Severity detection tool for patients with infectious disease
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Hand foot and mouth disease (HFMD) and tetanus are serious infectious diseases in low- and middle-income countries. Tetanus, in particular,
has a high mortality rate and its treatment is resource-demanding. Furthermore, HFMD often affects a large number of infants and young
children. As a result, its treatment consumes enormous healthcare resources, especially when outbreaks occur. Autonomic nervous system
dysfunction (ANSD) is the main cause of death for both HFMD and tetanus patients. However, early detection of ANSD is a difficult and
challenging problem. The authors aim to provide a proof-of-principle to detect the ANSD level automatically by applying machine
learning techniques to physiological patient data, such as electrocardiogram waveforms, which can be collected using low-cost wearable
sensors. Efficient features are extracted that encode variations in the waveforms in the time and frequency domains. The proposed
approach is validated on multiple datasets of HFMD and tetanus patients in Vietnam. Results show that encouraging performance is
achieved. Moreover, the proposed features are simple, more generalisable and outperformed the standard heart rate variability analysis.
The proposed approach would facilitate both the diagnosis and treatment of infectious diseases in low- and middle-income countries, and

thereby improve patient care.

1. Introduction: Infectious diseases, such as tetanus and hand foot
and mouth disease (HFMD), still pose life-threatening risks to
patients in low- and middle-income countries [1]. Tetanus is a
severe disease, often necessitating lengthy hospital treatment (up
to six weeks), which was estimated to have caused 48-80,000
deaths in 2015 [2]. It tends to affect the poorest in society in low-
and middle-income countries where unvaccinated individuals,
particularly manual workers and farmers, are at high risk of
contracting it [1, 3-5]. A recent study showed that tetanus
prevalence is still high in a part of Asia and that it is associated
with high morbidity and mortality rates [5—7].

Comparatively, HFMD is typically a benign self-limited illness
in infants and young children. In recent years, large outbreaks
have been reported in the Asia Pacific region, affecting millions
of children [8-10]. For example, 90% of HFMD incidents in
China occur among children under the age of 5 years [10].
Although most HFMD cases are mild, a small number of affected
children progress rapidly to severe or fatal manifestations of the
disease. Moreover, survivors may still be afflicted with neurocogni-
tive impairments later in life, despite having apparently fully recov-
ered from severe HFMD [10]. The inability to predict those who
will progress to severe cases means that huge numbers of children
are admitted to the hospital as a precautionary measure, placing an
enormous burden on healthcare systems [8, 9, 11].

Autonomic nervous system dysfunction (ANSD) is the main cause
of death in the aforementioned infectious diseases [2, 9, 11-13]. It is
not clinically apparent in the early stages of the disease, but once it
is established, treatment is challenging and, in the case of HFMD,
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deterioration can occur rapidly. In tetanus, early diagnosis may
enable preventative intervention and allow differentiation from
other causes of tachycardia and hypertension.

Data-driven approaches have been employed to assist clinicians
in making informed decisions during the diagnosis of infectious
diseases [14-17]. The physiological data from patients (see
Fig. 1) mainly include electrocardiogram (ECG) [14, 18] followed
by photoplethysmogram (PPG) [15, 17] waveforms.

Existing methods are mainly focused on heart rate variability
(HRV) analysis based on a prior detection of morphological fea-
tures [14—18]. This means ECG-based features were derived from
P-wave, R-peak, T-wave and the PQ, QRS and ST segments.
Similarly, PPG-based features were derived from the systolic and
diastolic segments. However, morphology-based feature extraction
requires, in addition to more computational resources, domain-
specific knowledge; and these features are hardly transferable
across different physiological waveforms (e.g. ECG, PPG, and
impedance pneumography (IP)). Furthermore, these morphological
features could easily be affected by noise and motion artefacts,
especially when wearable devices are employed and/or the patients
are children who are prone to make random movements. The
traditional approach that employs a specific clinical monitor or
Holter device has been found to have limitations in clinical practice,
especially with small children in the out-patient setting [11, 19]. As
a result, these features are less robust and have limited generalis-
ability across variations in patient characteristics and device
specifications.

In this Letter, we present our preliminary work on automatic
ANSD detection using multivariate physiological data collected
from tetanus and HFMD patients in Southern Vietnam (see
Fig. 2). The proposed approach could be integrated into the clinical
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Fig. 1 Example of ECG waveforms (amplitude versus time) from two ran-
domly selected tetanus patients

pathway to provide a low-cost care tool to triage patients. We col-
lected physiological waveforms from children using wearable
devices, which are low-cost, non-invasive and easy to wear.
In addition, these devices are cost-effective for resource-limited
settings such as low- and middle-income countries [15, 20]. After
data collection, feature extraction is applied to encode the vari-
ability of these waveforms both in the time and frequency
domains. The proposed features are designed to be simple and gen-
eralisable across different physiological waveforms (e.g. PPG and
ECG) without a prior detection of domain-specific morphological
variations. Later, a state-of-the-art classifier is applied to discrimin-
ate against the ANSD levels of patients. We also applied feature-
level fusion when multivariate data was available. This automatic
tool for ANSD detection aims to support the efficient allocation
of resources, and hence improve patient care. In addition, as patients
with these diseases are often given antibiotics, the creation of a
robust and reliable detection tool may also reduce unnecessary
use of antibiotics and therefore limit antimicrobial resistance.

2. Related works: As the heart is under autonomic nervous system
control, changes in beat-to-beat variability of the heart rate, detected
by the ECG, have been linked to changes in autonomic system
balance [14].

Lin et al. [16] showed that patients with different stages
of HFMD experienced different levels of central nervous system
complications, which was reflected by their HRV measures.
Though HRV has been principally inferred from ECG signals,
PPGs could be promising alternatives as existing methods in the lit-
erature reported HRV parameters derived from PPG had a high cor-
relation with those derived from ECG [15, 17]. It is encouraging to
be able to carry out PPG-based HRV analysis, as ECG acquisition is
relatively complex, requiring electrodes to be mounted on specific
anatomical positions, which may cause skin irritations and be less
practical in non-clinical settings [15, 17].

However, existing HRV-based approaches to evaluate autono-
mous dysfunction mainly require the detection of morphological
shapes and features (e.g. QRS complex and RR intervals) [7, 14,
15], which incurs an additional pre-processing step. In addition,
these features are not generalisable across different vital signs
which follow different morphological shapes that could be easily

affected by artefacts. Furthermore, HRV parameters obtained with
non-linear modes, such as standard deviations of short and long di-
agonal axes in the Poincare plot (SD1 and SD2), necessitate add-
itional computational cost.

The significance of our approach lies in the development of more
generic features rather than domain-specific ones (e.g. PQRST
characteristics for ECG and systolic and diastolic features for
PPG). That means there is no need for prior detection of these
morphologies. As a result, our approach can be employed across
a variety of modalities that are time-series bio-signals. Bio-signals
are easier and cheaper to collect, typically involving less obtrusive
collection compared to clinical tests. This approach could therefore
also enable remote monitoring of patients by their care giver, using
existing wearable sensor technologies.

3. Proposed method: The proposed approach consists of pre-
processing, feature extraction, and classification stages as shown in
Fig. 2. Physiological data collected using wearable sensors are
often susceptible to noise and movement artefacts. Hence, a high
pass filter followed by a Gaussian filter is applied to mitigate these
challenges during the pre-processing stage. Moreover, we aim to
ensemble multiple but simple time- and frequency-domain features
to form a more robust feature set overall. In addition, the
gradient-based feature extraction (described later) helps to further
encode noise-free features. Feature extraction is applied to each
window of data points segmented from a waveform. The window
duration determines the number of samples extracted from a
continuous waveform.

Given a time-series of physiological data, x = (x,,)ﬁ: 1» where L
represents the number of data points in a window, we propose
to extract both time- and frequency-domain features. The time-
domain features are further grouped into gradient- and non-
gradient-based features. Non-gradient-based time-domain features
encode the basic statistics of the signal, such as minimum,
maximum, median, mean, standard deviation, energy, kurtosis
and zero-crossing [21]. Energy is obtained as Zﬁzlxﬁ. Kurtosis,
k., measures the deviation of a signal distribution from a
Gaussian distribution, i.e.

Y —w

k=12 -
(Zn:l (xn - M)z)

where u is the mean of x,,. Zero-crossing refers to the number of
times a signal amplitude crosses the zero-magnitude threshold
and encodes oscillation characteristics.

Gradient-based features help to extract more dynamic informa-
tion in the time-domain [22]. The gradient is computed by applying
the first-order derivative, i.e. X', = x,,; —x,. Two specific gradi-
ent pooling features, count (/,) and sum (s, ) of the gradient histo-
gram are extracted. Count pooling counts positive (k}) and
negative gradients (%), whereas sum pooling sums all positive
(s7) and negative gradients (s, ). For example, &} of x,, is computed
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Fig. 2 Block diagram of the proposed approach
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as b = Y571 s(x',), where
VR RS R
" 0, otherwise.

Frequency-domain features provide more detailed dynamic infor-
mation using the fast Fourier transform (FFT).

The frequency-domain features can be grouped into two groups:
low-frequency (f;) and whole-frequency features (f,).
Low-frequency features contain the magnitude of N, low-frequency
coefficients after the Fourier transform. Full-frequency group
includes the sum of frequency response magnitude of frequency
bins clustered into NV, consecutive bins. The significance of the fre-
quency features is as follows. f; contains high-resolution low-
frequency characteristics, as much of the energy rests in this fre-
quency band. On the other hand, f, contains the whole spectrum
(both the low- and high-frequency patterns) with lower resolution.
This is motivated by the need to include the high-frequency
characteristics and their comparison with lower frequency ones.
As aresult, f, encodes the complete frequency spectrum compared
to f}. We tend to cluster the frequency components into bins to have
lower resolution since higher resolution might result in unnecessar-
ily long feature dimensions.

Let f, = F(x,) be the frequency response of x,,, f; = {fx(c)}iv':l
and the f, feature (with N, bands) is computed as f(j) =

7 f.(I), where

I=0;
JjxL
2N,

G—1)xL

i€ [1, N,
J [> b]a 2Nb

o =1+ op=1+

The final feature vector is obtained using a simple concatenation,
C(-), of both time- and frequency-domain features into a single
vector. Given two feature vectors, f; € R” and f, € R®, their con-
catenation f, = C(f, f,) results in £, € R%, where d, = d, + d,.
A similar concatenation approach is applied for features from
different modalities (e.g. ECG and PPG). Finally, we employ
support vector machines (SVMs) to classify the ANSD severity
levels.

4. Complexity analysis: In this section, we present the complexity
analysis of the feature extraction step, per feature type, in the
proposed framework. Given a time-series signal of L time steps,
the computational complexity of the majority of the time-domain
features (e.g. mean and median) have linearly growing
complexity, i.e. O(L). However, the gradient features may have
additional complexity of O(2L) due to the first-order derivative
and the summing/counting of positive and negative gradients.
The Fourier transform for the frequency-domain features

Table 1 Summary of wall-clock time elapsed for the computation of time
and frequency features, experimented on a randomly selected ~5-min PPG
signal

Feature group Feature Elapsed time, ms
Time mean 3.1
STD 1.6
Zero-crossing 1.2
minimum 0.1
maximum 0.1
median 3.0
energy 0.3
Kurtosis 32
gradient 4.4
Frequency low freq. 29
whole freq. 4.1
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(fi and f,) pose a computational cost of O(Llog(L))
associated with the FFT computation. In addition, we provide
Table 1 that summarises the wall-clock computation time
elapsed for the extraction of the proposed features for a randomly
selected PPG signal that is ~5 min long. The whole feature
extraction takes =~21.15ms, of which time-domain features
elapse ~17 ms and frequency-domain features elapse ~4.15 ms.
The experiments were conducted using Matlab2017a, Intel(R)
Xeon(R) CPU E5-1630 v3 @ 3.70 GHz, Ubuntu 16.04 OS and
32 GB RAM.

5. Data collection: We validate the proposed approach on datasets
of HFMD and tetanus patients admitted in hospitals in Vietnam
[The study was approved by the relevant Ethical Committees and
carried out in line with the declaration of Helsinki.]. The HFMD
dataset was collected from Children Hospital No. 1, Ho Chi Minh
City, and contains 74 HFMD patients, with a majority of children
less than three years old. Commercial devices such as E-patch
(epatch.madebydelta.com) were used to collect ECG (256 Hz)
waveforms in the HFMD dataset. Specifically, 24-h-patch ECGs
are recorded at least twice, when patients are admitted to the
infectious disease department and on the penultimate day of
hospitalisation. We used the clinical diagnosis of the HFMD
patients (based on the clinical grading system developed by the
Vietnamese Ministry of Health) as the ground truth and it
contains five levels (in the increasing order of severity): 2a(33),
2b,(9), 2b,(11), 3(20) and 4(1). The number of patients per class
is shown in brackets. There is a significant imbalance in the
number of cases (patients) of ANSD severity levels. Therefore,
we merged 2b, and 2b, into a single class. Similarly, level-3 and
level-4 were also merged together.

The tetanus dataset contains ECG, PPG, and IP waveforms, each
lasting up to 24 h, collected from a total of ten patients (four mod-
erate diseases, Ablett Grade 3 and six severe diseases Ablett Grade
4) admitted to the intensive care units in the Hospital for Tropical
Diseases, Ho Chi Minh City. The sampling rates of ECG, PPG,
and IP waveforms are 300, 100, and 25 Hz, respectively. ECG
and PPG were time synchronised and recorded from all the patients,
which makes the feature-fusion of these different modalities easier.
However, it is worth noting that IP signals are missing in four
subjects. A Datex Ohmeda monitor and a pulse oximeter were
employed for data acquisition. VS Capture software [23] was
used to download the signal from the monitor. The clinical diagno-
sis of tetanus patients (i.e. moderate or severe) is used as ground
truth for the experiments. For a window duration of 5 min, the
number of samples extracted from each modality is 3077 (ECQG),
3070 (PPG) and 1895 (IP). From the HFMD dataset, a total of
60,373 samples are extracted from the ECG signal.

6. Parameter setup: During the feature extraction step, we set the
window duration to be at least 5 min, similar to the duration in the
clinical baseline method [14] extracted using a publicly available
software solution [24]. The baseline method was selected because
it has been a gold standard for many existing works that focused
on HRV analysis [5, 15-17]. Recently, a similar method has
been used to study HRV among tetanus patients. We set the
high-pass and low-pass cut-off frequencies to 0.05 and 150 Hz,
respectively, in the pre-processing step to filter out artefacts in the
physiological signals. A temporal resolution of two is applied to
extract gradient pooling features. A temporal resolution refers to
the number of chunks the original sample is divided into, e.g.
given a 5-min long waveform, a temporal resolution of two
means divide the signal into two chunks (each 2.5 min long) and
extract gradient-based features on each of them. We set N}, = 200
and N, =200 in order to achieve a balance between higher
frequency resolution and smaller feature dimension, i.e. lower
values of N, and N, result in lower frequency resolution but
smaller feature dimension, whereas their higher values result in
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better frequency resolution but longer feature dimension. Both
linear and Gaussian kernels are experimented with the
SVM-based classification. We split the data to train and test sets
with a ratio of 80 and 20%, respectively. The classification is
repeated 100 times, each with different initialisation of the
classifier, and their average performance is reported (along with
the standard deviation across the iterations).

We employ the following performance metrics: accuracy (A4),
precision (P), sensitivity or recall (R), specificity (S), and F-score
(F), defined for a binary classification as follows:

TP TP TN
P=——  R=—" S=—"
TP + FP TP + FN TN + FP
. TP+ TN _2><P><R
T TP+TIN+FP+FN’ '™ P4+R

where TP is the true positive, TN is the true negative, FP is the false
positive, and FN is the false negative samples. For example, in mild
versus severe classification of tetanus patients, TP refers to the
number of samples correctly identified as severe and similar to
the ground truth label, TN refers to the number of samples correctly
identified as mild and similar to the ground truth label, FP refers to
the number of samples incorrectly classified as severe but labelled
as mild in the ground truth, and FN refers to the number of
samples misclassified as mild but labelled as severe in the ground
truth. For the HFMD dataset, which involves multi-class classifica-
tion, an SVM with a one-versus-all (OVA) strategy is used.
For example, during the classification of class 2a, samples from
this class are positive samples and all the samples from the remain-
ing classes (i.e. 2b, 3, and 4) are treated as negative samples. For
example, during the classification of class 2a, samples from this
class are positive samples and all the samples from the remaining
classes (i.e. 2b, 3, and 4) are treated as negative samples. The per-
formance metrics are initially computed for each OVA classification
and the average performance across the classes is reported as a final
result.

Table 2 ANSD level classification of HFMD patients

7. Results and discussion: The proposed approach provides
encouraging results in both HFMD (see Table 2) and tetanus (see
Table 3) datasets. It is evident from Table 2 and Fig. 3 that the
baseline features, which require detection of QRS complex prior
to the feature extraction, fail to discriminate the severity levels of
ANSD in HFMD patients. Moreover, the confusion matrices in
Fig. 3 show a misclassification of 2a and 2b classes as there is no
well-defined clinical threshold to separate them. The higher
classification of class-3 to 2a than to 25 is partly due to the class
imbalance and requires further investigation. We experimented
with both linear and Gaussian kernels for the SVM, and Table 2
shows that the Gaussian kernel performs significantly better than
the linear kernel, particularly for the proposed method where
about 5% F,-score improvement is achieved using the Gaussian
kernel. It is clear that the baseline set of features is less effective
at discriminating ANSD levels, and even their concatenation with
the proposed features does not provide a significant improvement.
The accuracy (4) and specificity (S) classification metrics are
expectedly higher than the remaining performance metrics,
precision (P), recall (R) and their F; score. This is due to the
OVA classification strategy employed in the SVM implementation
for multi-class classification in the HFMD dataset.

Similarly, the severity-level classification results of tetanus
patients are shown in Table 3. IP achieves the lowest performance
compared to ECG and PPG due to the following reasons. First, the
number of [P samples is the lowest among all modalities since only
six (among ten) subjects had IP waveforms. In addition, the IP
waveforms have a low-sampling rate (25 Hz) in the dataset com-
pared to those of PPG (100 Hz) and ECG (300 Hz). As a result,
the IP-based features suffer from the low-temporal resolution of
I[P waveforms. The higher sampling rate of ECG could also partly
explain why ECG performance is better than PPG. In addition,
ECG waveforms are relatively stable compared to PPG waveforms
as the former are often collected from the patient’s chest while the
latter are collected from motion-prone fingers/toes. The fusion of
features from ECG and PPG waveforms improved the recall to
98.1% from their separate recall values of 92.6% (PPG) and
95.3% (ECG).

Features A P R S F
SVM (%) — linear kernel

baseline [14] 57.1 £ 0.2 35.0+ 0.2 352 +0.2 67.6 + 0.1 34.6 + 0.2

proposed 64.7 + 0 49.1 £+ 0.1 46.9 + 0.1 734 +0 432 + 0.1

concatenated 66.9 + 0.1 52.0 + 0.1 50.1 + 0.2 75.0 + 0.1 48.0 + 0.2
SVM (%) — Gaussian kernel

baseline [14] 57.7 + 0.7 36.2 + 04 36.3 + 0.7 68.2 + 0.4 35.7+ 0.6

proposed 70.9 + 0.1 60.6 + 0.1 55.9 +0.2 78.0 + 0.1 55.7 + 0.2

concatenated 70.2 + 0.1 60.0 + 0.1 5454+ 0.1 773 £ 0.1 539 +0.2

The bold values represent the highest score among of a specific group

Table 3 Severity-level classification of tetanus patients

Data A P R N F,
SVM (%) — Gaussian kernel

baseline-ECG [14] 73.9 + 0.9 7548 + 1.5 775+ 04 67.73 + 3.1 76.48 + 0.6

1P 657+ 1.3 63.2 + 1.0 947 +£ 0.2 27.8 +2.8 75.8 +£ 0.7

PPG 702 +£ 1.0 704 + 0.8 92.6 + 0.3 29.5 +29 80.0 + 0.5

ECG 80.2 + 0.7 78.4 + 0.9 953+ 0.5 534+ 25 86.0 + 0.4

ECG+PPG 782 + 1.0 753 £ 1.0 98.1 + 0.0.3 43.1 £33 85.2 + 0.6

The bold values represent the highest score among of a specific group
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Fig. 3 Normalised confusion matrices (%) of baseline, proposed features, and their concatenation for ANSD level classification of HFMD patients, with dark

colours representing higher magnitudes

Table 4 Comparison of 5 and 1 min window duration on the classification of tetanus severity levels

Data A P R N F
SVM (%) — Gaussian kernel

1P-5 65.7 + 1.3 63.2 + 1.0 94.7 + 0.2 27.8 +2.8 75.8 £ 0.7
IP-1 812+ 09 78.0 + 1.2 932 +0.5 65.5 +2.7 849 + 0.5
PPG-5 70.2 + 1.0 70.4 + 0.8 92.6 + 0.3 29.5+29 80.0 + 0.5
PPG-1 78.0 + 0.8 779 + 0.9 92.1 + 0.4 52.5 +2.7 84.4 + 0.4
ECG-5 80.2 + 0.7 78.4 + 0.9 953+ 0.5 534 +25 86.0 + 0.4
ECG-1 91.2 + 0.2 90.7 + 0.5 96.1 + 0.3 825+ 1.1 933 + 0.1

The bold values represent the highest score among of a specific group

In clinical practices, 5-min window duration is often applied for
HRV. Accordingly, we have used the same duration for comparison
with the baseline method in previous experiments. However, we
have also experimented the proposed feature extraction method
for different window duration (see Table 4.) The results demon-
strated that the proposed approach is able to encode time and fre-
quency domain features even for shorter window duration. This is
partly due to the repetitive nature of physiological signal character-
istics, e.g. QRS complex in ECG. Furthermore, shorter window
duration provides a higher number of samples for training and
hence improved classification performance, as shown in Table 4.

Comparatively, we found that it was difficult to classify the
severity levels of HFMD patients, which we hypothesise could be
for the following reasons. First, the HFMD dataset was collected
from children who are highly likely to move compared to the
more static adult tetanus patients. Motion artefacts affect data
quality and degrade classification performance. As a result, the
features extracted from the PPG waveforms in HFMD patients are
less discriminative compared to ECGs shown in Fig. 3. In addition,
a multi-class classification in the HFMD dataset (i.e. three classes)
is more challenging than the binary classification problem in the
tetanus dataset.

8. Conclusions: We presented our proof-of-principle study to triage
patients with infectious diseases (tetanus and HFMD) using low-cost
and unobtrusive wearable sensors that collect artefact-prone
physiological patient data. For this task, we proposed simple and
more generic (across modalities) features to encode the waveform
dynamics in time and frequency domains. Our approach was
validated on two independent datasets collected from tetanus and
HFMD patients in Southern Vietnam. In addition, the proposed
approach provides efficient hospital resource utilisation in low
resource-settings, which could in turn help improve overall patient
care. The proposed approach still depends on a manual encoding
of features. Thus, future works include collecting more patient data
and employing data-intensive models, such as deep learning, that
generalise better than handcrafted features across variations in
patients and acquisition devices.
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