a n/a n/a n/a n/a n/a
24. Arvaniti and Claassen, 2017 CellCnn convolutional neural networks Python 2.7 package on Github n/a n/a n/a n/a n/a n/a n/a
25. Lun et al., 2017 Cydar 1. cell alignment in hyperspheres in high dimensional space; 2. differential abundance analysis R package “cydar” n/a n/a n/a n/a n/a n/a n/a
26. Weber et al., 2018 diffcyt 1. FlowSOM clustering; 2. empirical Bayes moderated tests for differential abundance analysis R package “diffcyt” n/a n/a n/a n/a n/a n/a n/a

Unsupervised (other)
27. Pouyan et al., 2016 AUTO-SPADE 1. Fuzzy-C-Mean clustering; 2. Merging clusters using Markov clustering; 3. Integration with SPADE No tool available
28. Linderman et al., 2012 CytoSPADE SPADE clustering No tool available
29. Walther et al., 2009 DBM density based merging (DBM) algorithm No tool available
30. Vinh et al., 2009 FLAME multivariate skew t mixture models No full tool pipeline available
31. Finak et al., 2009 flowMerge 1. clustering based on flowClust models; 2. merge clusters For the downsampled data, number of cluster ranging from 15 to 25 wa applied, but it showed out NA merged result.
32. Pouyan and Nourani, 2015 Flow-SNE 1. t-SNE data embedding; 2. cluster number estimation; 3. k-means clustering; 4. merging of clusters No tool available

If the tool cannot complete the running within 3 h, it was applied to a down-sampled data (with 20K cells) for evaluation. ^computing time varies with different setting, but generally fast. MST, minimum spanning tree.