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Abstract

Maturation is the last phase of heart development that prepares the organ for strong, efficient, and 

persistent pumping throughout the mammal’s lifespan. This process is characterized by structural, 

gene expression, metabolic, and functional specializations in cardiomyocytes (CMs) as the heart 

transits from fetal to adult states. CM maturation gained increased attention recently due to the 

maturation defects in pluripotent stem cell-derived CMs (PSC-CMs), its antagonistic effect on 

myocardial regeneration, and its potential contribution to cardiac disease. Here we review the 

major hallmarks of ventricular CM maturation and summarize key regulatory mechanisms that 

promote and coordinate these cellular events. With advances in the technical platforms used for 

CM maturation research, we expect significant progress in the future that will deepen our 

understanding of this process and lead to better maturation of PSC-CMs and novel therapeutic 

strategies for heart disease.
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1. Background and Significance

Mammalian heart development is a highly dynamic process that can be conceptually divided 

into specification, morphogenesis, and maturation (Fig. 1A). Specification refers to the 

differentiation of the major cardiac lineages from uncommitted mesodermal progenitors. 

Morphogenesis includes the events that spatially organize cardiac cells, create the structural 

components of the heart, and properly connect them together. Maturation encompasses the 

cell- and tissue-level changes that optimize the heart for strong and efficient pumping 
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throughout the animal’s lifespan. While the first two phases have been focal points for 

developmental cardiology, heart maturation has been less studied until recently.

Cardiomyocytes (CMs) drive heart contraction. In maturation, CMs undergo changes that 

permit the cells to sustain billions of cycles of forceful contraction and relaxation. The term 

“CM maturation” refers to the constellation of changes to cell structure, metabolism, 

function, and gene expression that convert fetal CMs to adult CMs. This term also refers to 

the overarching developmental program that drives and coordinates the wide spectrum of 

phenotypic changes.

The recent attention to CM maturation has been driven by a surging interest in cardiac 

regenerative medicine (Fig. 1B). Although current technology allows for efficient 

differentiation of human pluripotent stem cells (PSCs) into CMs, these PSC-CMs exhibit 

immature phenotypes that resemble fetal CMs1, 2. Despite tremendous progress in 

promoting PSC-CM maturation by tissue engineering-based methods3, 4, recently reviewed 

in references5 and6, complete maturation of PSC-CMs has yet to be achieved. This 

maturation bottleneck severely impairs the use of PSC-CMs in in vitro modeling for 

pathological, pharmacological, or therapeutic purposes. Electrophysiological maturation 

defects of PSC-CMs also result in arrhythmogenic risk from cell replacement therapy7. New 

knowledge in the developmental biology of maturation is essential for tissue engineers to 

rationally design better approaches to promote the maturation of PSC-CMs.

CM maturation research is also significant due to its connection to CM regeneration. Natural 

CM regeneration occurs through proliferation of existing CMs8–10. While CMs exhibit 

proliferative capacity in the fetus, they quickly lose this potential after birth11, concurring 

with changes characteristic of CM maturation. Factors that promote CM maturation, such as 

thyroid hormone12, 13 and oxygen14, are antagonistic to CM proliferation. On the other 

hand, proliferative CMs undergo “dedifferentiation” that includes sarcomere disassembly 

and upregulation of genes characteristic of fetal CMs15–17. Forced proliferation of adult 

CMs by over-expression of activated Yap18 or miR199a19 adversely impacts heart function 

and causes lethality. Therefore, understanding the Yin and Yang between maturation and 

proliferation is essential to design strategies to stimulate CM regeneration while minimizing 

its side effects.

Defective CM maturation could also contribute to heart diseases. For example, sarcomere 

gene mutations that cause cardiomyopathy have largely been studied for their impact on 

sarcomere function and Ca2+ sensitivity20. However, sarcomere assembly is a key driver of 

CM maturation that not only organizes intracellular structures21, but also modulates signal 

transduction22. Thus, sarcomere mutations could cause cardiomyopathy by impairing the 

programs that coordinate CM maturation. As another example, a subset of congenital heart 

disease patients develops late heart failure. Although this has been attributed to 

complications of cardiac surgery or the longstanding impact of aberrant hemodynamic loads, 

some congenital heart disease mutations could affect genes that regulate CM 

maturation22–25 and thereby predispose to late myocardial dysfunction.
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In this review, we first describe the phenotypic hallmarks of CM maturation and next 

summarize regulatory mechanisms that trigger and coordinate CM maturation. Ventricular, 

atrial, and nodal CMs undergo distinct changes during maturation. Most research to date has 

focused on ventricular CMs, and accordingly we restrict the scope of this review to 

ventricular CMs.

2. Major Hallmarks of CM Maturation

Major biological processes in CM maturation are described below. Experientially 

measurable parameters are summarized in Table 1. Selected recent efforts to mature PSC-

derived CMs using a combination of three dimensional culture and physical and biological 

stimuli are summarized in Table 2.

2.a. Myofibril Maturation

Myofibrils are specialized cytoskeletal structures that serve as the contractile apparatuses of 

CMs35, 36. Sarcomeres are longitudinally repeated subunits of myofibrils. A mature 

sarcomere comprises thin filaments (sarcomeric actin, troponins, tropomyosin), thick 

filaments (myosin heavy and light chains and their associated proteins, such as myosin 

binding protein C), titin filaments, Z-lines (actinin and its interacting proteins), and M-lines 

(myomesin, and its interacting proteins) (Fig. 2A). In a process powered by ATP hydrolysis, 

myosin complexes exert “power strokes” on thin filaments that slide thick filaments toward 

the barbed end of sarcomeric actin filaments, which are anchored at Z-lines. This action 

shortens the distance between Z-lines and results in muscle contraction. Z-lines and M-lines 

cross-link thin and thick filaments respectively and ensure their alignment. Titin is a gigantic 

protein with N- and C-termini anchored to Z- and M- lines, respectively. Z-lines are also 

attached with other cytoskeletal components such as desmin (a type of intermediate 

filament), microtubules, and the non-sarcomeric actomyosin system, which mechanically 

integrates these cytoskeletal structures.

Sarcomere assembly initiates at cardiac specification, and continuously occurs in both 

immature and mature CMs. Thus, the emergence of sarcomeres should be treated as a 

marker of CM identity, but not maturation. However, CM maturation is characterized by 

massive expansion of myofibrils (Fig. 2B), as new sarcomeres are continuously added in 

alignment with pre-existing myofibrils both longitudinally and laterally. Very little is known 

about the molecular mechanisms that drive sarcomere expansion.

Sarcomere maturation also features changes in ultrastructural organization. When observed 

by transmission electron microscopy (TEM), mature sarcomeres exhibit more clear banding 

as compared to immature sarcomeres, suggesting improved alignment of sarcomere 

filaments. Z-lines increase in width and alignment, and the distance between Z-lines (often 

called sarcomere length) also increases to ~2.2 μm in diastole in mature, loaded CMs. 

Although the M-line protein myomesin is present in fetal sarcomeres, the M-line is difficult 

to visualize by TEM in fetal heart. With maturation, the M-line becomes distinct, likely due 

to increased thick filament alignment37.
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An integral element of myofibril maturation is sarcomeric isoform switching, in which 

several sarcomere components switch from a fetal to an adult isoform due to transcriptional 

changes or alternative splicing. In rodents, among the most well-known is the myosin heavy 

chain switch from fetal Myh7 to adult Myh6. By contrast, MYH7 is the predominant 

isoform in adult heart of humans, and this isoform preference is already established by 5 

weeks of gestation38, 39. Whether a MYH6-to-MYH7 switch occurs at an earlier stage of 

human cardiogenesis remains undetermined, but this event is suggested by predominant 

expression of MYH6 in newly differentiated human induced PSC-CMs (hiPSC-CMs)40.

Isoform switching also affects other sarcomere components. For example, the regulatory 

light chain of myosin was predominantly expressed by the gene MYL7 (often known as 

MLC-2a) in all early fetal CMs. However, this isoform switches to MYL2 (also known as 

MLC-2v) as ventricular CMs mature, and MYL7 expression becomes restricted to atrial 

CMs41, 42. Fetal CMs primarily express slow skeletal troponin I (TNNI1), and this is 

replaced by cardiac troponin I (TNNI3) in mature CMs43.The more compliant splicing 

isoform of titin (N2BA isoform) is preferentially expressed in fetal hearts, and after birth the 

stiffer N2B isoform predominates44. Likewise, the fetal isoform of myomesin (EH-

myomesin) is expressed in fetal CMs, and this transits to myomesin isoforms lacking the EH 

domain in mature CMs. This isoform transition has been associated with the appearance of 

the M-line37. Cardiac troponin T and tropomyosin also undergo maturationally regulated 

alternative splicing45.

2.b. Maturation of Electrophysiology and Ca2+ Handling

The strength, speed, and rhythm of CM contraction and relaxation are tightly controlled by 

electrical impulses and oscillations of cytoplasmic Ca2+ concentration. The electrical signals 

take the form of the action potential, which is determined by cardiac ion channels. In mature 

CMs, the resting membrane potential is maintained at ~−85 mV by the inward rectifying 

current IK1
46. Potassium channels Kir2.1 and Kir2.2, encoded by genes KCNJ2 and 

KCNJ12, respectively, are the major channels that establish and maintain the resting 

membrane potential. The action potential is initiated by rapid opening of voltage-gated 

sodium channels (mainly Nav1.5; encoded by SCN5A), which permits Na+ influx (INa) and 

membrane depolarization. Depolarization is followed by the activity of transient outward 

potassium current (Ito) that results in a unique “notch” shape in the action potential of 

maturation CMs. Membrane depolarization opens the L-type Ca2+ channels (Cav1.2), which 

generate the Ca2+ current (ICa,L) responsible for the “plateau” phase of the action potential 

in human CMs. Action potential of murine CMs do not exhibit a clear plateau phase. The 

depolarizing effect of ICa,L is counteracted by an array of temporally controlled repolarizing 

potassium currents, including IKs, IKr, and IK1. Upon Cav1.2 inactivation, the repolarizing 

potassium currents re-establish the resting membrane potential.

Immature CMs differ in important ways from mature CMs in electrophysiology. First, the 

resting membrane potential of immature CMs is less negative (~−50 to −60 mV) as a result 

of insufficient expression of Kir2.1 and Kir2.247. Second, the upstroke velocity of immature 

CMs (~15–30 V/s) is slower due to lower activity and expression of SCN5A and other 

sodium channels48, 49. Third, the plateau phase of the action potential is longer in mature 
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CMs, partly due to higher expression of Cav1.2 core component CACNA1C50 and 

alternative splicing of its auxiliary subunit CACNB251.

Membrane depolarization is coupled to sarcomere contraction through Ca2+-induced Ca2+ 

release (CICR). In systole, Cav1.2 activation allows a small amount of extracellular Ca2+ to 

enter cells, where it activates the ryanodine receptor 2 (RYR2) to release Ca2+ from the 

sarcoplasmic reticulum (SR, specialized endoplasmic reticulum in CMs). In diastole, Ca2+ is 

cleared from the cytosol to the SR via the sarco/endoplasmic reticulum Ca²⁺-ATPase 

(SERCA2), and to the extracellular space via the Na+-Ca2+ exchanger (NCX).

CICR occurs in proximity to plasma membrane. In small, immature CMs where sarcomeres 

are relatively proximal to the cell surface, Ca2+ that is released at the cell periphery is 

sufficient to trigger sarcomere contraction. However, as CMs enlarge and sarcomeres expand 

toward the cell interior, Ca2+ that is released at the cell periphery cannot rapidly activate 

interior sarcomeres. To solve this problem, CMs evolved transverse-tubules (T-tubules; Fig. 

2), which are invaginations of plasma membrane that penetrate transversely into the center 

of mature CMs. This structural specialization juxtaposes the plasma membrane with 

subdomains of SR to form dyads, where Cav1.2 and RYR2 cluster in proximity to form Ca2+ 

release units. These structural specializations allow the action potential to travel rapidly 

along T-tubules to the interior of cells, where they trigger dyads to release Ca2+ in close 

proximity to sarcomeres.

The structural basis of T-tubule maturation is poorly understood. Caveolin-3 (CAV3) is 

thought to regulate plasma membrane invagination52, but T-tubules still form in Cav3 
knockout mice53. BIN1 increases membrane curvature of T-tubules in mice54, and BIN1 

overexpression induces T-tubule-like structures in PSC-CMs55. However, the transverse 

alignment of T-tubules is preserved in Bin1 knockout CMs in mice54. JPH2 is required to 

juxtapose T-tubule and SR membranes56, but JPH2 disruption only results in mild cell-

autonomous loss of T-tubule organization in murine CMs57. Although ACTN2 is essential 

for T-tubule organization22, how T-tubules are anchored to Z-lines remains unclear. A recent 

study identified a Z-line component nexilin (NEXN) as a new regulator of T-tubules58. 

Whether NEXN mediates Z-line-T-tubule association remains to be determined.

Whereas mature ventricular CMs exhibit low automaticity, immature CMs and PSC-CMs 

spontaneously beat, a phenotype that likely contributes to arrhythmia when PSC-CMs are 

transplanted in myocardial infarction models7. Multiple factors contribute to the 

automaticity of PSC-CMs, including the expression of pacemaker channels such as 

hyperpolarization activated cyclic nucleotide gated potassium channel 4 (HCN4), the resting 

membrane potential that is closer to the action potential activation threshold, and 

spontaneous Ca2+ release, which drives membrane depolarization through the Ca2+-Na+ 

exchanger59.

2.c. Metabolic Maturation

An adult human heart is estimated to use ~6 kg ATP per day60, with the primary consumers 

being myosin ATPases, which are needed for sarcomere contraction, and SERCA, which 
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drives Ca2+ clearance and sarcomere relaxation. This ATP is primarily produced through 

oxidative phosphorylation using lipid substrates61.

In maturation, CMs undergo multiple adaptations to enable a high and sustained rate of ATP 

production. Chief among them is increased number and size of mitochondria, which occupy 

up to 40% of cell volume62. The morphology and size of mitochondria is controlled by their 

fusion and fission. Perturbation of pro-fusion proteins such as mitofusin 1/2 (MFN1/263, 64), 

or overexpression of pro-fission proteins such as DRP165, resulted in decreased 

mitochondrial size in maturing CMs. Mitochondria also become associated with sarcomeres 

during maturation (Fig. 2). Sarcomere disassembly caused decreased mitochondrial size21, 

suggesting a functional link between sarcomeres and mitochondrial morphology. 

Mitochondria are also attached to SR, potentially through ER-mitochondria contact sites. 

This close organization leads to efficient ATP transport from mitochondria to ATPases in 

sarcomeres and SR66.

Mature mitochondria contain densely organized cristae, the foldings of the inner 

mitochondrial membranes that house the electron transport chain and ATP synthase. By 

contrast, in immature CMs, which primarily produce ATP through glycolysis, mitochondria 

exhibit few and poorly-aligned cristae67. Cristae maturation requires an array of molecules 

such as OPA168, 69,the MICOS complex70 and cardiolipin-based lipid-protein 

microdomains71. ATP synthase72 may also drive cristae curvature formation.

The metabolic transition from immature CMs to mature CMs is driven by activation of 

metabolic transcriptional regulators including Ppargc1a/b, Ppara, Nrf1/2, and Esrra/b/g73, 

upregulation of genes involved in fatty acid metabolism, oxidative phosphorylation, and 

mitochondrial biogenesis, and downregulation of glycolytic genes74, 75. Isoform switching 

also contributes to metabolic maturation. Hexokinase, which executes the first committed 

step of glycolysis, is predominantly hexokinase 1 (HK1) in fetal and neonatal CMs76. In 

adult CMs, the predominant isoform is hexokinase 2 (HK2)77, which exhibits less glycolytic 

activity. Cytochrome c oxidase (COX) subunit 8, a component of complex IV of the electron 

transport chain, also switches between COX8A and COX8B isoforms in CM 

maturation78,although the contribution of this switch to CM maturation remains to be 

determined.

Less is known about anabolic metabolism changes in CM maturation. Immature, 

proliferative CMs create a high demand for nucleotide biosynthesis, which is suppressed 

after CMs mature. Conversely, high glucose promotes nucleotide biosynthesis through the 

pentose phosphate pathway and inhibits CM maturation79. Because CM maturation involves 

a remarkable increase of protein-built components such as myofibrils, and extensive 

expansion of lipid bilayers in T-tubules, SR and mitochondria, protein and lipid biosynthesis 

are also expected to be highly active. However, little work has been done to characterize 

these two anabolic processes during CM maturation.

2.d. Proliferation-to-hypertrophy Transition

In mice, CM cell cycle exit occurs within the first postnatal week11. In humans, CM 

proliferation rate declines rapidly postnatally, but does not reach the steady-state rate of < 
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1% per year until the second decade of life80, 81. Central cell cycle regulators, such as the 

cyclin-dependent kinase (CDK) complexes, are tightly repressed during CM maturation82. 

Recently, it was reported that co-overexpression of CDK1:CCNB and CDK4:CCND 

complexes, which activate M phase and G1-S phase respectively, was sufficient to reactivate 

CM proliferation82. This exciting finding awaits confirmation by independent groups. The 

mechanisms that enforce CM cell cycle exit include the downregulation of mitogenic 

signals, such as the neuregulin-ErbB axis83, and the inhibition of YAP, a potent activator of 

CM proliferation84, 85. During postnatal CM maturation, YAP activity is restrained by Hippo 

kinases84, 85, interactions with cell adhesion complexes86, 87, and nuclear antagonists88.

Despite cell cycle withdrawal, the postnatal heart increases in size by ~30-fold through 

proportional increase of CM volume, a process called maturational hypertrophy. The liquid-

phase cytoplasm is unlikely the major contributor to increased cell volume, as mature CMs 

are tightly packed and myofibrils and mitochondria occupy most intracellular space. 

Myofibril expansion is critical for maturational hypertrophy, as the ablation of sarcomeres 

by Myh6 depletion or Actn2 mutation dramatically decreased CM size during murine CM 

maturation21, 22. However, whether mitochondria biogenesis and enlargement cell-

autonomously contributes to maturational hypertrophy is unclear21, 89.

Another hallmark of CM maturation during the proliferation-to-hypertrophy transition is 

polyploidization. In murine CMs, the final round of the cell cycle involves karyokinesis 

without cytokinesis, leading most mature CMs (~90%) to contain two diploid nuclei 

(“binucleation”)90, 91 (Fig. 2). By contrast, in adult humans, ~75% CMs are mononuclear, 

but the majority of these nuclei are polyploid due to DNA endoreplication without 

karyokinesis92, 93. This polyploidization largely develops in the second decade of life80.

CM polyploidization negatively correlates with cell cycle withdrawal94. Residual CM cell 

cycle activity in adult hearts resides in the mononuclear diploid subset of CMs80, 81, 94. The 

introduction of a genetic modifier associated with higher mononuclear diploid fraction 

increased CM cell cycle activity after adult heart injury94. Forced CM polyploidization by 

ECT2 inhibition, which blocks cytokinesis, is sufficient to suppress the proliferative capacity 

of CMs in regeneration95, 96. For many cell types, the ploidy of a cell is positively correlated 

with cell size97, thus CM polyploidization likely promotes maturational hypertrophy. 

Consistent with this hypothesis, the induction of CM polyploidization was sufficient to 

increase CM size95, 96. Together, CM polyploidization is partially causative for both CM cell 

cycle withdrawal and maturational hypertrophy in CM maturation.

2.e. CM Integration into a Mature Tissue

Maturational integration of CMs into cardiac tissues require the formation of specialized 

CM-CM junctions called intercalated discs (ICDs), which occurs 2–3 weeks after birth in 

mice. ICDs are hybrid junctions comprising three major types of cell adhesions: fascia 

adherens, desmosomes, and gap junctions98. Fascia adherens comprise N-cadherin and its 

associated proteins. Desmosomes comprise desmoglein-2, desmocollin-2, and their anxilary 

proteins such as plakoglobin, plakophilin-2, and demoplakin. Gap junctions are composed of 

connexin 43. While fascia adherens and desmosomes mechanically couple the actin 
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cytoskeleton and intermediate filaments of neighboring CMs, gap junctions mediate 

propagation of electrical and small molecule signals between CMs.

Immature CMs lack ICDs, and ICD components are either not expressed, localized to the 

interior of cells, or throughout the cell surface. During CM maturation, these molecules 

redistribute to cell termini to form ICDs. The mechanisms that regulate the targeted 

localization of ICD components to CM termini are incompletely elucidated, but likely 

involve protein trafficking along “microtubule highways” extending from the trans-golgi 

network to cell termini99.

CM integration into tissues also requires attachment to the extracellular matrix (ECM) 

through specialized focal adhesion-like structures called costameres100. The transmembrane 

adaptors of costameres include both the integrin complexes and the dystrophin-associated 

glycoprotein complexes, which anchor to sarcomere Z-lines and non-sarcomere cytoskeleton 

at the lateral CM membrane.

Beyond tissue integration, ICDs and costameres are likely to play additional roles in CM 

maturation. For example, both ICDs and costameres harbor vinculin-based actomyosin 

organizers that are essential for sarcomere assembly101, and potentially mediate longitudinal 

and lateral sarcomere expansion respectively. ICDs and costameres are also critical sensors 

of biophysical signals98, 100. Thus, further investigation of ICD and costamere is essential to 

understand how biophysical signals promote CM maturation (see next section).

3. The Regulation of CM Maturation

CM maturation involves a spectrum of diverse cellular events that occur concurrently. The 

mechanisms that activate these events and integrate them into a coordinated program is an 

overarching question for CM maturation research.

3.a. Microenvironmental Instruction

The microenvironment of the maturing myocardium provides necessary and sufficient 

information to instruct CM maturation. This notion is supported by two lines of evidence. 

First, in vitro culture of primary mature CMs leads to loss of hallmarks of maturity102. 

Second, immature CMs developed toward an adult-like state after being transplanted into 

maturing myocardium103. These studies provide the logical basis to search for CM 

maturation cues by dissecting the physicochemical properties of maturing myocardium.

3.a.i. Biophysical Cues (Fig. 3A)—Adult CMs exhibit a rod shape with an average 

length-to-width ratio of 7:1104. This unique shape cannot be solely explained by the cell-

autonomous effect of sarcomere elongation, as CMs with sarcomere ablation due to Myh6 
knockout retained an elongated morphology in a genetic mosaic model in mice, although the 

cell width was drastically decreased21. Both neonatal and adult CMs are elongated in vivo 

but cannot maintain this shape after cell culture. PSC-CMs on regular cell culture dishes are 

round- or triangular- shaped and require physical cues to adopt a rod shape. Therefore, the 

microenvironment of myocardium establishes geometric cues that induce uniaxial CM 

elongation (Fig. 3A).
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Patterning CMs to adopt a rod-shaped morphology promotes CM maturation. For example, 

PSC-CM growth on rectangular micropatterns105 or uniaxially aligned ridges and 

grooves106, 107 were sufficient to improve sarcomere organization and contractile and 

electrophysiological function of CMs in a two dimensional (2D) system. CM maturation was 

further improved by assembling CMs into three dimensional (3D) tissue with anisotropically 

directed strain, such as engineered heart tissue (EHT)108, 109 or cardiac microtissue 

(CMT)108, 109.

The viscoelastic properties of ECM also modulate CM maturation (Fig. 3A). The elastic 

modulus of ECM progressively increases from neonatal (<10 kPa) to adult (~25 kPa) 

heart110. Culturing CMs on matrix with tunable elastic moduli showed that physiological 

matrix stiffness is optimal for CM maturation parameters such as sarcomere organization, 

Ca2+ handling, and contractility111–113.

Maturing CMs experience escalating mechanical force during development114. Cyclic 

mechanical stress during systole and passive stretch during diastole both induced CM 

maturation in cell culture115–117 (Fig. 3A). Mechanical force not only improved structural 

maturation but also induced gene expression changes115–117. A recent study showed that 

cardiac contractile force regulated the distribution of vinculin and activated slingshot protein 

phosphatase 1 and the actin depolymerizing factor cofilin to promote myofilament 

maturation118. How mechanotransduction pathways convert mechanical force into 

transcriptional changes remains to be clarified.

Electrical pacing also enhances the ultrastructure and gene expression of cultured CMs (Fig. 

3A), as well as their contractile, electrophysiological, and metabolic activity119–121. A recent 

study reported the production of adult-like CMs after 3D engineered heart tissue was paced 

at supraphysiological rates from an early point in their differentiation4, 27. The striking 

degree of maturation achieved in this study requires further validation and replication by 

other groups. The mechanisms by which electrical stimulation enhances CM maturation 

remain poorly explored. A key unanswered question is whether electrical pacing directly 

impacts CM maturation or acts indirectly through induction of mechanical stress.

3.a.ii. Biochemical Cues (Fig. 3B)—Among the best characterized biochemical cues 

that promote CM maturation is the thyroid hormone T3 (triiodothyronine). The serum level 

of T3 rises dramatically in the perinatal period. T3 exerted a broad impact on CM 

maturation, including isoform switching of myosin heavy chain and titin122, 123, induction of 

SERCA expression, hypertrophy and cell polyploidization12, 13. T3 treatment was sufficient 

to enhance CM contractility, Ca2+ handling, and mitochondrial respiration in vitro124, 125. 

One study linked a proliferative burst of mouse cardiomyocyte proliferation on postnatal day 

15 to a transient surge of thyroid hormone126; however, others groups have not replicated the 

proposed surge of proliferating cardiomyocytes127, 128. The major thyroid hormone 

receptors in the heart are nuclear receptors (NRs) that are encoded by Thra and Thrb (Fig. 

3B). Inactivation of Thra cell-autonomously suppressed CM maturation25.

Similar to T3, glucocorticoids also modulate CM maturation129. Glucocorticoids are ligands 

for the glucocorticoid receptor, another NR encoded by Nr3c1. Mutation of Nr3c1 impaired 
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myocyte alignment, disruption of sarcomere organization and the expression of genes 

regulating sarcomere assembly and Ca2+ handling130.

Insulin-like growth factors (IGFs) regulate CM maturation through the insulin-like growth 

factor 1 receptor (IGF1R) and the insulin receptor (INSR), which are receptor tyrosine 

kinases that signal through the PI3K-AKT and RAF-MEK-ERK pathways. IGF1 is 

predominantly produced in the liver, and also locally produced in the heart131. Circulating 

IGF1 quickly increases after birth in response to growth hormone132, 133; changes to local 

production of cardiac IGF1 were not well-described. Overexpression of IGF1R in CMs 

caused physiological hypertrophy134. Double knockout of INSR and IGF1R in murine CMs 

resulted in early-onset dilated cardiomyopathy within a month after birth, with disrupted 

sarcomere and mitochondrial morphology and reduced heart function135. However, deletion 

of either INSR or IGF1R alone did not cause phenotypic abnormalities, consistent with 

functional redundancy.

Circulating fatty acids also increase at birth, and this could serve as a biochemical signal for 

CM maturation. Culture of engineered cardiac tissues with palmitate, the most abundant 

long-chain free fatty acid in the neonatal circulation136, matured multiple parameters, 

including gene expression, contractile force, action potential, Ca2+ transient and oxidative 

respiration29. In another study, treatment of PSC-CMs with palmitate-albumin complexes 

along with carnitine, which facilitate mitochondrial fatty acid transport, promoted structural 

and functional maturation, suggesting that in vitro promotion of oxidative phosphorylation 

stimulates overall CM maturation137. However, perturbation of metabolic maturation did not 

impair structural maturation in a cell-autonomous manner in vivo, since neonatal, mosaic 

ablation of genes essential for mitochondrial function (Tfam) or dynamics (Mfn1/2) did not 

impair structural maturation of the mutant CMs21, 89.

Oxygen tension is another environmental cue that modulates CM maturation. Increased 

oxygen tension inhibits HIF1α (hypoxia-inducible factor 1α) activity and promotes the 

metabolic switch to oxidative phosphorylation during murine heart development138, whereas 

hypoxia impaired PSC-CMs differentiation and maturation in vitro139. Inhibition of HIF1α 
and its downstream target lactate dehydrogenase A promoted hiPSC-CM maturation, 

enhancing not only metabolism but also gene expression, sarcomere organization and 

contractility140.

Biochemical signals function synergistically to promote CM maturation. For example, T3 

and dexamethasone, a synthetic glucocorticoid, in combination with culture on “matrigel 

mattresses” cooperatively triggered CM maturation by inducing T-tubule formation141. A 

cocktail of T3, dexamethasone, and IGF1 induced several adult features in iPSC-CMs 

cultured in 3D cardiac tissues3. Cross-talk between T3 and AKT-PI3K, a downstream branch 

of IGF1 signaling, stimulated TTN isoform switching in cultured, late gestation rat CMs122. 

Thus, a sophisticated signaling network is present that integrates diverse extracellular signals 

into a robust and coordinated program of CM maturation.

3.a.iii. Non-CMs—Although CMs occupy ~70–85% of myocardial volume, they 

constitute only ~20–30% of the total cell number80, 142, 143. Numerically, non-CMs, 
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including endothelial cells (64%), cardiac fibroblasts (27%), and leukocytes (9%), are the 

major cell types in the heart143. In the fetal heart, CMs constitute a higher fraction of cells, 

with the proportion declining during maturation due to the greater proliferation of non-CMs.

Non-CMs regulate CM maturation, as co-culture of CMs with non-CMs promotes CM 

maturation in vitro144–146. The impact of non-CMs on CM maturation could occur through 

direct physical adhesion, and through paracrine molecules that are secreted from non-CMs 

and act on CMs146. In addition, non-CMs build the microenvironment that delivers 

biophysical and biochemical cues to CMs. For example, cardiac fibroblasts create the 

appropriate ECM to support CM maturation, and endothelial cells construct coronary 

vasculature that transport circulating signals to instruct CM maturation.

3.b. Intracellular regulation

3.b.i. Transcriptional regulation of gene expression—The coordination of diverse 

phenotypic changes during CM maturation and the association of those changes with altered 

gene expression suggest an overarching transcriptional program that orchestrates CM 

maturation.

Several transcriptional regulators of CM maturation have been identified. One of these is 

serum response factor (SRF)21. In murine CMs undergoing maturation, SRF depletion 

resulted in a wide spectrum of transcriptional dysregulation, including defective sarcomere 

isoform switching, global downregulation of the transcriptional programs of lipid 

metabolism, mitochondria biogenesis and oxidative respiration, and the reversal of 

maturational changes of key electrophysiological and Ca2+ handling genes, such as 

upregulation of Hcn4 and downregulation of Kcnj2, Serca2a and Ryr221. Structurally, SRF 

depletion impaired sarcomere expansion, T-tubule formation, and mitochondrial 

organization.

The broad impact of SRF on nearly every aspect of CM maturation is partly due to its key 

role in regulating sarcomere genes. Sarcomere disassembly by mosaic inactivation of the 

major Z-line protein ACTN2 not only recapitulated structural CM maturation defects, but 

also the transcriptomic signature of mosaic SRF depletion22. This relationship demonstrates 

that sarcomere-based signaling impacts gene transcription and highlights a hierarchical 

organization of the subprograms of CM maturation: Sarcomere maturation is upstream of 

most other aspects of CM maturation21, whereas metabolic maturation was dispensable for 

structural maturation in vivo21, 89.

Three myocardin-family transcriptional regulators, MYOCD, MRTFA and MRTFB, are 

major coactivators of SRF in CMs147. MRTFA and MRTFB are functionally redundant. 

Mrtfa−/−; Mrtfbfl/fl; Myh6Cre mice caused lethality of most mutants within a month after 

birth148. Myocdfl/fl; Myh6Cre mice developed later onset, lethal cardiomyopathy, with a 

median survival of about 10 months149. Although Mrtfa/b double knockout mice exhibit a 

more severe cardiac phenotype than Myocd mutant mice, both mice exhibit cardiac 

phenotypes that are less severe than Srf knockout mice, suggesting a synergistic role of all 

three factors in SRF activation and CM maturation. The MRTF-SRF axis could convert 

mechanical stress into transcriptional changes150, thus MRTF-SRF signaling potentially 
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mediates regulation of CM maturation in response to biomechanical cues, including 

mechanical stretch and ECM matrix stiffness.

A recent transcriptomic analysis revealed another SRF-binding transcription cofactor, 

HOPX, as a novel activator of CM maturation, especially in the process of myofibrillar 

isoform switching and CM hypertrophy151. In vivo, overexpression of HOPX in CMs 

resulted in progressive concentric cardiac hypertrophy with preserved systolic function152, 

whereas Hopx knockout caused partial embryonic lethality153, 154, with postnatal survivors 

exhibiting normal cardiac contractility and cardiomyocyte hyperplasia due to delayed cell 

cycle exit154. Paradoxically, HOPX was classically thought to be a transcriptional 

corepressor that reduces SRF-DNA binding153, 154. Further studies are necessary to 

determine how SRF-HOPX interaction impacts CM maturation.

SRF functions in synergy with other transcription factors. For instance, SRF ChIP-Seq in 

maturing hearts revealed co-enrichment of GATA and MEF2 motifs21. GATA4 and GATA6 

are the major GATA family transcription factors expressed in CMs, and these factors are 

redundantly essential for neonatal CM maturation25, 155. Four MEF2 family transcription 

factors, MEF2A~D, are expressed in hearts156 and their functions can be factor-specific, 

overlapping, or, in some cases, antagonistic157, 158. A systematic comparison has yet to be 

performed to determine the overlapping and unique roles of MEF2 factors in CM 

maturation.

In addition to SRF-related factors, NRs are another major group of transcription regulators 

that control CM maturation. Among these factors, thyroid hormone receptors and 

glucocorticoid receptors mediate the role of T3 and glucocorticoids in CM maturation as 

described in the previous section. Additional NRs play key roles in metabolic maturation. 

One family of such factors are peroxisome proliferator-activated receptors (PPARs), which 

form heterodimers with retinoid X NRs to activate and balance the transcription of genes 

involved in fatty acid and carbohydrate metabolism159, 160. The ligands of PPARs are fatty 

acid metabolites161, thus PPARs probably mediate the impact of circulating fatty acids on 

CM maturation. The estrogen-related receptors (ERRα, β, and γ) are another group of NRs 

essential for the maturational switch to oxidative respiration, by activating genes involved in 

fatty acid oxidation, citric acid cycle, electron transport chain, ATP synthase and 

mitochondrial dynamics162, 163. These factors belong to the orphan NR family and do not 

bind to estrogen. Interestingly, myofibril and Ca2+ handling genes are also direct 

downstream targets of ERRs162, 163. Both PPARs and ERRs directly interact with PGC1α/β, 

encoded by Ppargc1a and Ppargc1b, which are master regulators of both oxidative 

respiration and its associated mitochondrial biogenesis73. Interestingly, a recent study 

showed additional functions of PGC1/PPARα in the maturation of calcium handling and 

hypertrophy, implicating broader roles of these factors beyond metabolism164.

Epigenetic mechanisms, such as DNA methylation and covalent histone modifications, exert 

a profound impact on transcriptional regulation. DNA hypermethylation is associated with 

gene silencing in CM maturation, while DNA demethylation results in gene 

activation75, 165, 166. Activating histone modifications H3K27ac, H3K4me1, H3K4me3 and 

H3K9ac are associated with actively expressed genes in maturation165, 167, while repressive 
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histone marks H3K27me3 and H3K9me2 are maintained or acquired by inactivated 

genes165, 167–170. Treatment of cultured human cardiac progenitor cells with polyinosinic-

polycytidylic acid yielded PSC-CMs with enhanced maturity, which was attributed to 

“epigenetic priming” that enhanced Notch signaling and expression of cardiac myofilament 

genes171. Recently, a clustered regularly interspaced short palindromic repeats (CRISPR)/

Cas9-based forward genetic screen in vivo identified RNF20/40 as a novel epigenetic 

regulator of CM maturation. This enzyme deposits histone H2B lysine 120 

monoubiquitination marks at genes that are active in CM maturation25. Mutations that 

disrupt this pathway cause congenital heart disease24, suggesting that the same mutations 

that cause congenital heart disease could also impact CM maturation and late cardiac 

outcomes.

Chromatin organization changes are also correlated with transcriptional changes in CM 

maturation. ATAC-Seq revealed decreased chromatin accessibility of silenced genes such as 

cell cycle genes between neonatal and adult hearts, while metabolic and muscle contraction 

genes acquired a more open chromatin state in mature hearts172. Histone remodeling factor 

BRG1 modulates myosin heavy chain isoform switching173. Mutation of CTCF, a crucial 

regulator of chromatin-architecture, was recently reported to cause premature activation of 

the CM maturation program in embryonic cardiomyocytes174.

3.b.ii. Post-transcriptional regulation of gene expression—RNA splicing is a 

critical regulatory component of CM maturation, as isoform switching often occurs through 

alternative splicing. One representative splicing regulator is RBM20, mutation of which 

causes dilated cardiomyopathy175–177. RBM20 is essential for proper splicing of Ttn (Titin) 

transcripts and other maturationally regulated genes175, 178.

Additional splicing regulators could potentially impact CM maturation: CELF proteins are 

down regulated in heart development while MBNL proteins are upregulated. The 

antagonistic regulation of these two splicing regulators179 has been proposed to trigger a 

large fraction of developmental splicing changes and to be essential for T-tubule 

organization and Ca2+ handling180, 181. Serine/arginine-rich family of splicing factors, 

including SRSF1182, SRSF2183 and SRSF10184, were each shown to regulate postnatal heart 

development by modulating Ca2+ handling genes. CM-specific Hnrnpu knockout resulted in 

splicing defects in Ttn and Ca2+ handling genes and triggered perinatal dilated 

cardiomyopathy185. The RNA splicing regulator RBFOX1 markedly increases in expression 

during CM maturation180, 186 and is another potential activator of CM maturation187.

MicroRNA (miRNA)-based mRNA silencing is another mechanism that modulates gene 

expression in CM maturation. For example, miR-1, a miRNA enriched in mature CMs, 

facilitated electrophysiological maturation in stem-cell derived CMs in vitro188. Let-7 family 

miRNAs were highly enriched in CMs matured for 1 year in vitro, and they were necessary 

and sufficient to promote hypertrophy, sarcomere organization, contractile force, and 

respiratory capacity of cultured PSC-CMs189. Co-culture of CMs with endothelial cells 

promoted CM maturation in association with upregulation of multiple miRNAs145. 

Overexpression of four such miRNAs (miR-125b-5p, miR-199a-5p, miR-221, and miR-222) 

in PSC-CMs resulted in improvement of several maturation hallmarks such as Myh6/7 
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switching, sarcomere alignment, mitochondrial cristae formation, and improved Ca2+ 

handling145. Recently, a new miRNA maturation cocktail that overexpressed Let-7i and 

miR-452 and repressed miR-122 and miR-200a was shown to promote transcriptomic 

maturation as well as contractility, cell size, and fatty acid oxidation without sharing 

predicted target genes with previous microRNA cocktails190.

Cardiac protein synthesis is very active at fetal and neonatal stages, but regulation of protein 

translation, modification, and stability in CM maturation has been poorly studied. Recent 

advances in proteomics have started to characterize protein changes in CM 

maturation191–193. Integration of these data with RNA-Seq and Ribo-Seq analyses will 

provide an improved understanding of regulation at the protein level.

3.b.iii. Ultrastructural regulation—Major ultrastructural maturation hallmarks -- 

myofibrils, mitochondria, and T-tubules -- are not independent of each other. As the major 

cytoskeletal structures of CMs, myofibrils are essential for the organization of other 

intracellular structures. Mutagenesis of key myofibril genes, such as Myh6 and Actn2, 

impaired mitochondrial enlargement as well as the organization of T-tubules21, 22. By 

contrast, perturbation of T-tubule (by mutagenesis of Jph257) or mitochondria (by 

mutagenesis of Mfn1/221 or Tfam89, or by overexpression of Drp121) did not impair 

myofibril organization. Thus, proper sarcomere organization and expansion is central to 

overall structural maturation.

4. Model systems to study CM maturation

Innovations in the model systems and techniques used to study CM maturation will fuel 

future discoveries. Here we review some of the recent advances in model systems used to 

study CM maturation.

4.a. Mouse genetic mosaic and Cas9-mediated somatic knockout models

Genetically modified mice have been gold standards to understand mammalian heart 

development. This approach is particularly important in CM maturation research because so 

far no in vitro system can induce, or even maintain, full maturity of CMs. However, 

traditional genetic manipulation of the murine heart has several caveats. First, it is slow and 

expensive to generate or obtain alleles to knockout each gene of interest. Achieving 

spatiotemporal control of the knockout in perinatal CMs requires further complexity. 

Second, organ-wide mutagenesis of a gene essential for CM maturation often triggers 

lethality or secondary effects that can confound identification of the direct functions of the 

gene. This is particularly problematic in CM maturation research as the secondary effects of 

heart dysfunction, such as fetal gene reactivation and mitochondria/T-tubule remodeling, are 

similar to CM maturation defects57, 194.

These problems can be circumvented using adeno-associated virus (AAV), which efficiently 

and stably manipulates genes in CMs following subcutaneous or intraperitoneal injection to 

newborn mice. Gain-of-function via AAV-directed overexpression is straightforward. Loss-

of-function can be achieved by using AAV to delivery CRISPR/Cas9 components (CRISPR/

Cas9 and AAV-mediated somatic mutagenesis, CASAAV, Fig. 4A)57, 195. The CRISPR/Cas9 
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system further reduces the need to obtain conditional alleles. This technology allows 

mutagenesis of many genes at once21, 57 and even high-throughput genetic screening in 

vivo25.

To pinpoint the direct, cell-autonomous effects of gene manipulation, the dose of AAV is 

titrated so that a minority (e.g. <15%) of CMs are transduced, leaving most CMs, and the 

overall cardiac function, unaffected. Single-cell readouts on the transduced cells are used to 

deduce cell-autonomous gene function21, 22, 25, 57, 89. In genetic mosaics, mutant and control 

CMs are mixed in the same heart, thus analysis is limited to single cell readouts, or readouts 

compatible with a cell purification method such as flow cytometry. These analyses rely 

heavily on the ability to distinguish individual mutant and control cells, usually through 

immunostaining of the targeted proteins or introduction of fluorescent proteins as surrogate 

markers. Genetic mosaic approaches are most well suited to cell autonomous phenotypes 

and would difficult to apply to genes that produces secreted products.

4.b. Engineered tissue model

CM maturation demonstrates substantial interspecies differences. For instance, adult 

zebrafish CMs lack T-tubules196 and exhibit much lower mitochondrial content14 than 

mammalian CMs. Mouse and human CMs also exhibit several distinct maturation features, 

such as Myh6/7 isoform switching, contraction rates, and action potential profiles. 

Therefore, a human model is necessary to validate knowledge that was learnt in other model 

organisms.

In addition, a major practical goal of studying CM maturation is to improve the maturation 

of hPSC-CMs in vitro for translational medicine. The current consensus is that 3D 

engineered cardiac tissues that are assembled by hPSC-CMs, non-myocytes and ECMs 

provide the necessary platforms to best mature CMs in vitro. Additional biochemical (T3, 

Dex, IGF1, palmitate) and biophysical treatments (electrical pacing; mechanical stress) on 

these engineered tissues are essential to produce adult-like CMs (Fig. 4B, Table 2)3, 4. These 

technologies are useful to validate knowledge that is generated in animal models and to 

allow de novo discovery of CM maturation regulators. In vivo validation is still necessary to 

determine the physiological relevance of novel CM maturation factors that are identified in 

these tissue models. Importantly, factors that drive CM maturation in vitro may incompletely 

overlap with those that promote maturation in vivo during normal heart development.

Disease modeling is another application of these hPSC-CMs and engineered tissues. The 

immaturity of these cells is an important hurdle to disease modeling. Nevertheless these 

model systems have yielded important insights into disease mechanisms and led to new 

potential therapeutic strategies197. The properties of the model system, such as its electrical 

or metabolic maturity, should be considered with respect to the disease being studied. Key 

findings may require validation in alternative model systems that exhibit greater 

physiological maturity.

4.c. Neonatal xenotransplantation model

Human PSC-CMs could be matured toward a near-adult state by transplantation into rat 

myocardium (Fig. 4C)103, 198, which is a promising solution to the partial maturation defects 
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observed in in vitro engineered tissue models. However, human PSC-CMs matured by this 

method exhibit more binucleation than normal human adult CMs103, raising the question of 

whether the transplanted human PSC-CMs become rat-like CMs or remain human-like. 

Although some comparisons between donor and host CMs were documented198, a more 

comprehensive analysis is necessary to determine if xenotransplants are viable models to 

study human-specific features of CM maturation.

5. Concluding Remarks

Here we reviewed major hallmarks of CM maturation and known regulators of this process. 

Although differences between immature and mature CMs have been well documented, the 

molecular mechanisms that mediate the change from immature to mature states remain 

incompletely understood. Accumulated evidence demonstrates interdependence between 

individual maturation events. Thus, research in this area should not only study individual 

hallmarks, but also how the maturation events are coordinated. With technical advances in 

model systems and increased collaboration between basic scientists with tissue engineers, a 

more comprehensive picture of CM maturation is warranted in the near future. This effort is 

critical to design better strategies to mature PSC-CM, stimulate CM regeneration, and treat 

diseases that involve CM maturation defects.
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Non-standard Abbreviations and Acronyms:

CM cardiomyocyte

PSC pluripotent stem cell

hiPSC-CM human induced PSC-derived CM

TEM transmission electron microscopy

CICR calcium induced calcium release

SR sarcoplasmic reticulum

T-tubule transverse tubule

ECM extracellular matrix

ICD intercalated disc

EHT engineered heart tissue
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CMT cardiac microtissue

CDK cyclin-dependent kinase

T3 triiodothyronine

NR nuclear receptor

IGF Insulin-like growth factor

PPAR peroxisome proliferator-activated receptor

ERR estrogen-related receptor

CRISPR clustered regularly interspaced short palindromic repeats

miRNA microRNA

AAV adeno-associated virus

CASAAV CRISPR/Cas9/AAV9-mediated somatic mutagenesis
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Figure 1. Heart maturation and its implication in translational medicine.
(A) Conceptual scheme of the maturation phase of heart development. Mouse stages are 

labeled at bottom. (B) Major applications of CM maturation studies. Left: to promote the 

maturation of PSC-CMs. Mid: to optimize CM regeneration conditions. Right: to better 

understand cardiac pathogenesis.
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Figure 2. Structural maturation of CMs.
(A) A schematic view of sarcomere components in mature CMs (top) and spatial 

relationship between sarcomeres and T-tubule (T), SR (S) and mitochondria in mature CMs 

(bottom). Bottom left: a view across the middle of a myofibril. Bottom right: a view on the 

cytoplasmic surface of a myofibril. (B) In situ confocal images of murine myocardium at 

postnatal day 6 (P6) and P20. Sarcomere Z-lines were labeled by AAV-Actn2-GFP infection. 

Mitochondria, T-tubules and nuclei were stained by TMRM (polarized mitochondria), FM 

4–64 (plasma membrane), and Hoechst (DNA), respectively, through Langendoff perfusion. 

Merged images highlight T-tubule-sarcomere and mitochondria-sarcomere associations that 

are established during postnatal maturation.
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Figure 3. Representative environmental cues that regulate CM maturation.
(A) Key biophysical factors that affect CM maturation. (B) Critical biochemical cues that 

regulate CM maturation. Representative signal receptors, messengers and transcriptional 

regulators are also depicted.
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Figure 4. Model systems to study CM maturation.
(A) CASAAV-based genetic mosaic analysis of murine CM maturation in vivo57. Expression 

of genome-encoded Cas9-P2A-GFP was activated by AAV-delivery of single or dual gRNAs 

and Cre, expressed from the cardiomyocyte-specific cTNT promoter (left). When the AAV is 

given at a low dose, mosaic transduction and Cas9-mediated somatic mutagenesis at genes 

targeted by gRNA(s) occurs (GFP+ cells, middle). The phenotype of single GFP+ cells is 

then analyzed (right, illustrating T-tubule and maturational growth defects caused by Srf 
depletion21). WGA, wheat germ agglutinin. FM 4–64, membrane dye. Left panel reprinted 

ref. 21. with permission. (B) In vitro maturation of PSC-CMs by tissue engineering and 

electrical pacing. 3D cultured engineered heart tissue was assembled from PSC-CMs (left). 

Elastomeric posts apply anisotropic stress on muscle bundle. Rapid electrical pacing 

protocol was applied from early in the PSC-CM differentiation process (middle), resulting in 

well organized, mature PSC-CMs, as evaluated by transmission electron microscopy (right). 

Reprinted from ref. 4 with permission. (C) In vivo maturation of PSC-CMs. Human PSC-

CMs expressing GFP were injected into the hearts of immunodeficient neonatal rats (left). 

After several weeks, engrafted PSC-CMs (GFP+, middle) have mature morphology (right). 

Reprinted from ref.103 with permission.
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Table 1.

Major Parameters of CM maturation

Gene Expression Morphology Functional Readouts

Myofibril

Overall increase of mature sarcomere 
components
Isoform switching:
MYH6 to MYH7 (hs)
MYH7 to MYH6 (mm)
TNNI1 to TNNI3
TTN-N2BA to TTN-N2B
MYL7 to MYL2

Sarcomere assembly and expansion
Improved sarcomere alignment
Increased sarcomere length (~2.2 μm)
M-line formation

Sarcomere contraction:
Diastolic sarcomere length
Fractional shortening
Shortening velocity
Contractile Force

Electrophysiology
& Ca2+ handling

Increase of ventricular ion channels, e.g. 
KCNJ2
Decrease of automaticity ion channels, e.g. 
HCN4
Increase of Ca2+ handling molecules, e.g. 
LTCC, RYR2 and SERCA2

T-tubule formation and organization
SR expansion and organization
Dyad formation and distribution

Action potential:
Resting Vm (~−85 mV)
Max dVm/dt (~200 V/s)
Duration and shape
Ca2+ transient:
Peak amplitude
Time to peak
Decay time
Diastolic Ca2+

Metabolism

Glycolysis decrease
Mitochondria biogenesis increase
FAO increase
Oxidative phosphorylation increase
Energy transfer system increase

Mitochondria # and size incr. (up to 
40% cell volume)
Cristae formation and organization
Inter-myofibrillar localization

Oxygen consumption rate
Electron transport chain activity
IMM electrochemical gradient
Extracellular acidification rate

Other

Cell cycle gene silencing
Hypertrophy gene upregulation
Changes of cell adhesion genes, e.g. ICD 
and costamere components

Polyploidization
Binucleation in >80% rodent CMs 
but only ~25% human CMs
Maturational hypertrophy (~30 fold)
ICD formation

Abbreviations: FAO, fatty acid oxidation; Vm, membrane potential; ICD, intercalated disk; hs, Homo sapiens; mm, Mus musculus; IMM, inner 
mitochondrial membrane
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