Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Apr 24;76(Pt 5):724–727. doi: 10.1107/S2056989020005344

Crystal structure and Hirshfeld surface analysis of 2-phenyl-1H-phenanthro[9,10-d]imidazol-3-ium benzoate

Ruby Ahmed a, Onur Erman Doğan b, Farman Ali a, Musheer Ahmad a, Adeeba Ahmed a, Necmi Dege c,*, Irina A Golenia d,*
PMCID: PMC7199257  PMID: 32431940

The title compound exists in the crystal as a dimer of ion pairs. Hydrogen bonding and weak π–π inter­actions along with N—H⋯π inter­actions are involved in consolidating this cluster. The three-dimensional crystal structure consists of stepped stacks of dimers of ion pairs associated by C—H⋯π(ring) and slipped π-stacking inter­actions.

Keywords: crystal structure; 2-phenyl-1-H-phenanthro[9,10-d]imidazole; hydrogen bonding; π–π inter­actions

Abstract

In the title compound, C21H15N2 +·C7H5O2 , 2-phenyl-1H-phenanthro[9,10-d]imidazole and benzoic acid form an ion pair complex. The system is consolidated by hydrogen bonds along with π–π inter­actions and N—H⋯π inter­actions between the constituent units. For a better understanding of the crystal structure and inter­molecular inter­actions, a Hirshfeld surface analysis was performed.

Chemical context  

When phenanthrene is substituted by a heterocyclic moiety, its inter­molecular charge-transfer ability is increased (Xu et al., 2017). Such a donor–π–acceptor (D–π–A) arrangement has tunable properties that can be controlled by suitable substituents (Cao et al., 2017). The presence of a heteroatom such as N, O or S may give electron-rich heterocycles (thio­phene, pyrrole, or furan) or electron-deficient heterocycles (pyridine, phenanthroline) (Xu et al., 2017). The dipole moment and λmax can be modulated by the selection of D and A. Thus the photophysical properties can be controlled (Wang et al., 2017). The inclusion of heterocycles enhances the polarizability, thermal and chemical stabilities of such adducts. The π-conjugated heterocyclic systems increase delocalization, thus enhancing the stability and photophysical properties (Gu et al., 2017, Zhang et al., 2012). By proper selection of the heterocyclic substituent, good fluorescence with higher sensitivity can be achieved (Li et al., 2016; Huang et al., 2012). The synthesis of selective chromo-fluoro­genic sensors for anions, cations and neutral mol­ecules can be achieved (Chou et al., 2012; Zhuang et al., 2012). Herein we report the crystal structure of the title compound, which was synthesized from 2-phenyl-1H-phenanthro[9,10-d]imidazole and benzoic acid.graphic file with name e-76-00724-scheme1.jpg

Structural commentary  

The structure of the title compound is shown in Fig. 1. The proton from benzoic acid (BA) is completely transferred to the N atom of the imidazole ring of 2-phenyl-1-H-phenanthro[9,10-d]imidazole (M1), leading to the formation of a M1+BA co-crystal. The space group is monoclinic, P21/n and two asymmetric units, two M1+ ions and two benzoate ions, are combined in an inversion dimer of ion pairs (unit A, Fig. 2). The benzoate ion and M1+ are nearly perpendicular [67.82 (4)°] to one another and the torsional angle C1—O1—N1—C22 is 78.24 (su?)°. Unit A is stabilized by hydrogen bonds (N1—H1⋯O1, 1.77 Å, and N2—H2⋯O2, 1.83 Å; Fig. 2). Beside the hydrogen bonds, there are weak π inter­actions between the two M+1 moieties [inter­centroid separations between the C23–C28 and C8/C9/C14/C15/C20/C21 rings = 3.4590 (9) Å].

Figure 1.

Figure 1

The mol­ecular structure of the title compound with atom labelling. The dashed line indicates the N—H⋯O hydrogen bond. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

Unit A consisting of two entities each of benzoate ions and M1 moieties, linked by hydrogen bonds and π–π inter­actions.

Supra­molecular features  

In the crystal, the A units are associated through weak, slipped, π-stacking inter­actions between the C9–C14 benzene rings and N1/C22/N2/C21/C8 imidazole rings across inversion centers [centroid–centroid distance = 3.5675 (9) Å, dihedral angle = 1.57 (8)°, slippage = 1.532 Å). The stepped stacks thus formed extend alternately in the directions of the normals to (111) and (1Inline graphic1) and are connected via C7—H7⋯Cg4 inter­actions (Table 1, Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C15–C20 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.77 2.6159 (17) 168
N2—H2⋯O2i 0.86 1.83 2.6523 (16) 158
C7—H7⋯Cg4ii 0.93 2.79 3.585 (2) 145
C10—H10⋯O1 0.93 2.40 3.265 (2) 155
C19—H19⋯O2i 0.93 2.54 3.372 (2) 150
C24—H24⋯O2i 0.93 2.50 3.343 (2) 152
C28—H28⋯O1 0.93 2.48 3.365 (2) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 3.

Figure 3

Supra­molecular structure showing A units stacked over adjacent rows of A units running perpendicular to each other.

Hirshfeld surface analysis  

The Hirshfeld surfaces provide an extended qualitative and qu­anti­tative analysis of the inter­actions between the constituents of the co-crystal. The analysis shows the presence of C—H⋯O and N—H⋯O hydrogen bonds leading to multidirectional inter­actions to form the three-dimensional structure. The red spots in the Hirshfeld surface (Fig. 4) are centered on the N1—H1⋯O1, C10—H10⋯O1 and C28—H28⋯O1 inter­actions of the benzoate ion with the phenanthrene and with the N—H of the imidazole. Their bond lengths are 1.77, 2.40, and 2.48 Å, respectively. The fingerprint plots (Fig. 5) show the percentage contribution of the various inter­actions. Those of H⋯H and H⋯C dominate at 44.8% and 30.6%, respectively. The H⋯O inter­actions involve oxygen atoms from the benzoate anion and the N—H group of the imidazole ring of M1+.

Figure 4.

Figure 4

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm.

Figure 5.

Figure 5

Two-dimensional fingerprint plots of the crystal with the relative contributions of the atom pairs to the Hirshfeld surface.

Database survey  

A search of the Cambridge Structural database (CSD, version 5.41, update November 2019; Groom et al., 2016) for the 2,3-di­hydro-1H-phenanthro[9,10-d]imidazole moiety revealed 45 hits of which the most similar to the title compound are imidazole derivatives (CEZWEL: Mormul et al., 2013; ODEDAD: Li et al., 2016; QORJUD: Tapu et al., 2009; REKXOX: Akula et al., 2017; YUMTEG: Ullah et al., 2009; ZACSAA: Therrien et al., 2014). The N—C bond lengths of the imidazole ring in these structures vary from 1.312 (2) to 1.365 (2) Å. The mol­ecular conformations of these structures are also planar.

Synthesis and crystallization  

A condensation reaction was performed between equimolar qu­anti­ties of phenanthrene-9,10-dione and benzaldehyde. 1 mmol of phenanthrene-9,10-dione, 1 mmol of benzaldehyde, 5 mmol of ammonium acetate and 30 mL of glacial acetic acid were added to single-neck 100 mL round-bottom flask. The mixture was refluxed for 12 h under nitro­gen. After completion of the reaction, the reaction mixture was cooled to room temperature and then 50 mL of deionized cold water were added. The product precipitated out as pale-brown solid. The solid product was filtered, washed with deionized water and dried in a vacuum oven to give 2-phenyl-1H-phenanthro[9,10-d]imidazole (M1) as the final product. Crystals were prepared using 20 mg of M1 and 20 mg of benzoic acid dissolved in 5mL of ethanol. The clear solution was left undisturbed for crystallization. Fine crystals were obtained after 15 days.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH hydrogen atoms were located in difference-Fourier maps and, together with the carbon-bound hydrogen atoms, were included as riding contributions in calculated positions [N—H = 0.86, C—H = 0.93 Å; U iso(H) = 1.2U eq(C,N)].

Table 2. Experimental details.

Crystal data
Chemical formula C21H15N2 +·C7H5O2
M r 416.46
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.4693 (4), 8.7384 (3), 24.5049 (9)
β (°) 91.792 (1)
V3) 2026.70 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.39 × 0.28 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.708, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 25446, 3979, 3269
R int 0.046
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.104, 1.10
No. of reflections 3979
No. of parameters 289
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.33

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT2018/3 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), Mercury (Macrae et al., 2020), WinGX (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020005344/mw2157sup1.cif

e-76-00724-sup1.cif (933.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005344/mw2157Isup2.hkl

e-76-00724-Isup2.hkl (317.3KB, hkl)

CCDC reference: 1997348

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India, for providing laboratory facilities.

supplementary crystallographic information

Crystal data

C21H15N2+·C7H5O2 F(000) = 872
Mr = 416.46 Dx = 1.365 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.4693 (4) Å Cell parameters from 9121 reflections
b = 8.7384 (3) Å θ = 3.2–28.1°
c = 24.5049 (9) Å µ = 0.09 mm1
β = 91.792 (1)° T = 100 K
V = 2026.70 (13) Å3 Block, pink
Z = 4 0.39 × 0.28 × 0.17 mm

Data collection

Bruker APEXII CCD diffractometer 3269 reflections with I > 2σ(I)
φ and ω scans Rint = 0.046
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 26.0°, θmin = 2.3°
Tmin = 0.708, Tmax = 0.746 h = −11→11
25446 measured reflections k = −10→10
3979 independent reflections l = −30→30

Refinement

Refinement on F2 Primary atom site location: iterative
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0356P)2 + 1.042P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
3979 reflections Δρmax = 0.23 e Å3
289 parameters Δρmin = −0.33 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.23573 (12) 0.35667 (14) 0.39271 (5) 0.0272 (3)
O2 0.43116 (12) 0.21182 (14) 0.39047 (5) 0.0277 (3)
N1 0.27589 (13) 0.51384 (15) 0.48272 (5) 0.0174 (3)
H1 0.259534 0.474240 0.451017 0.021*
N2 0.36868 (13) 0.65362 (15) 0.54849 (5) 0.0177 (3)
H2 0.421794 0.718335 0.565817 0.021*
C1 0.30537 (16) 0.24344 (19) 0.37667 (6) 0.0190 (3)
C2 0.23159 (16) 0.13699 (18) 0.33666 (6) 0.0174 (3)
C3 0.30647 (17) 0.0201 (2) 0.31269 (7) 0.0260 (4)
H3 0.400888 0.004987 0.322848 0.031*
C4 0.24293 (19) −0.0746 (2) 0.27379 (7) 0.0327 (4)
H4 0.294737 −0.151762 0.257587 0.039*
C5 0.10194 (18) −0.0537 (2) 0.25920 (7) 0.0261 (4)
H5 0.059013 −0.115598 0.232633 0.031*
C6 0.02506 (17) 0.05930 (19) 0.28422 (7) 0.0225 (4)
H6 −0.070461 0.071109 0.275216 0.027*
C7 0.08921 (16) 0.15524 (18) 0.32262 (6) 0.0194 (3)
H7 0.037017 0.231785 0.338992 0.023*
C8 0.20749 (15) 0.47649 (18) 0.52979 (6) 0.0172 (3)
C9 0.09665 (15) 0.36873 (18) 0.53830 (6) 0.0185 (3)
C10 0.03891 (16) 0.27684 (18) 0.49600 (7) 0.0214 (4)
H10 0.070829 0.286745 0.460668 0.026*
C11 −0.06499 (16) 0.17229 (19) 0.50718 (7) 0.0241 (4)
H11 −0.102982 0.111124 0.479346 0.029*
C12 −0.11351 (17) 0.1577 (2) 0.56009 (7) 0.0267 (4)
H12 −0.183127 0.086184 0.567421 0.032*
C13 −0.05897 (17) 0.2486 (2) 0.60154 (7) 0.0243 (4)
H13 −0.093418 0.238283 0.636479 0.029*
C14 0.04783 (15) 0.35686 (18) 0.59221 (7) 0.0201 (3)
C15 0.10846 (15) 0.45281 (18) 0.63613 (6) 0.0197 (3)
C16 0.06231 (17) 0.4443 (2) 0.69008 (7) 0.0244 (4)
H16 −0.010480 0.377451 0.698225 0.029*
C17 0.12253 (17) 0.5328 (2) 0.73112 (7) 0.0263 (4)
H17 0.090928 0.523517 0.766521 0.032*
C18 0.23025 (17) 0.6361 (2) 0.72023 (7) 0.0243 (4)
H18 0.269913 0.695635 0.748191 0.029*
C19 0.27759 (16) 0.64963 (19) 0.66800 (6) 0.0213 (4)
H19 0.348675 0.719290 0.660521 0.026*
C20 0.21874 (15) 0.55833 (18) 0.62580 (6) 0.0187 (3)
C21 0.26552 (15) 0.56429 (18) 0.57097 (6) 0.0173 (3)
C22 0.37202 (15) 0.62210 (18) 0.49467 (6) 0.0174 (3)
C23 0.46252 (15) 0.69837 (18) 0.45586 (6) 0.0180 (3)
C24 0.55209 (16) 0.81660 (19) 0.47343 (7) 0.0224 (4)
H24 0.554159 0.846890 0.509828 0.027*
C25 0.63769 (17) 0.8886 (2) 0.43664 (7) 0.0264 (4)
H25 0.697088 0.967356 0.448523 0.032*
C26 0.63607 (17) 0.8448 (2) 0.38243 (7) 0.0264 (4)
H26 0.695022 0.892778 0.358048 0.032*
C27 0.54566 (18) 0.7287 (2) 0.36468 (7) 0.0260 (4)
H27 0.543584 0.699591 0.328159 0.031*
C28 0.45880 (17) 0.65616 (19) 0.40079 (7) 0.0224 (4)
H28 0.397852 0.579232 0.388489 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0306 (6) 0.0247 (6) 0.0259 (6) −0.0004 (5) −0.0033 (5) −0.0090 (5)
O2 0.0214 (6) 0.0332 (7) 0.0279 (6) −0.0035 (5) −0.0069 (5) −0.0051 (5)
N1 0.0161 (6) 0.0172 (7) 0.0185 (7) 0.0026 (5) −0.0037 (5) −0.0023 (5)
N2 0.0151 (6) 0.0177 (7) 0.0200 (7) −0.0006 (5) −0.0035 (5) −0.0032 (5)
C1 0.0211 (8) 0.0216 (8) 0.0144 (7) −0.0032 (7) 0.0002 (6) 0.0011 (6)
C2 0.0184 (7) 0.0192 (8) 0.0146 (7) −0.0039 (6) 0.0010 (6) 0.0011 (6)
C3 0.0166 (7) 0.0336 (10) 0.0277 (9) 0.0000 (7) −0.0019 (7) −0.0089 (8)
C4 0.0264 (9) 0.0371 (11) 0.0343 (10) 0.0034 (8) −0.0006 (8) −0.0185 (9)
C5 0.0269 (9) 0.0285 (9) 0.0226 (8) −0.0054 (7) −0.0046 (7) −0.0076 (7)
C6 0.0180 (7) 0.0245 (9) 0.0245 (8) −0.0022 (7) −0.0051 (7) 0.0006 (7)
C7 0.0192 (8) 0.0187 (8) 0.0203 (8) 0.0010 (6) −0.0007 (6) −0.0003 (6)
C8 0.0145 (7) 0.0173 (8) 0.0197 (8) 0.0042 (6) −0.0019 (6) −0.0001 (6)
C9 0.0143 (7) 0.0156 (8) 0.0254 (8) 0.0045 (6) −0.0036 (6) 0.0004 (6)
C10 0.0177 (8) 0.0183 (8) 0.0281 (9) 0.0042 (6) −0.0035 (7) −0.0017 (7)
C11 0.0182 (8) 0.0171 (8) 0.0364 (10) 0.0028 (7) −0.0075 (7) −0.0035 (7)
C12 0.0178 (8) 0.0200 (9) 0.0420 (11) 0.0001 (7) −0.0019 (7) 0.0058 (8)
C13 0.0185 (8) 0.0255 (9) 0.0288 (9) 0.0015 (7) −0.0009 (7) 0.0054 (7)
C14 0.0141 (7) 0.0181 (8) 0.0278 (9) 0.0046 (6) −0.0025 (6) 0.0019 (7)
C15 0.0147 (7) 0.0207 (8) 0.0234 (8) 0.0060 (6) −0.0007 (6) 0.0013 (7)
C16 0.0192 (8) 0.0275 (9) 0.0264 (9) 0.0037 (7) 0.0013 (7) 0.0027 (7)
C17 0.0241 (8) 0.0347 (10) 0.0201 (8) 0.0076 (8) 0.0022 (7) 0.0002 (7)
C18 0.0217 (8) 0.0299 (9) 0.0212 (8) 0.0068 (7) −0.0044 (7) −0.0032 (7)
C19 0.0162 (7) 0.0227 (9) 0.0247 (9) 0.0040 (6) −0.0035 (6) −0.0023 (7)
C20 0.0152 (7) 0.0190 (8) 0.0217 (8) 0.0064 (6) −0.0033 (6) −0.0002 (6)
C21 0.0137 (7) 0.0166 (8) 0.0214 (8) 0.0026 (6) −0.0032 (6) 0.0000 (6)
C22 0.0150 (7) 0.0157 (8) 0.0214 (8) 0.0051 (6) −0.0032 (6) −0.0016 (6)
C23 0.0144 (7) 0.0171 (8) 0.0224 (8) 0.0051 (6) −0.0021 (6) 0.0009 (6)
C24 0.0190 (8) 0.0243 (9) 0.0236 (8) 0.0014 (7) −0.0024 (7) −0.0011 (7)
C25 0.0194 (8) 0.0265 (9) 0.0330 (10) −0.0021 (7) −0.0045 (7) 0.0038 (8)
C26 0.0203 (8) 0.0286 (10) 0.0304 (9) 0.0034 (7) 0.0014 (7) 0.0097 (8)
C27 0.0301 (9) 0.0264 (9) 0.0215 (8) 0.0057 (7) 0.0000 (7) 0.0018 (7)
C28 0.0234 (8) 0.0191 (8) 0.0243 (8) 0.0021 (7) −0.0029 (7) −0.0011 (7)

Geometric parameters (Å, º)

O1—C1 1.2588 (19) C12—C13 1.377 (2)
O2—C1 1.2587 (19) C12—H12 0.9300
N1—C22 1.339 (2) C13—C14 1.409 (2)
N1—C8 1.380 (2) C13—H13 0.9300
N1—H1 0.8600 C14—C15 1.467 (2)
N2—C22 1.349 (2) C15—C16 1.407 (2)
N2—C21 1.379 (2) C15—C20 1.422 (2)
N2—H2 0.8600 C16—C17 1.378 (2)
C1—C2 1.507 (2) C16—H16 0.9300
C2—C3 1.384 (2) C17—C18 1.394 (2)
C2—C7 1.390 (2) C17—H17 0.9300
C3—C4 1.386 (2) C18—C19 1.374 (2)
C3—H3 0.9300 C18—H18 0.9300
C4—C5 1.383 (2) C19—C20 1.407 (2)
C4—H4 0.9300 C19—H19 0.9300
C5—C6 1.382 (2) C20—C21 1.429 (2)
C5—H5 0.9300 C22—C23 1.461 (2)
C6—C7 1.386 (2) C23—C24 1.396 (2)
C6—H6 0.9300 C23—C28 1.398 (2)
C7—H7 0.9300 C24—C25 1.382 (2)
C8—C21 1.369 (2) C24—H24 0.9300
C8—C9 1.430 (2) C25—C26 1.382 (2)
C9—C10 1.408 (2) C25—H25 0.9300
C9—C14 1.417 (2) C26—C27 1.389 (2)
C10—C11 1.376 (2) C26—H26 0.9300
C10—H10 0.9300 C27—C28 1.381 (2)
C11—C12 1.395 (2) C27—H27 0.9300
C11—H11 0.9300 C28—H28 0.9300
C22—N1—C8 108.53 (13) C13—C14—C9 117.21 (15)
C22—N1—H1 125.7 C13—C14—C15 122.08 (15)
C8—N1—H1 125.7 C9—C14—C15 120.70 (14)
C22—N2—C21 108.28 (13) C16—C15—C20 116.92 (15)
C22—N2—H2 125.9 C16—C15—C14 122.22 (15)
C21—N2—H2 125.9 C20—C15—C14 120.86 (14)
O2—C1—O1 126.11 (15) C17—C16—C15 121.50 (16)
O2—C1—C2 117.05 (14) C17—C16—H16 119.3
O1—C1—C2 116.84 (14) C15—C16—H16 119.3
C3—C2—C7 119.04 (14) C16—C17—C18 120.82 (16)
C3—C2—C1 119.87 (14) C16—C17—H17 119.6
C7—C2—C1 121.09 (14) C18—C17—H17 119.6
C2—C3—C4 121.02 (15) C19—C18—C17 119.72 (16)
C2—C3—H3 119.5 C19—C18—H18 120.1
C4—C3—H3 119.5 C17—C18—H18 120.1
C5—C4—C3 119.58 (16) C18—C19—C20 120.15 (16)
C5—C4—H4 120.2 C18—C19—H19 119.9
C3—C4—H4 120.2 C20—C19—H19 119.9
C6—C5—C4 119.83 (15) C19—C20—C15 120.88 (15)
C6—C5—H5 120.1 C19—C20—C21 122.89 (15)
C4—C5—H5 120.1 C15—C20—C21 116.23 (14)
C5—C6—C7 120.51 (15) C8—C21—N2 107.21 (14)
C5—C6—H6 119.7 C8—C21—C20 122.93 (14)
C7—C6—H6 119.7 N2—C21—C20 129.85 (14)
C6—C7—C2 119.97 (15) N1—C22—N2 108.77 (14)
C6—C7—H7 120.0 N1—C22—C23 126.05 (14)
C2—C7—H7 120.0 N2—C22—C23 125.15 (14)
C21—C8—N1 107.20 (13) C24—C23—C28 119.31 (15)
C21—C8—C9 122.75 (15) C24—C23—C22 119.99 (14)
N1—C8—C9 130.06 (14) C28—C23—C22 120.69 (14)
C10—C9—C14 120.94 (15) C25—C24—C23 119.90 (16)
C10—C9—C8 122.55 (15) C25—C24—H24 120.0
C14—C9—C8 116.51 (14) C23—C24—H24 120.0
C11—C10—C9 119.71 (16) C26—C25—C24 120.80 (16)
C11—C10—H10 120.1 C26—C25—H25 119.6
C9—C10—H10 120.1 C24—C25—H25 119.6
C10—C11—C12 120.25 (16) C25—C26—C27 119.43 (16)
C10—C11—H11 119.9 C25—C26—H26 120.3
C12—C11—H11 119.9 C27—C26—H26 120.3
C13—C12—C11 120.41 (16) C28—C27—C26 120.56 (16)
C13—C12—H12 119.8 C28—C27—H27 119.7
C11—C12—H12 119.8 C26—C27—H27 119.7
C12—C13—C14 121.48 (16) C27—C28—C23 119.98 (16)
C12—C13—H13 119.3 C27—C28—H28 120.0
C14—C13—H13 119.3 C23—C28—H28 120.0
O2—C1—C2—C3 −6.4 (2) C15—C16—C17—C18 1.1 (2)
O1—C1—C2—C3 172.81 (15) C16—C17—C18—C19 −0.3 (2)
O2—C1—C2—C7 174.49 (15) C17—C18—C19—C20 −0.7 (2)
O1—C1—C2—C7 −6.2 (2) C18—C19—C20—C15 1.0 (2)
C7—C2—C3—C4 2.3 (3) C18—C19—C20—C21 −178.48 (15)
C1—C2—C3—C4 −176.81 (16) C16—C15—C20—C19 −0.2 (2)
C2—C3—C4—C5 −1.0 (3) C14—C15—C20—C19 −179.56 (14)
C3—C4—C5—C6 −1.2 (3) C16—C15—C20—C21 179.29 (13)
C4—C5—C6—C7 2.0 (3) C14—C15—C20—C21 −0.1 (2)
C5—C6—C7—C2 −0.7 (2) N1—C8—C21—N2 −0.15 (16)
C3—C2—C7—C6 −1.4 (2) C9—C8—C21—N2 179.75 (13)
C1—C2—C7—C6 177.64 (14) N1—C8—C21—C20 178.83 (13)
C22—N1—C8—C21 −0.49 (16) C9—C8—C21—C20 −1.3 (2)
C22—N1—C8—C9 179.62 (15) C22—N2—C21—C8 0.74 (16)
C21—C8—C9—C10 −178.91 (14) C22—N2—C21—C20 −178.15 (15)
N1—C8—C9—C10 1.0 (2) C19—C20—C21—C8 −179.40 (15)
C21—C8—C9—C14 0.3 (2) C15—C20—C21—C8 1.1 (2)
N1—C8—C9—C14 −179.82 (14) C19—C20—C21—N2 −0.7 (2)
C14—C9—C10—C11 −1.0 (2) C15—C20—C21—N2 179.84 (14)
C8—C9—C10—C11 178.22 (14) C8—N1—C22—N2 0.96 (16)
C9—C10—C11—C12 0.3 (2) C8—N1—C22—C23 −176.97 (14)
C10—C11—C12—C13 0.6 (2) C21—N2—C22—N1 −1.05 (16)
C11—C12—C13—C14 −0.8 (2) C21—N2—C22—C23 176.90 (14)
C12—C13—C14—C9 0.2 (2) N1—C22—C23—C24 175.89 (14)
C12—C13—C14—C15 −179.05 (15) N2—C22—C23—C24 −1.7 (2)
C10—C9—C14—C13 0.7 (2) N1—C22—C23—C28 −3.0 (2)
C8—C9—C14—C13 −178.51 (13) N2—C22—C23—C28 179.44 (14)
C10—C9—C14—C15 179.95 (14) C28—C23—C24—C25 −1.2 (2)
C8—C9—C14—C15 0.7 (2) C22—C23—C24—C25 179.97 (14)
C13—C14—C15—C16 −1.0 (2) C23—C24—C25—C26 −0.1 (2)
C9—C14—C15—C16 179.84 (14) C24—C25—C26—C27 1.0 (2)
C13—C14—C15—C20 178.35 (14) C25—C26—C27—C28 −0.6 (2)
C9—C14—C15—C20 −0.8 (2) C26—C27—C28—C23 −0.7 (2)
C20—C15—C16—C17 −0.8 (2) C24—C23—C28—C27 1.5 (2)
C14—C15—C16—C17 178.53 (15) C22—C23—C28—C27 −179.60 (14)

Hydrogen-bond geometry (Å, º)

Cg4 is the centroid of the C15–C20 benzene ring.

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.86 1.77 2.6159 (17) 168
N2—H2···O2i 0.86 1.83 2.6523 (16) 158
C7—H7···Cg4ii 0.93 2.79 3.585 (2) 145
C10—H10···O1 0.93 2.40 3.265 (2) 155
C19—H19···O2i 0.93 2.54 3.372 (2) 150
C24—H24···O2i 0.93 2.50 3.343 (2) 152
C28—H28···O1 0.93 2.48 3.365 (2) 159

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1.

Funding Statement

This work was funded by DST (India) grant .

References

  1. Akula, S. B., Chen, H.-S., Su, C., Chen, B.-R., Chiou, J.-J., Shieh, C.-H., Lin, Y.-F. & Li, W.-R. (2017). Inorg. Chem. 56, 12987–12995. [DOI] [PubMed]
  2. Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cao, L., Zhang, D., Xu, L., Fang, Z., Jiang, X.-F. & Lu, F. (2017). Eur. J. Org. Chem. 2017, 2495–2500.
  4. Chou, H. H., Chen, Y. H., Hsu, H. P., Chang, W. H., Chen, Y. H. & Cheng, C. H. (2012). Adv. Mater. 24, 5867–5871. [DOI] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Gu, P.-Y., Wang, Z., Liu, G., Yao, H., Wang, Z., Li, Y., Zhu, J., Li, S. & Zhang, Q. (2017). Chem. Mater. 29, 4172–4175.
  8. Huang, H., Wang, Y., Zhuang, S., Yang, X., Wang, L. & Yang, C. (2012). J. Phys. Chem. C, 116, 19458–19466.
  9. Li, J., Chen, S., Wang, Z. & Zhang, Q. (2016). Chem. Rec. 16, 1518–1530. [DOI] [PubMed]
  10. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  11. Mormul, J., Steimann, M., Maichle–Mössmer, C. & Nagel, U. (2013). Eur. J. Inorg. Chem. pp. 3421–3428.
  12. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  13. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  14. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  15. Tapu, D., Owens, C., VanDerveer, D. & Gwaltney, K. (2009). Organometallics, 28, 270–276.
  16. Therrien, J. A., Wolf, M. O. & Patrick, B. O. (2014). Inorg. Chem. 53, 12962–12972. [DOI] [PubMed]
  17. Ullah, F., Kindermann, M. K., Jones, P. G. & Heinicke, J. (2009). Organometallics, 28, 2441–2449.
  18. Wang, Z., Gu, P., Liu, G., Yao, H., Wu, Y., Li, Y., Rakesh, G., Zhu, J., Fu, H. & Zhang, Q. (2017). Chem. Commun. 53, 7772–7775. [DOI] [PubMed]
  19. Xu, L., Zhang, D., Zhou, Y., Zheng, Y., Cao, L., Jiang, X.-F. & Lu, F. (2017). Opt. Mater. 70, 131–137.
  20. Zhang, Y., Lai, S.-L., Tong, Q.-X., Lo, M.-F., Ng, T.-W., Chan, M.-Y., Wen, Z.-C., He, J., Jeff, K.-S., Tang, X.-L., Liu, W., Ko, C., Wang, P. & Lee, C. (2012). Chem. Mater. 24, 61–70.
  21. Zhuang, S., Shangguan, R., Jin, J., Tu, G., Wang, L., Chen, J., Ma, D. & Zhu, X. (2012). Org. Electron. 13, 3050–3059.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020005344/mw2157sup1.cif

e-76-00724-sup1.cif (933.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005344/mw2157Isup2.hkl

e-76-00724-Isup2.hkl (317.3KB, hkl)

CCDC reference: 1997348

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES