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Abstract

In the past few decades, analysis of heart sound signals (i.e., the phonocardiogram or PCG), 

especially for automated heart sound segmentation and classification, has been widely studied and 

has been reported to have the potential value to detect pathology accurately in clinical 

applications. However, comparative analyses of algorithms in the literature have been hindered by 

the lack of high-quality, rigorously validated, and standardized open databases of heart sound 

recordings. This paper describes a public heart sound database, assembled for an international 
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competition, the PhysioNet/Computing in Cardiology (CinC) Challenge 2016. The archive 

comprises nine different heart sound databases sourced from multiple research groups around the 

world. It includes 2,435 heart sound recordings in total collected from 1,297 healthy subjects and 

patients with a variety of conditions, including heart valve disease and coronary artery disease. 

The recordings were collected from a variety of clinical or nonclinical (such as in-home visits) 

environments and equipment. The length of recording varied from several seconds to several 

minutes. This article reports detailed information about the subjects/patients including 

demographics (number, age, gender), recordings (number, location, state and time length), 

associated synchronously recorded signals, sampling frequency and sensor type used. We also 

provide a brief summary of the commonly used heart sound segmentation and classification 

methods, including open source code provided concurrently for the Challenge. A description of 

the PhysioNet/CinC Challenge 2016, including the main aims, the training and test sets, the hand 

corrected annotations for different heart sound states, the scoring mechanism, and associated open 

source code are provided. In addition, several potential benefits from the public heart sound 

database are discussed.
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1. Introduction

Cardiovascular diseases (CVDs) continue to be the leading cause of morbidity and mortality 

worldwide. An estimated 17.5 million people died from CVDs in 2012, representing 31% of 

all global deaths (WHO, 2015). One of the first steps in evaluating the cardiovascular system 

in clinical practice is physical examination. Auscultation of the heart sounds is an essential 

part of the physical examination and may reveal many pathologic cardiac conditions such as 

arrhythmias, valve disease, heart failure, and more. Heart sounds provide important initial 

clues in disease evaluation, serve as a guide for further diagnostic examination, and thus play 

an important role in the early detection for CVDs.

During the cardiac cycle, the heart first experiences electrical activation, which then leads to 

mechanical activity in the form of atrial and ventricular contractions. This in turn forces 

blood between the chambers of the heart and around the body, as a result of the opening and 

closure of the heart valves. This mechanical activity, and the sudden start or stop of the flow 

of blood within the heart, gives rise to vibrations of the entire cardiac structure (Leatham, 

1975). These vibrations are audible on the chest wall, and listening for specific heart sounds 

can give an indication of the health of the heart. An audio recording (or graphical) time 

series representation of the resultant sounds, transduced at the chest surface is known as a 

heart sound recording or phonocardiogram (PCG).

Four locations are most often used to listen to and transduce the heart sounds, which are 

named according to the positions in which the valves can be best heard (Springer, 2015):

• Aortic area - centred at the second right intercostal space.
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• Pulmonic area - in the second intercostal space along the left sternal border.

• Tricuspid area - in the fourth intercostal space along the left sternal edge.

• Mitral area - at the cardiac apex, in the fifth intercostal space on the 

midclavicular line.

Fundamental heart sounds (FHSs) usually include the first (S1) and second (S2) heart 

sounds (Leatham, 1975). S1 occurs at the beginning of isovolumetric ventricular contraction, 

when already closed mitral and tricuspid valves suddenly reach their elastic limit due to the 

rapid increase in pressure within the ventricles. S2 occurs at the beginning of diastole with 

the closure of the aortic and pulmonic valves (See Figure 1.) While the FHSs are the most 

recognizable sounds of the heart cycle, the mechanical activity of the heart may also cause 

other audible sounds, such as the third heart sound (S3), the fourth heart sound (S4), systolic 

ejection click (EC), mid-systolic click (MC), the diastolic sound or opening snap (OS), as 

well as heart murmurs caused by turbulent, high-velocity flow of blood.

The spectral properties of heart sounds and PCG recording artifacts have been well 

described (Leatham, 1975). In particular, the first, second and third heart sounds overlap 

with each other and several conditions (see Figure 2). Similarly, murmurs and artifacts from 

respiration and other non-physiological events overlap significantly in the frequency domain. 

This makes the separation of heart sounds from each other, and from abnormal sounds or 

artifacts impossible in the frequency domain. The similarity of the noise to normal and 

abnormal heart sounds makes identification of the latter also extremely difficult in the time 

domain.

Automated analysis of the heart sound in clinical applications usually consists of three steps 

shown in Figure 3; pre-processing, segmentation and classification. Over the past few 

decades, methods for automated segmentation and classification of heart sounds have been 

widely studied. Many methods have demonstrated potential to accurately detect pathologies 

in clinical applications. Unfortunately, comparisons between techniques have been hindered 

by the lack of high-quality, rigorously validated, and standardized databases of heart sound 

signals obtained from a variety of healthy and pathological conditions. In many cases, both 

experimental and clinical data are collected at considerable expense, but only analyzed once 

by their collectors and then filed away indefinitely, because funding climates change, and 

collaborators move on. Moreover, the activation energy needed to document data for external 

use, store and share data in a semi-permanent manner is rarely available at the end of a 

research project.

The PhysioNet/Computing in Cardiology Challenge 2016 (PhysioNet/CinC Challenge 2016) 

attempts to address some of these issues by assembling the research community to 

contribute multiple promising databases. Prior to the PhysioNet/CinC Challenge 2016 there 

were only three public heart sound databases available: i) The Michigan Heart Sound and 

Murmur database (UMHS), ii) The PASCAL database (Bentley et al., 2011) and iii) The 

Cardiac Auscultation of Heart Murmurs database (eGeneralMedical). These three databases 

can be summarized as follows:

Liu et al. Page 3

Physiol Meas. Author manuscript; available in PMC 2020 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• The Michigan Heart Sound and Murmur database (MHSDB) was provided by 

the University of Michigan Health System. It includes only 23 heart sound 

recordings with a total of time length of 1496.8 s and is available from http://

www.med.umich.edu/lrc/psb/heartsounds/index.htm

• The PASCAL database comprises 176 recordings for heart sound segmentation 

and 656 recordings for heart sound classification. Although the number of the 

recordings is relatively large, the recordings have the limited time length from 1 s 

to 30 s. They also have a limited frequency range below 195 Hz due to the 

applied low-pass filter, which removes many of the useful heart sound 

components for clinical diagnosis. It is available from http://

www.peterjbentlev.com/heartchallenge

• The Cardiac Auscultation of Heart Murmurs database is provided by eGeneral 

Medical Inc., includes 64 recordings. It is not open and requires payment for 

access from: http://www.egeneralmedical.com/listohearmur.html

It is important to note that these three databases are limited by the recording number, length 

or signal frequency range. In addition, two of these databases are intended to teach medical 

students auscultation, and therefore comprise high-quality recordings of very pronounced 

murmurs, not often seen in real-world recordings. In the PhysioNet/CinC Challenge 2016, a 

large collection of heart sound recordings was obtained from different real-world clinical 

and nonclinical environments (such as in-home visits). The data include not only clean heart 

sounds but also very noisy recordings, providing authenticity to the challenge. The data were 

recorded from both normal subjects and pathological patients, and from both children and 

adults. Although a limited portion of the data has been held back for test purposes 

(Challenge scoring), much of the hidden test data will be released on PhysioNet after the 

conclusion of the Challenge and subsequent special issue in the Journal Physiological 
Measurement. The purpose of this paper is to provide a detailed description of the heart 

sound data that comprise the training and test sets for the PhysioNet/CinC Challenge 2016, 

and to help researchers improve their algorithms in the Official Phase of the Challenge.

2. Description of the assembled heart sound databases

Table 1 details the composition of the assembled heart sound database. There are a total of 

nine heart sound databases collected independently by seven different research teams from 

seven countries and three continents, over a period of more than a decade. As a result, the 

hardware, recording locations, data quality and patient types differ substantially, and the 

methods for identifying gold standard diagnoses also vary. A description of each composite 

database is now given. The acoustic data were saved in either the text format or the .wav 

format.

2.1. MIT heart sounds database

The Massachusetts Institute of Technology heart sounds database (hereafter referred to as 

MITHSDB) was contributed by Prof John Guttag, Dr Zeeshan Syed and colleagues. An 

extensive description of the data can be found in Syed et al. (Syed, 2003; Syed et al., 2007). 

Heart sounds were recorded simultaneously with an electrocardiogram (ECG) using a Welch 
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Allyn Meditron electronic stethoscope (Skaneateles Falls, New York, USA), with a 

frequency response of 20 Hz to 20 kHz. Both PCG and ECG signals were sampled at 44,100 

Hz with 16-bit quantization. A total of 409 PCG recordings were made at nine different 

recording positions and orientations from 121 subjects. Each subject contributed several 

recordings. The subjects were divided into 5 groups: 1) normal control group: 117 

recordings from 38 subjects, 2) murmurs relating to mitral valve prolapse (MVP): 134 

recordings from 37 patients, 3) innocent or benign murmurs group (Benign): 118 recordings 

from 34 patients, 4) aortic disease (AD): 17 recordings from 5 patients, and 5) other 

miscellaneous pathological conditions (MPC): 23 recordings from 7 patients. The diagnosis 

for each patient was verified through echocardiographic examination at the Massachusetts 

General Hospital, Boston, MA, USA. These recordings were either performed during in-

home visits or in the hospital, and were performed in an uncontrolled environment, resulting 

in many of the recordings being corrupted by various sources of noise, such as talking, dogs 

barking and children playing. Other noise sources included stethoscope motion, breathing 

and intestinal sounds. The recording length varied from 9 s to 37 s, with mean and standard 

deviation (SD) of 33±5 s. For the purposes of the competition, the ECGs were extracted and 

stored in a WFDB-compliant format.

2.2. AAD heart sounds database

The Aalborg University heart sounds database (AADHSDB) was contributed by Dr. Samuel 

E. Schmidt and colleagues (Schmidt et al., 2010a; Schmidt et al., 2015; Schmidt et al., 

2010b). Heart sound recordings were made from the 4th intercostal space at the left sternal 

border on the chest of subjects using a Littmann E4000 electronic stethoscope (3M, 

Maplewood, Minnesota). The frequency response of the stethoscope was 20 to 1,000 Hz. 

The sample rate was 4,000 Hz with 16-bit quantization. A total of 151 subjects were 

recorded from patients were referred for coronary angiography at the Cardiology 

Department at Aalborg Hospital, Denmark. The aim of the study was diagnosis of CAD 

from heart sound, however in the current database normal and abnormal are defined base on 

if the patient has a heart valve defect either identified in the patient record or identified by a 

clear systolic or diastolic murmur. A total of 30 subjects had heart valve defect and where 

defined as abnormal. Patients were asked to breathe normally during the heart sound 

acquisition and between one and six PCG recordings were collected from each subject, 

resulting in a total of 695 recordings. Most of the recordings have a fixed time length of 8 s 

while a few recordings have a time length less than 8 s.

2.3. AUTHheart sounds database

The Aristotle University of Thessaloniki heart sounds database (AUTHHSDB) was 

contributed by Dr. Chrysa D. Papadaniil and colleagues (Papadaniil and Hadjileontiadis, 

2014). Heart sounds were recorded in the first Cardiac Clinic of Papanikolaou General 

Hospital in Thessaloniki, Greece, using AUDIOSCOPE, a custom-made electronic 

stethoscope that records signals amplified and unfiltered. The sample rate was 4,000 Hz with 

16-bit quantization. Forty-five subjects were enrolled within an age range of 18–95 years; in 

particular, 11 normal subjects, 17 patients with aortic stenosis (AS) and 17 patients with 

mitral regurgitation (MR). The diagnosis and the severity of the heart valve diseases were 

determined by the doctors, based on the echocardiogram of the patient. The recordings were 
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recorded from the auscultation position of the chest where the murmur is best heard for each 

valve dysfunction, while the normal heart sounds were recorded from the apex. Each subject 

gave one PCG recording (total 45 recordings) and the recordings had varied time length 

from 10 s to 122 s (mean±SD: 50±26 s).

2.4. TUT heart sounds database

The K. N. Toosi University of Technology heart sounds database (TUTHSDB) was 

contributed by Dr. Hosein Naseri (Naseri and Homaeinezhad, 2013; Naseri et al., 2013). It 

includes a total of 28 healthy volunteers and 16 patients with different types of valve 

diseases. The actual diagnoses were determined by echocardiography prior to recording of 

PCG signals. PCG signals were recorded by using an electronic stethoscope (3M Littmanns 

3200) at four different locations (not simultaneously): pulmonic, aortic, tricuspid and apex at 

a sampling rate of 4,000 Hz with 16-bit amplitude resolution for exactly 15 s each. Two 

subjects only had 3 PCG recordings, resulting in a total of 174 PCG recordings.

2.5. UHA heart sounds database

The University of Haute Alsace heart sounds database (UHAHSDB) was contributed by Dr. 

Ali Moukadema (Moukadem et al., 2013; Moukadem et al., 2011). Heart sound signals were 

recorded using prototype stethoscopes produced by Infral Corporation (Strasbourg, France). 

The sample rate was 8,000 Hz with 16-bit quantization. The dataset contains total 79 PCG 

recordings, including 39 normal sounds and 40 pathological cardiac sounds. The normal 

sound recordings were separated into two sub-files: ‘NHC’ (19 recordings) and ‘MARS500’ 

(20 recordings). ‘NHC’ recordings were collected from 19 normal subjects, aged from 18 to 

40 years. The recording length varied from 7 s to 29 s (mean±SD: 14±5 s). ‘MARS500’ 

recordings were collected from 6 volunteers (astronauts), dedicating to the Cardio-Psy 

experience as a part of the MARS500 project (IBMP-Russia) promoted by European Spatial 

Agency. The recording length varied from 7 s to 17 s (mean±SD: 10±3 s). The pathologic 

recordings were from 30 patients (10 female and 20 male), who were recruited during 

hospitalization in the Hospital of Strasbourg. They were aged from 44 to 90 years. Ten of 

them were recorded twice generally before and after valvular surgery. The diagnoses of the 

pathologic patients were made by an experienced cardiologist using additional information 

from the ECG and echocardiography-Doppler. Among 30 patients, 9 patients had prosthetic 

valves with 1 bioprosthesis, 4 patients had double prostheses (in aortic and mitral positions), 

and the other patients presented rhythm disturbances (ventricular extra systoles, AV block 

and tachyarrhythmia) in the context of ischemic cardiomyopathy. The recordings varied in 

length from 6 s to 49 s (mean±SD: 16±9 s).

2.6. DLUTheart sounds database

The Dalian University of Technology heart sounds database (DLUTHSDB) was contributed 

by Dr. Hong Tang (Li et al., 2011; Tang et al., 2010a; Tang et al., 2010b; Tang et al., 2012). 

Subjects included 174 healthy volunteers (2 female and 172 male, aged from 4 to 35 years, 

mean±SD: 25±3 years) and 335 CAD patients (227 female and 108 male, aged from 10 to 

88 years, mean±SD: 60±12 years). Heart sounds from the CAD patients were recorded in 

the Second Hospital of Dalian Medical University using an electronic stethoscope (3M 

Littmann). CAD patients were confirmed based on the cardiologist’s diagnosis. Only PCG 
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signals were available and all of them were collected from the mitral position at the chest. 

Data were saved in the .wav format using a sampling rate of 8,000 Hz with 16-bit 

quantization. Each patient provided one PCG recording and there were a total of 335 

recordings. The recording length varied from about 3 s to 98 s (mean±SD: 17±12 s). Heart 

sound signals from the healthy volunteers were recorded using a microphone sensor 

(MLT201, ADinstrument, Australia) or a piezoelectric sensor (Xinhangxingye Technology 

Co. Lt., China) at the Biomedical Engineering Lab in DLUT, China. Each subject 

contributed one or several recordings and a total of 338 recordings were collected. 

Recordings included either a single channel (PCG) or several channels (PCG combined with 

ECG, photoplethysmogram or respiratory signals). ECG signals were the standard lead-II 

ECG. Photoplethysmogram signals were recorded from the carotid artery or finger. 

Respiratory signals were collected using a MLT1132 belt transducer (ADinstrument, 

Australia) to record chest movement. The recording lengths varied from about 27.5 s to 

312.5 s (mean±SD: 209±78 s). Various sampling rates were used (800 Hz, 1,000 Hz, 2,000 

Hz, 3,000Hz, 4,000 Hz, 8,000 Hz or 22,050 Hz) depending on different research aims. All 

338 recordings could be separated into two sub-types: recordings during rest (218 

recordings) where the subjects were in peaceful calm states, and recordings during non-

resting states (120 recordings). Non-resting recordings were collected immediately after step 

climbing (116 recordings), during cycles of breath holding (3 recordings), and after the bike 

cycling (1 recording).

2.7. SUA heart sounds database

The Shiraz University adult heart sounds database (SUAHSDB) was contributed by Dr. Reza 

Sameni and colleagues (Samieinasab and Sameni, 2015). This database was constructed 

using recordings made from 79 healthy subjects and 33 patients (total 69 female and 43 

male, aged from 16 to 88 years, mean±SD: 56±16 years). The JABES digital electronic 

stethoscope (GS Technology Co. Ltd., South Korea) was used, placed on the chest, 

commonly above the apex region of the heart. The Audacity cross-platform audio software 

was used for recording and editing the signals on a PC. The subjects were asked to relax and 

breathe normally during the recording session. The database consists of 114 recordings 

(each subject/patient had one heart sound signal but one healthy subject had three), resulting 

in 81 normal recordings and 33 pathological recordings. The recording length varied from 

approximately 30 s to 60 s (mean±SD: 33±5 s). The sampling rate was 8,000 Hz with 16-bit 

quantization except for three recordings at 44,100 Hz and one at 384,000 Hz. The data were 

recorded in wideband mode of the digital stethoscope, with a frequency response of 20 Hz to 

1 kHz.

2.8. SUF heart sounds database

The Shiraz University fetal heart sounds database (SUFHSDB) was also contributed by Dr. 

Reza Sameni and colleagues (Samieinasab and Sameni, 2015). This database was 

constructed using recordings made from 109 pregnant women (mothers aged from 16 to 47 

years, mean±SD: 29±6 years with BMI from 19.5 to 38.9, mean±SD: 29.2±4.0). The JABES 

digital electronic stethoscope (GS Technology Co. Ltd., South Korea) was used, and placed 

on the lower maternal abdomen as described in (Samieinasab and Sameni, 2015). In the case 

of twins (seven cases) the data were collected twice according to the locations advised by 
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the expert gynecologist. The Audacity cross-platform audio software was used for recording 

and editing the signals on a PC. In total, 99 subjects had one signal recorded, three subjects 

had two and seven cases of twins were recorded individually, resulting in 119 total 

recordings. The average duration of each record was about 90 seconds. The sampling rate 

was generally 8,000 Hz with 16-bit quantization and a few recordings were sampled at 

44,100 Hz. The data were recorded in wideband mode of the digital stethoscope, with a 

frequency response of 20 Hz to 1 kHz. In most cases (91 subjects), the heart sounds of the 

mothers were also recorded before each fetal PCG recording session. As a result, a total 

number of 92 maternal heart sounds data (90 subjects had one heart sound signal but one had 

two signals recorded) are also available in the dataset.

2.9. SSH heart sounds database

The Skejby Sygehus Hospital heart sounds database (SSHHSDB) was assembled from 

patients referred to Skejby Sygehus Hospital, Denmark. It comprises 35 recordings from 12 

normal subjects and 23 pathological patients with heart valve defect. All recordings are 

obtained from the 2nd intercostal room just right to sternum. The recording length varied 

from approximately 15 s to 69 s (mean±SD: 36±12 s) and the sampling rate was 8,000 Hz.

3. Brief review on heart sound segmentation methods

The segmentation of the FHSs is a first step in the automatic analysis of heart sounds. The 

accurate localization of the FHSs is a prerequisite for the identification of the systolic or 

diastolic regions, allowing the subsequent classification of pathological situations in these 

regions (Liang et al., 1997b; Springer, 2015; Springer et al., 2014). S1 is initiated by the 

closure of the atrioventricular valves at the beginning of the systole and occurs immediately 

after the R-peak (ventricular depolarization) of the ECG. S2 is initiated by the closure of the 

semilunar valves at the beginning of the diastole and occurs at approximately at the end-T-

wave of the ECG (the end of ventricular depolarization). The time order of these features in 

ECG and PCG is shown in Figure 4 (Springer, 2015). In clinical practice, the criteria 

adopted by the cardiologist to annote the beginning and the ending of each sound was to 

define: the Mitral closure initiating S1 with high frequency vibration, the aortic closure 

generating the high frequencies beginning S2 and the end of S1 and S2 are annotated by the 

end of the high amplitude vibrations (Moukadem et al., 2013).

Many methods of heart sound segmentation have been studied over the past few decades. 

The typical methods can be classified into four types: the first type is envelope-based 

method, i.e., using a variety of techniques to construct the envelopes of heart sound and thus 

to perform the heart sound segmentation; the second one is feature-based method, i.e., by 

calculating the features of heart sounds to segment the signal; the third one is the machine 

learning method and the last one, also as the state-of-the-art method, is hidden Markov 

model (HMM) method. We will give a brief summary for the aforementioned four types of 

heart sound segmentation methods. The size of the database of subjects and recordings used 

in each study, as well as the numerical results, will be also presented (see Table 2).
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3.1. Envelope-based methods

Shannon energy envelope is the most used envelope for PCG envelope extraction. Liang et al 
proposed a normalized average Shannon energy envelope (Liang et al., 1997a), which 

emphasized the medium-intensity sounds while attenuating the low-intensity components. 

The performance of this method was evaluated using 515 PCG cycles from 37 recordings 

acquired from children with murmurs and achieved 93% accuracy for PCG segmentation. 

Another study from Liang et al employed wavelet decomposition before estimation of the 

Shannon envelope and segmented heart sound into four parts: S1, systole, S2 and diastole 

(Liang et al., 1997b). This method was evaluated using 1,165 cardiac cycles and got an 

improved accuracy from 84% to 93% on a noisy 77 recordings including both normal and 

abnormal heart sounds. Moukadem et al proposed a method to calculate the Shannon energy 

envelope of the local spectrum calculated by the S-transform for each sample of heart sound 

signal. This method was evaluated on 40 normal and 40 pathological heart sound recordings. 

The sensitivity and positive predictivity were both higher than 95% for normal and 

pathological heart sound segmentation (Moukadem et al., 2013).

Envelope extraction based on Hilbert transform can be divided into two aspects: 1) the 

envelope is the decimated signal of the real part of a complex analytic signal, and 2) the 

instantaneous frequency is the derivative of the imaginary part of complex analytic signal. 

Sun et al proposed an automatic segmentation method based on Hilbert transform (Sun et 

al., 2014). This method considered the characteristics of envelopes near the peaks of S1, the 

peaks of S2, the transmission points T12 from S1 to S2, and the transmission points T21 

from S2 to S1. It was validated using 7,730 s of heart sounds from pathological patients, 600 

s from normal subjects, and 1496.8 s from Michigan MHSDB database. For the sounds 

where S1 cannot be separated from S2, an average accuracy of 96.69% was achieved. For 

the sounds where S1 can be separated from S2, an average accuracy of 97.37% was 

achieved.

Jiang and Choi proposed an envelope extraction method named cardiac sound characteristic 

waveform (CSCW) (Jiang and Choi, 2006). However, they only reported the example figures 

without reporting any quantitative results. In their following study, they compared this 

CSCW method with other two popular envelope-based methods: Shannon energy and 

Hilbert transform envelopes, and found the CSCW method to be superior to both of these, 

concluding that their method led to more accurate segmentation results: 100% and 88.2% on 

normal and pathological patients respectively, as compared to 78.2% and 89.4% for the 

Shannon energy envelope and 51.4% and 47.3% for the Hilbert transform envelope (Choi 

and Jiang, 2008). However, these results were only evaluated on 500 selected cardiac cycles 

without a split between their training and test sets. Yan et al also used a similar characteristic 

moment waveform envelope method for segmenting heart sound (Yan et al., 2010). This 

method was only evaluated on a small dataset of 9 recordings and reported an accuracy of 

99.0%, again without a train-test split.

A simple squared-energy envelope was proposed by Ari et al (Ari et al., 2008). It is 

primarily based on the use of frequency content present in the signal, calculation of energy 

in time windows and timing relations of signal components. It was shown to have a better 

performance than Shannon energy envelope when employing a threshold-based detection 
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method. Testing on a total of 357 cycles from 71 recordings showed the segmentation 

accuracy is 97.47% (without a train-test split).

3.2. Feature-based methods

Naseri and Homaeinezhad used frequency- and amplitude-based features, and then 

employed a synthetic decision making algorithm for heart sound segmentation (Naseri and 

Homaeinezhad, 2013). The proposed method was applied to 52 PCG signals gathered from 

patients with different valve diseases and achieved an average sensitivity of 99.00% and 

positive predictivity of 98.60%. Kumar et al proposed a detection method based on a high 

frequency feature, which is extracted from the heart sound using the fast wavelet 

decomposition (Kumar et al., 2006). This feature is physiologically motivated by the 

accentuated pressure differences found across heart valves, both in native and prosthetic 

valves. The method was validated on patients with mechanical and bioprosthetic heart valve 

implants in different locations, as well as with patients with native valves, and achieved an 

averaged sensitivity of 97.95% and positive predictivity of 98.20%.

Varghees and Ramachandran used an instantaneous phase feature from the analytical signal 

after calculating the Shannon entropy (Varghees and Ramachandran, 2014). This method is a 

quite straightforward approach that does not use any search-back steps. It was tested using 

both clean and noisy PCG signals with both normal and pathological heart sounds (701 

cycles), and achieved an average sensitivity of 99.43% and positive predictivity of 93.56% 

without a train-test split. Pedrosa et al used periodic component features from the analysis 

signal of the autocorrelation function to segment heart sound signal (Pedrosa et al., 2014). 

Their method was tested on 72 recordings and had sensitivity and positive predictivity of 

89.2% and 98.6% respectively.

Unlike using the absolute amplitude or frequency characteristics of heart sounds, Nigam and 

Priemer used complexity-based features by utilizing the underlying complexity of the 

dynamical heart sound for PCG segmentation and this method showed good performance on 

the synthetic data (Nigam and Priemer, 2005). However, this study did not provide any 

quantitative results for evaluation. Vepa et al also used complexity-based features for heart 

sound segmentation, which combined energy-based and simplicity-based features computed 

from multi-level wavelet decomposition coefficients (Vepa et al., 2008). The method was 

evaluated on only 166 cycles and achieved an accuracy of 84.0%.

Papadaniil and Hadjileontiadis employed kurtosis-based features alongside ensemble 

empirical mode decomposition to select non-Gaussian intrinsic mode functions (IMFs), and 

then detected the start and end positions of heart sounds within the selected IMFs 

(Papadaniil and Hadjileontiadis, 2014). The method was tested on 11 normal subjects and 32 

pathological patients, and achieved an accuracy of 83.05%. In addition, an ECG-referred 

pediatric heart sound segmentation method was proposed in (Gharehbaghi et al., 2011). This 

algorithm was applied on 120 recordings of normal and pathological children, totally 

containing 1,976 cardiac cycles, and achieved accuracy of 97% for S1 and 94% for S2.
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3.3. Machine learning methods

Neural network technology is widely used as a typical machine learning method for heart 

sound segmentation. Oskiper and Watrous proposed a time-delay neural network method for 

detecting the S1 sound (Oskiper and Watrous, 2002). The method consists of a single hidden 

layer network, with time-delay links connecting the hidden units to the time-frequency 

energy coefficients of Morlet wavelet decomposition. The results tested on 30 healthy 

subjects (without a train-test split) showed an accuracy of 96.2%. Sepehri et al used a multi-

layer perceptron neural network classifier for heart sound segmentation, which paid special 

attention to the physiological effects of respiration on pediatric heart sounds (Sepehri et al., 

2010). A total of 823 cycles from 40 recordings of normal children and 80 recordings of 

children with congenital heart diseases were tested and an accuracy of 93.6% was achieved 

when splitting the recordings equally between training and test datasets.

K-means clustering is another widely used method. Chen et al used a K-means clustering 

and a threshold method to identify the heart sounds, achieving 92.1% sensitivity and 88.4% 

positive predictivity tested on 27 recordings from healthy subjects (Chen et al., 2009). Gupta 

et al also used K-means clustering combined with homomorphic filtering for segmenting 

heart sounds into single cardiac cycle (S1-systole-S2-diastole) (Gupta et al., 2007). This 

method was tested on 340 cycles and achieved an accuracy of 90.29%. Tang et al employed 

dynamic clustering for segmenting heart sounds (Tang et al., 2012). In this method, the heart 

sound signal was first separated into cardiac cycles based on the instantaneous cycle 

frequency and then was decomposed into time-frequency atoms, and finally the atoms of 

heart sounds were clustered in time-frequency plane allowing the classification of S1 and 

S2. The results tested on 25 subjects showed an accuracy of 94.9% for S1 and 95.9% for S2.

Rajan et al developed an unsupervised segmentation method by first using Morlet wavelet 

decomposition to obtain a time-scale representation of the heart sounds and then using an 

energy profile of the time-scale representation and a singular value decomposition technique 

to identify heart sound segments (Rajan et al., 2006). This method was tested on a dataset of 

42 adult patients and achieved an accuracy of 90.5%.

3.4. Hidden Markov Model (HMM) methods

Gamero and Watrous proposed an HMM-based methodology, which employed a 

probabilistic finite state-machine to model systolic and diastolic interval duration (Gamero 

and Watrous, 2003). The detection of S1 and S2 was performed using a network of two 

HMM with grammar constraints to parse the sequence of systolic and diastolic intervals. 

Results were evaluated on 80 subjects and a sensitivity of 95% and a positive predictivity of 

97% were achieved (without a train-test split). Ricke et al also used an HMM method for 

segmenting heart sounds into four components (S1-systole-S2-diastole), and achieved an 

accuracy of 98% when using eight-fold cross-validation (Ricke et al., 2005). However, this 

study was only performed on a relative small subject size of 9.

Gill et al were the first researchers to incorporate timing durations within the HMM method 

for heart sound segmentation (Gill et al., 2005). In their method, homomorphic filtering was 

first performed and then sequences of features were extracted to be used as observations 
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within the HMM. Evaluation on 44 PCG recordings taken from 17 subjects showed that for 

S1 detection, sensitivity and positive predictivity were 98.6% and 96.9% respectively, and 

for S2 detection, they were 98.3% and 96.5% respectively. Sedighian et al (Sedighian et al., 

2014) also used homomorphic filtering and an HMM method on the PASCAL database 

(Bentley et al., 2011) and obtained an average accuracy of 92.4% for S1 segmentation and 

93.5% for S2 segmentation. By comparison, Costra et al (Castro et al., 2013) used the 

wavelet analysis on the same database and achieved an average accuracy of 90.9% for S1 

segmentation and 93.3% for S2 segmentation.

Schmidt et al were the first researchers to explicitly model the expected duration of heart 

sounds within the HMM using a hidden semi-Markov model (HSMM) (Schmidt et al., 

2010a). They first hand-labelled the positions of the S1 and S2 sounds in 113 recordings, 

and then used the average duration of these sounds and autocorrelation analysis of systolic 

and diastolic durations to derive Gaussian distributions for the expected duration of each of 

the four states, i.e., S1, systole, S2 and diastole. The employed features were the 

homomorphic envelope and three frequency band features (25–50, 50–100 and 100–150 

Hz). These features, along with the hand-labelled positions of the states, were used to derive 

Gaussian distribution-based emission probabilities for the HMM. The duration distributions 

were then incorporated into the forward and backward paths of the Viterbi algorithm. The 

results on the separate test set were 98.8% sensitivity and 98.6% positive predictivity.

Based on Schmidt et al’s work (Schmidt et al., 2010a), Springer et al used the HSMM 

method and extended it with the use of logistic regression for emission probability 

estimation, to address the problem of accurate segmentation of noisy, real-world heart sound 

recordings (Springer et al., 2015). Meanwhile, a modified Viterbi algorithm for decoding the 

most-likely sequence of states was also implemented. This method is regarded as the state-

of-the-art method in heart sound segmentation studies. It was evaluated on a large dataset of 

10,172 s of heart sounds recorded from 112 patients and achieved an average F1 score of 

95.63% on a separate test dataset, significantly improving upon the highest score of 86.28% 

achieved by the other reported methods in the literature when evaluated on the same test 

data.

4. Brief review on heart sound classification methods

The automated classification of pathology in heart sounds has been described in the 

literature for over 50 years, but accurate diagnosis remains a significant challenge. Gerbarg 

et al (Gerbarg et al., 1963) were the first to publish on the automatic classification of 

pathology in heart sounds, (specifically to aid the identification of children with rheumatic 

heart disease) and used a threshold-based method. The typical methods for heart sound 

classification can be grouped into four categories: 1) artificial neural network-based 

classification; 2) support vector machine-based classification; 3) hidden Markov model-

based classification and 4) clustering-based classification. The current prominent works in 

this field are summarized in Table 3. The important notes about the evaluation of the 

method, such as whether the data was split into training and test sets, are also reported. For 

relative brevity, only the notable studies with sizeable datasets are summarized in detail 

below.
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4.1. Artificial neural network-based classification

The artificial neural network (ANN) is the most widely used machine learning-based 

approach for heart sound classification. Unless auto-associative in nature, ANN classifiers 

require discriminative signal features as inputs. (Relatively little work has been performed 

on optimizing network architectures in this context.) Typical signal features include: wavelet 

features, time, frequency and complexity-based features and time-frequency features.

Wavelet-based features are most widely employed in ANN approaches to classification of 

heart sounds. Akay et al combined wavelet features with an ANN for the automatic detection 

of CAD patients (Akay et al., 1994). They computed four features (mean, variance, 

skewness and kurtosis) of the extracted coefficients of wavelet transform from the diastolic 

period of heart cycles. These features, alongside physical characteristics (sex, age, weight, 

blood pressure), were fed into a fuzzy neural network, and a sensitivity of 85% and a 

specificity of 89% on a separate test set of 82 recordings were reported. (Liang and Hartimo, 

1998) employed wavelet packed decomposition with the aim of differentiating between 

pathological and innocent murmurs in children when using ANN classification. Eight nodes 

of the wavelet packet tree were selected automatically using on an information-based cost 

function. The cost function values then served as the feature vector. With a 65/20 patient 

train/test split they achieved 80% sensitivity and 90% specificity on the test data. (Uguz, 

2012a). employed an ANN with the features from a discrete wavelet transform and a fuzzy 

logic approach to perform three-class classification: normal, pulmonary stenosis, and mitral 

stenosis. With a 50/50 train/test split of a dataset of 120 subjects, they reported 100% 

sensitivity, 95.24% specificity, and 98.33% average accuracy for the three-classes.

(Bhatikar et al., 2005) used the fast Fourier transform (FFT) to extract the energy spectrum 

features in frequency domain, and then used these as inputs to an ANN. Using a separate test 

set of 53 patients they reported 83% sensitivity and 90% specificity when differentiating 

between innocent and pathological murmurs. (Sepehri et al., 2008) identified the five 

frequency bands that led to the greatest difference in spectral energy between normal and 

pathological recordings and used the spectral energy in these bands as the input features for 

the ANN. Reported results on 50 test records were 95% sensitivity and 93.33% specificity 

for a binary classification. (Ahlstrom et al., 2006) assessed a range of non-linear complexity-

based features that had not previously been used for murmur classification. They included 

up to 207 features and finally selected 14 features to present to an ANN. They reported 86% 

classification accuracy for a three-class problem: normal, aortic stenosis and mitral 

regurgitation.

(De Vos and Blanckenberg, 2007) used time-frequency features and extracted the energy in 

12 frequency bins at 10 equally-spaced time intervals over each heart cycle to presents to an 

ANN. They reported a sensitivity and specificity of 90% and 96.5% respectively on 163 test 

patients (aged between 2 months and 16 years). (Uguz, 2012b) also used time-frequency as 

an input to an ANN. A total of 120 heart sound recordings, split 50/50 into train/test, and 

reported 90.48% sensitivity, 97.44% specificity and 95% accuracy for a three-class 

classification problem (normal, pulmonary and mitral stenosis heart valve diseases).
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4.2. Support vector machine-based classification

A number of researchers have applied a support vector machine (SVM) approach to the 

heart sound classification in recent years. Since SVMs are another form of supervised 

machine learning, the features chosen are rather similar to those based on ANN approaches.

Wavelet-based features are therefore widely employed in SVM-based methods. (Ari et al., 

2010) used a least square SVM (LSSVM) method for classification of normal and abnormal 

heart sounds based on the wavelet features. The performance of the proposed method was 

evaluated on 64 recordings comprising of normal and pathological cases. The LSSVM was 

trained and tested on a 50/50 split (32 patients in each set) and the authors reported an 

86.72% accuracy on their test dataset. (Zheng et al., 2015) decomposed heart sounds using 

wavelet packets and then extracted the energy fraction and sample entropy as features for the 

SVM input. Tested on 40 normal and 67 pathological patients, they reported a 97.17% 

accuracy, 93.48% sensitivity and 98.55% specificity. (Patidar et al., 2015) investigated the 

use of the tunable-Q wavelet transform as an input to LSSVM with varying kernel functions. 

Testing on a dataset of 4,628 cycles from 163 heart sound recordings (and an unknown 

number of patients) they reported a 98.8% sensitivity and 99.3% specificity, but without 

stratifying patients (having mutually exclusive patients in testing and training sets), and 

therefore over-fitting to their data.

(Maglogiannis et al., 2009) used Shannon energy and frequency features from four 

frequency bands (50–250, 100–300, 150–350, 200–400 Hz) to develop an automated 

diagnosis system for the identification of heart valve diseases based on an SVM classifier. 

Testing on 38 normal and 160 heart valve disease patients they reported an 87.5% sensitivity, 

94.74% specificity and 91.43% accuracy. (Gharehbaghi et al., 2015) used frequency band 

power over varying length frames during systole as input features and used a growing-time 

SVM (GTSVM) to classify pathological and innocent murmurs. When using a 50/50 train/

test split (from a total of 30 patients with aortic stenosis, 26 with innocent murmurs and 30 

normals), they reported 86.4% sensitivity and 89.3% specificity.

4.3. Hidden Markov model-based classification

HMM methods are not only widely employed for heart sound segmentation, but are also 

used for pathology classification of heart sounds. In the case of classifying pathology, the 

posterior probability of the heart sound signal or the extracted features given a trained HMM 

can be used to differentiate between healthy and pathological recordings.

(Wang et al., 2007) used a combination of HMM and mel-frequency cepstral coefficients 

(MFCCs) to classify heart sound signals. The feature extraction was performed using three 

methods: time-domain feature, short-time Fourier transforms (STFT) and MFCCs. Testing 

on 20 normal and 21 abnormal patients with murmurs they reported a sensitivity of 95.2% 

and a specificity of 95.3%. In a subsequent study, they also used MFCCs to extract 

representative features and developed a HMM-based method for heart sound classification 

(Chauhan et al., 2008). The method was applied to 1,381 cycles of real and simulated, 

normal and abnormal heart sounds and they reported an accuracy of 99.21%. However, both 

studies failed to make use of a separate test set when evaluating their classification methods 
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and the methods are likely to be highly over-trained. (Saracoglu, 2012) applied a HMM in an 

unconventional manner, by fitting an HMM to the frequency spectrum extracted from entire 

heart cycles. The exact classification procedure of using the HMMs is unclear, but it is 

thought that they trained four HMMs, and then evaluated the posterior probability of the 

features given each model to classify the recordings. They optimized the HMM parameters 

and PCA-based feature selection on a training set and reported 95% sensitivity, 98.8% 

specificity and 97.5% accuracy on a test dataset of 60 recordings.

In summary, although HMM-based approaches are regarded as the state-of-the-art heart 

sound segmentation method, their potential to classify heart sounds has not yet been 

adequately demonstrated.

4.4. Clustering-based classification

A number of researchers have made use of the unsupervised k-nearest neighbours (kNN) 

algorithm to classify pathology in heart sounds. (Bentley et al., 1998) showed that discrete 

wavelet transform features outperformed morphological features (time and frequency 

features from S1 and S2) when performing heart sound classification using such a method. 

They used a binary kNN classifier and reported 100% and 87% accuracy when detecting 

pathology in patients with heart valve disease and prosthetic heart valves respectively on an 

unspecified sized database. (Quiceno-Manrique et al., 2010) used a simple kNN classifier 

with features from various time-frequency representations on a subset of 16 normal and 6 

pathological patients. They reported 98% accuracy for discriminating between normal and 

pathologic beats. However, the kNN classifier parameters were optimized on the test set, 

indicating a likelihood of over-training. (Avendano-Valencia et al., 2010).also employed 

time-frequency features and kNN approach for classifying normal and murmur patients. In 

order to extract the most relevant time-frequency features, two specific approaches for 

dimensionality reduction were presented in their method: feature extraction by linear 

decomposition, and tiling partition of the time-frequency plane. The experiments were 

carried out using 26 normal and 19 pathological recordings and they reported an average 

accuracy of 99.0% when using 11-fold cross-validation with grid-based dimensionality 

reduction.

5. Description of the 2016 PhysioNet/CinC Challenge

5.1. Main aim

The 2016 PhysioNet/CinC Challenge aims to encourage the development of algorithms to 

classify heart sound recordings collected from a variety of clinical or nonclinical 

environments (such as in-home visits). The practical aim is to identify, from a single short 

recording (10–60s) from a single precordial location, whether the subject of the recording 

should be referred on for an expert diagnosis.

As pointed out in the above reviews, a number of studies have investigated the performances 

of different methods for heart sound segmentation and classification. However, many of 

these investigations are flawed because: 1) the studies were marred by poor methodology, 

often without the use of a separate test set or by allowing data from the same patient to 
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appear in both the training and test sets, almost certainly resulting in over-fitting of the 

model and inflated statistics; 2) the studies did not clearly describe the database used (type 

of patient, size, etc.) and did not report the method/location for heart sound recording; 3) the 

studies tended to use hand-picked clean data in their database, used manual labels, and 

excluded noisy data, which leads to an algorithm that is of little use in the real world; 4) 

failure to use enough or a variety of heart sound recordings; and 5) failure to post the data 

(and any code to process the data) publicly so others may compare their results directly. The 

latter issue is often due to lack of time and resources, and therefore this challenge is an 

attempt to address both this and the aforementioned issues.

In this Challenge, we focused only on the accurate classification of normal and abnormal 

heart sound recordings, particularly in the context of real world (extremely noisy) recordings 

with low signal quality. By providing the largest public collection of heart sound recordings 

from a variety of clinical and nonclinical environments, the Challenge permits the 

challengers to develop accurate and robust algorithms. In addition, due to the uncontrolled 

environment of the recordings, many recordings provided in this Challenge are corrupted by 

various noise sources, such as speech, stethoscope motion, breathing and intestinal activity. 

Some recordings were difficult or even impossible to classify as normal or abnormal. Figure 

5 shows an example of a section of a heart sound recording with good (upper plot) and poor 

(lower plot) signal quality respectively. Therefore the challengers were given the choice to 

classify some recordings as ‘unsure’ and the Challenge penalizes this in a different manner 

(see section 5.3: Scoring Mechanism). Classifications for the heart sound recordings were 

therefore three-level: normal (do not refer), abnormal (refer for further diagnostics) and 

unsure (too noisy to make a decision; retake the recording). In this way, any algorithm 

developed could be employed in an expert-free environment and used as decision support.

5.2. Challenge data

Heart sound recordings (nine independent databases) sourced from seven contributing 

research groups described in section 2 (with the exception of the SUFHSDB since it was 

from fetal and maternal heart sounds), were divided into training and test sets. The 

Challenge training set consists of six databases (with file names prefixed alphabetically, a 
through f, training sets a through e were provided before the official phase and training set f 
was added after the beginning of the official phase) containing a total of 3,240 heart sound 

recordings from 764 subjects/patients, lasting from 5 s to just over 120 s. The Challenge test 

set also consists of six databases (b through e, plus g and i) containing a total of 1,353 heart 

sound recordings from 308 subjects/patients, lasting from 6 s to 104 s. The total number of 

recordings created for the Challenge was 4,593 and is different from the reported number of 

2,435 in Table 1. This is because the 338 recordings from normal subjects in the 

DLUTHSDB are usually longer than 100 s and each recording was segmented into several 

relatively short recordings. All recordings were resampled to 2,000 Hz using an anti-alias 

filter and provided as .wav format. Each recording contains only one PCG lead, except for 

training set a, which also contains a simultaneously recorded ECG.

In each of the databases, each recording begins with the same letter followed by a 

sequential, but random number. Files from the same patient are unlikely to be numerically 
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adjacent. The training and test sets have each been divided so that they are two sets of 

mutually exclusive populations (i.e., no recordings from the same subject/patient were in 

both training and test sets). Moreover, there are four collected databases that have been 

placed exclusively in either the training or test sets (to ensure there are ‘novel’ recording 

types and to reduce over-fitting on the recording methods). Databases a and f are exclusively 

in the training set and g and i are exclusively in the test set. The test set is unavailable to the 

public and will remain private for the purpose of scoring. (In the future, as more data are 

added, we may release all the data to the public.) Participants may note the existence of a 

validation dataset in the data folder. This data is a copy of 300 recordings from the training 

set, and is used to validate uploaded entries before their evaluation on the test set.

In both training and test sets, heart sound recordings were divided into two types: normal 

and abnormal recordings. The normal recordings were from healthy subjects and the 

abnormal ones were from patients with a confirmed cardiac diagnosis. The patients were 

noted to suffer from a variety of illnesses (which is not provided here on a case-by-case 

basis but is detailed in an online appendix to this article), but typically they are heart valve 

defects and CAD patients. Heart valve defects include mitral valve prolapse, mitral 

regurgitation, aortic regurgitation, aortic stenosis and valvular surgery. All the recordings 

from the patients were generally labeled as abnormal. We do not provide more specific 

classification for these abnormal recordings. Please note that both training and test sets are 

unbalanced, i.e., the number of normal recordings does not equal that of abnormal ones. 

Challengers will have to consider this when they train and test their algorithms.

In addition, to facilitate the challengers in training their algorithms to identify low signal 

quality recordings, we provided the labels for ‘unsure’ recordings with poor signal quality in 

all training data. We also provided reference annotations for the four heart sound states (S1, 

systole, S2 and diastole) for each beat for all recordings that were not belong to ‘unsure’ 

type. The reference annotations were obtained by using Springer’s segmentation algorithm 

(Springer et al., 2015) and subsequently manually reviewing and correcting each beat labels, 

resulting in a total of 84,467 beats in training set and 32,575 beats in test set after hand 

correction. Figure 6 illustrates an example where the automatic segmentation algorithm 

outputs the wrong annotation and the corresponding correct annotation from hand-

correction. Table 4 summarizes the number of patients and recordings, the recording 

percentages and time lengths, the percentages of hand corrected recordings and heart beats, 

as well as the corresponding number of hand corrected recordings/beats for each database, 

for both training and test sets. As shown in Table 4, 22.8% of the recordings in the training 

set and 20.2% of the recordings in the test set required hand correction, with corresponding 

percentages of hand corrected heart beats at 13.8% and 14.3% respectively.

5.3. Scoring mechanism

The overall score is computed based on the number of recordings classified as normal, 

abnormal or unsure, in each of the two reference categories. These numbers are denoted by 

Aa, Aq, An, Na, Nq, Nn, as shown in Table 5.

The modified sensitivity (Se) and specificity (Sp) are defined as:
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Se = Aa + w × Aq
Aa + Aq + An (1)

Sp = Nn + w × Nq
Nn + Nq + Na (2)

where w is a weight (<1.0) for penalizing incorrect labels of ‘unsure’ less than incorrect 

classifications of abnormal or normal heart sounds. In this way, we encourage the algorithms 

to refuse to make a judgment call, and request a re-recording (when possible), rather than 

blindly guessing with low quality recordings. The weight, w, was arbitrarily set to be 0.5 

initially. The overall Challenge ‘Score’ is then the average of the Se and Sp values: (Se
+Sp)/2.

6. A simple benchmark classifier for the 2016 PhysioNet/CinC Challenge

As a basic starting point for the Challenge we provided a benchmark classifier that relied on 

relatively obvious parameters extracted from the heart sound segmentation code. Here we 

briefly describe the approach for training and testing the code on the Challenge training data 

only.

6.1. Selected balanced database from training set

Since both training and test sets are unbalanced, first, a balanced heart sound database from 

training set was selected. (Otherwise, without prior probabilities on the illness, a prevalence 

bias would be created.) Table 6 summarizes the numbers of the raw heart sound recordings 

in training set, and the numbers of the selected recordings for each training database.

6.2. Definition for features

Springer’s segmentation code (Springer et al., 2015) was used to segment each selected 

heart sound recording to generate the time durations for the four states: S1, systole, S2 and 

diastole. Twenty features were extracted from the position information of the four states as 

follows:

1. m_RR: mean value of RR intervals

2. sd_RR: standard deviation (SD) of RR intervals

3. m_IntS1: mean value of S1 intervals

4. sd_IntS1: SD of S1 intervals

5. m_IntS2: mean value of S2 intervals

6. sd_IntS2: SD of S2 intervals

7. m_IntSys: mean of systolic intervals

8. sd_IntSys: SD of systolic intervals

9. m_IntDia: mean of diastolic intervals
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10. sd_IntDia: SD of diastolic intervals

11. m_Ratio_SysRR: mean of the ratio of systolic interval to RR of each heart beat

12. sd_Ratio_SysRR: SD of the ratio of systolic interval to RR of each heart beat

13. m_Ratio_DiaRR: mean of ratio of diastolic interval to RR of each heart beat

14. sd_Ratio_DiaRR: SD of ratio of diastolic interval to RR of each heart beat

15. m_Ratio_SysDia: mean of the ratio of systolic to diastolic interval of each heart 

beat

16. sd_Ratio_SysDia: SD of the ratio of systolic to diastolic interval of each heart 

beat

17. m_Amp_SysS1: mean of the ratio of the mean absolute amplitude during systole 

to that during the S1 period in each heart beat

18. sd_Amp_SysS1: SD of the ratio of the mean absolute amplitude during systole to 

that during the S1 period in each heart beat

19. m_Amp_DiaS2: mean of the ratio of the mean absolute amplitude during 

diastole to that during the S2 period in each heart beat

20. sd_Amp_DiaS2: SD of the ratio of the mean absolute amplitude during diastole 

to that during the S2 period in each heart beat

6.3. Logistic regression for feature selection

Logistic regression (LR) allows the identification of the impact of multiple independent 

variables in predicting the membership of one of the multiple dependent categories. Binary 

logistic regression (BLR) is an extension of linear regression, to address the fact that the 

latter struggles with dichotomous problems. This difficulty is overcome by applying a 

mathematical transformation of the output of the classifier, transforming it into a bounded 

value between 0 and 1 more appropriate for binary predictions.

In the current study, the output variable Y is a positive (1, abnormal) or negative (−1, 

normal) classification for heart sound recording,[duumy_incomplete para]

All 20 features were tested and a forward likelihood ratio selection was used, in order of 

likelihood. If the statistical difference between the accuracy of the model before and after 

adding of a feature, the feature was included in the updated model. The forward selection is 

terminated if the newly added feature did not significantly improve the normal/abnormal 

classification results. In this way, correlated predictors are unlikely to be included in the 

model, but it does not guarantee an optimal combination of features. Moreover, we note that 

the features we have chosen are by no means likely to include the most useful features.

6.4. Feature results comparison between the selected balanced data from training set

Table 7 shows the average values of all 20 features for normal and abnormal heart sound 

recordings on the selected balanced data from training set. A group t test (for features with 

normal distribution) or non-parametric test (for features without normal distribution) 
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demonstrates that 16 features had significant differences between the two groups whereas 4 

features did not have.

6.5. Classification results using Logistic Regression

Equation (3) shows the derived BLR prediction formula with the corresponding regression 

coefficients for normal/abnormal heart sound recordings classification on all selected 

balanced data from training set. Seven features were identified as the predictable features, 

including: sd_RR, sd_IntS1, m_IntS2, sd_IntS2, sd_IntSys, m_IntDia and sd_Ratio_SysDia.

z = wTX = 0.062 − 0.013 × sd_RR + 0.067 × sd_IntS1 − 0.032 × m_IntS2
+ 0.041 × sd_IntS2 + 0.058 × sd_IntSys
+ 0.002 × m_IntDia + 0.035 × sd_Ratio_SysDia

(3)

Table 8 provides the results of Aa, An, Na and Nn numbers and the three evaluation metrics 

(Se, Sp and Score) defined in section 5.3. Using equation (3), the normal/abnormal 

classification results were 0.62 for Se, 0.70 for Sp and a Challenge Score of 0.66 on the 

training data.

We also use both a K=10-fold cross validation, stratifying by patient, and a leave-one-out 

(database) cross validation, stratifying by database to test the performances of BLR model 

on all selected balanced training data. This is important to note, since including patients in 

the training data and reporting on test data that includes the same data will give a falsely 

inflated accuracy. Similarly, using a leave-one-out approach to each database, provides a 

deeper understanding of which databases can result in heavy biases, and may help provide 

an more accurate estimate of the out of sample accuracy of the algorithm. Tables 9 and 10 

show the corresponding results from 10-fold cross validation and leave-one-out cross 

validation. Note that the results are subject to statistical variation because of the 

subsampling. We also note that the average running time on the training set used 5.26% of 

quota and 5.22% of quota on the hidden test set using Matlab 2016a. We note that this 

classification algorithm is not intended to provide a sensible way to classify the recordings, 

but rather to illustrate how a simple algorithm can achieve basic results, but that the results 

will also vary highly based on which databases are used to train and test the classifiers. We 

also note that improving the segmentation algorithm may be key to improving the results of 

any given classifier. Finally, we note that our classifier did not attempt to label any 

recordings as unknown or unreadable. Any useful algorithm must endeavor to do so, since 

the intention is for this algorithm to be used at the source of recording, where a re-recording 

can be triggered in the event that an automated algorithm is likely to fail. Differentiating 

abnormality from noise is often a difficult but critical issue in biomedical signal analysis, as 

we have noted in previous competitions (Clifford and Moody, 2012).

7. Potential benefits from the public heart sound data

The public release of the heart sound database has many potential benefits to a wide range of 

users. First, those who lack access to well-characterized real clinical signals may benefit 

from access to these data for developing prototype algorithms. The availability of these data 

can encourage researchers from a variety of backgrounds to develop innovative methods to 

Liu et al. Page 20

Physiol Meas. Author manuscript; available in PMC 2020 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tackle problems in heart sound signal processing that they might not otherwise have 

attempted.

An additional benefit is that the data can be re-evaluated with new advances in machine 

learning and signal processing as they become available. The public data are also essential 

resources for developers and evaluators who need to test their algorithms with realistic data 

and to perform these tests repeatedly and reproducibly on a public platform.

In addition, these databases have value in medical and biomedical engineering education by 

providing well-documented heart sound recordings from both healthy subjects and patients 

with a variety of clinically significant diseases. By making well-characterized clinical data 

available to educational institutions, these databases will make it possible to answer 

numerous physiological or pathological questions without the need to develop a new set of 

reference data.

The availability of open source state of the art signal processing algorithms for heart sound 

segmentation provided for the competition, and the subsequent open source classification 

algorithms provided by competitors is likely to provide an impulse into the field and raise 

the benchmark for FDA approval and diagnostic performance of industrial systems 

(Goldberger et al., 2000). We hope that this new heart sound database will help realize these 

benefits and their often-unanticipated rewards to those with an interest in heart sound signal 

processing.
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Figure 1. 
Phonocardiograms (above) from normal and abnormal heart sounds with pressure diagrams 

(below). Red indicates aortic pressure, green ventricular pressure and blue atrial pressure. 

Reproduced under the CC BY-SA 3.0 license and adapted from (Madhero, 2010).
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Figure 2. 
General spectral regions for different heart sounds, and other physiological sounds during 

heart sound recordings. Adapted from (Springer, 2015; Leatham, 1975).
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Figure 3. 
Typical three steps for automated analysis of heart sound in clinical applications.
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Figure 4. 
Example of an ECG-labelled PCG, with the ECG, PCG and four states of the heart cycle 

(S1, systole, S2 and diastole) shown. The R-peak and end-T-wave are labelled as references 

for defining the approximate positions of S1 and S2 respectively. Mid-systolic clicks, typical 

of mitral valve prolapse, can be seen. Adapted from (Springer, 2015).
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Figure 5. 
Example of a heart sound recording segment with good signal quality (A) and poor signal 

quality (B).
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Figure 6. 
(A) An example of the state labels of a heart sound segment with automatically generated 

annotations (using Springer’s segmentation algorithm) and (B) the same data and 

annotations after hand-correction.
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Table 3.

Summary of the previous heart sound classification works. Se: sensitivity, Sp: specificity and Acc: accuracy.

Author Database Recording 
length

Classification 
method

Features Se 
(%)

Sp 
(%)

Acc (%) Notes on 
database

(Akay et al., 
1994)

42 normal and 72 
CAD patients

Each 10 
cycles

ANN Wavelet 85 89 86 30 training, 
82 test

(Liang and 
Hartimo, 1998)

40 normal and 45 
pathological 
children

Each 7–12 s ANN Wavelet 80 90 85 65 training, 
20 test

(Uguz, 2012a) 40 normal, 40 
pulmonary and 40 
mitral stenosis

-- ANN Wavelet 100 95.24 98.33 50–50 train-
test split

(Bhatikar et al., 
2005)

88 innocent 
murmurs and 153 
pathological 
murmurs

Each 10–15 
s

ANN Frequency 83 90 -- 188 training, 
53 test

(Sepehri et al., 
2008)

36 normal and 54 
pathological

Each 10 s ANN Frequency 95 93.33 -- 40 training, 
50 test

(Ahlstrom et al., 
2006)

7 normal, 23 aortic 
stenosis and 6 
mitral regurgitation

Each 12 
cycles

ANN Complexity -- -- 86 Cross-
validation

(De Vos and 
Blanckenberg, 
2007)

113 normal and 50 
pathological

Each 6 
cycles

ANN Time-
frequency

90 96.5 -- Cross-
validation

(Uguz, 2012b) 40 normal, 40 
pulmonary and 40 
mitral stenosis

-- ANN Time-
frequency

90.48 97.44 95 50–50 train-
test split

(Ari et al., 2010) 64 patients (normal 
and pathological)

Each 8 
cycles

SVM Wavelet -- -- 86.72 50–50 train-
test split

(Zheng et al., 
2015)

40 normal and 67 
pathological

-- SVM Wavelet 93.48 98.55 97.17 Cross-
validation

(Patidar et al., 
2015)

Total 4,628 heart 
cycles, 626 normal 
and 4,002 
pathological

-- SVM Wavelet 98.8 99.3 98.9 80% 
training, 
20% test

(Maglogiannis et 
al., 2009)

38 normal and 160 
heart valve disease 
patients

-- SVM Frequency 87.5 94.74 91.43 Cross-
validation

(Gharehbaghi et 
al., 2015)

30 normal, 26 
innocent and 30 
aortic stenosis

Each 10 s SVM Frequency 86.4 89.3 -- 50–50 train-
test split

(Wang et al., 
2007)

20 normal and 21 
murmurs patients

-- HMM Signal 
amplitude, 
STFT and 
MFCC

≥95.2 ≥95.3 -- No separate 
training and 
test

(Chauhan et al., 
2008)

20 normal and 21 
murmurs patients

-- HMM Signal 
amplitude, 
STFT and 
MFCC

-- -- 99.21 No separate 
training and 
test

(Saracoglu, 2012) 40 normal, 40 
pulmonary and 40 
mitral stenosis

HMM DFT and 
PCA

95 98.8 97.5 50–50 train-
test split

(Bentley et al., 
1998)

Unspecified size: 
native and 
prosthetic heart 
valves patients

-- kNN Wavelet -- -- 100 for 
native and 
87 for 
prosthetic

Cross-
validation
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Author Database Recording 
length

Classification 
method

Features Se 
(%)

Sp 
(%)

Acc (%) Notes on 
database

(Quiceno-
Manrique et al., 
2010)

16 normal and 6 
pathological

-- kNN Time-
frequency

-- -- 98 Cross-
validation

(Avendano-
Valencia et al., 
2010)

26 normal and 19 
pathological

-- kNN Time-
frequency

99.56 98.45 99.0 Cross-
validation
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Table 5:

Rules for determining the classification result of current recording from Challenger’s algorithm.

Challenger report result

Abnormal Unsure Normal

Reference label
Abnormal Aa Aq An

Normal Na Nq Nn
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Table 6.

Numbers of raw and selected recordings for each database in the training set.

Database name
# Raw recordings # Recordings after balanced

Abnormal Normal Total Abnormal Normal Total

training-a 292 117 409 117 117 234

training-b 104 386 490 104 104 208

training-c 24 7 31 7 7 14

training-d 28 27 55 27 27 54

training-e 183 1,958 2,141 183 183 366

training-f 34 80 114 34 34 68

Total 665 2,575 3,240 472 472 944
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Table 7.

Statistical results for comparison between normal and abnormal heart sound recordings on all selected 

balanced data from training set.

Feature Abnormal Normal P-value

m_RR (ms) 919 ± 279 876 ± 232 <0.05

sd_RR (ms) 54 ± 40 44 ± 30 <0.01

m_IntS1 (ms) 131 ± 9 130 ± 8 <0.01

sd_IntS1 (ms) 18 ± 6 15 ± 5 <0.01

m_IntS2 (ms) 105 ± 10 106 ± 10 0.6

sd_IntS2 (ms) 16 ± 6 13 ± 5 <0.01

m_IntSys (ms) 213 ± 112 199 ± 82 <0.05

sd_IntSys (ms) 20 ± 9 15 ± 7 <0.01

m_IntDia (ms) 470 ± 216 442 ± 176 <0.05

sd_IntDia (ms) 39 ± 29 33 ± 22 <0.01

m_Ratio_SysRR (%) 23 ± 3 23 ± 3 0.9

sd_Ratio_SysRR (%) 4.0 ± 1.7 3.5 ± 1.6 <0.01

m_Ratio_DiaRR (%) 44 ± 5 44 ± 5 0.3

sd_Ratio_DiaRR (%) 6.4 ± 2.9 5.7 ± 2.6 <0.01

m_Ratio_SysDia (%) 55 ± 12 54 ± 12 0.2

sd_Ratio_SysDia (%) 15 ± 6 13 ± 6 <0.01

m_Amp_SysS1 (%) 48 ± 22 44 ± 22 <0.01

sd_Amp_SysS1 (%) 29 ± 16 24 ± 19 <0.01

m_Amp_DiaS2 (%) 64± 24 60 ± 27 <0.01

sd_Amp_DiaS2 (%) 37 ± 23 33 ± 19 <0.01
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Table 8.

BLR results (equation (3)) of the Aa, An, Na and Nn numbers and the three indices (Se, Sp and Score) for all 

selected balanced training database: 472 abnormal and 472 normal recordings.

Aa An Na Nn Se Sp Score

293 179 141 331 0.62 0.70 0.66
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Table 9.

K=10-fold cross validation results for all selected balanced training database: 472 abnormal and 472 normal 

recordings.

Fold iterate
K-fold (10-fold) cross validation on the selected balanced training set

Aa An Na Nn Se Sp Score

1 30 17 13 34 0.64 0.72 0.68

2 25 22 18 29 0.53 0.62 0.57

3 30 17 16 32 0.64 0.67 0.65

4 31 17 14 33 0.65 0.70 0.67

5 31 16 11 36 0.66 0.77 0.71

6 30 17 16 31 0.64 0.66 0.65

7 21 26 18 29 0.45 0.62 0.53

8 29 18 16 31 0.62 0.66 0.64

9 30 18 10 38 0.63 0.79 0.71

10 30 17 14 33 0.64 0.70 0.67

Mean 29 19 15 33 0.61 0.69 0.65

SD 3 3 3 3 0.07 0.06 0.06

Note: SD, standard deviation.
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Table 10.

Balanced leave-one-out cross validation results for all training databases: 472 abnormal and 472 normal 

recordings.

Excluded database
Leave-one-out cross validation on the balanced training set

Aa An Na Nn Se Sp Score

training-a 28 89 23 94 0.24 0.80 0.52

training-b 84 20 91 13 0.81 0.13 0.47

training-c 6 1 1 6 0.86 0.86 0.86

training-d 4 23 5 22 0.15 0.81 0.48

training-e 134 49 69 114 0.73 0.62 0.68

training-f 33 1 30 4 0.97 0.12 0.54

Mean -- -- -- -- 0.63 0.56 0.59

SD -- -- -- -- 0.34 0.34 0.15

Note: SD, standard deviation.
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