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Abstract

Children speech recognition is challenging mainly due to the inherent high variability in children’s 

physical and articulatory characteristics and expressions. This variability manifests in both 

acoustic constructs and linguistic usage due to the rapidly changing developmental stage in 

children’s life. Part of the challenge is due to the lack of large amounts of available children 

speech data for efficient modeling. This work attempts to address the key challenges using transfer 

learning from adult’s models to children’s models in a Deep Neural Network (DNN) framework 

for children’s Automatic Speech Recognition (ASR) task evaluating on multiple children’s speech 

corpora with a large vocabulary. The paper presents a systematic and an extensive analysis of the 

proposed transfer learning technique considering the key factors affecting children’s speech 

recognition from prior literature. Evaluations are presented on (i) comparisons of earlier GMM-

HMM and the newer DNN Models, (ii) effectiveness of standard adaptation techniques versus 

transfer learning, (iii) various adaptation configurations in tackling the variabilities present in 

children speech, in terms of (a) acoustic spectral variability, and (b) pronunciation variability and 

linguistic constraints. Our Analysis spans over (i) number of DNN model parameters (for 

adaptation), (ii) amount of adaptation data, (iii) ages of children, (iv) age dependent-independent 

adaptation. Finally, we provide Recommendations on (i) the favorable strategies over various 

aforementioned - analyzed parameters, and (ii) potential future research directions and relevant 

challenges/problems persisting in DNN based ASR for children’s speech.
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1. Introduction

Speech recognition is set to soon become an ubiquitous part of our life in the foreseeable 

future. A range of applications, such as human-machine interaction, communication, 

education, pronunciation and communication tutoring, entertainment and interactive gaming 

depend on such functionality. This has become partly possible due to high accuracies 

achieved by state-of-the-art speech recognition systems. An important user population for 

many such technologies are children. However, Automatic Speech Recognition (ASR) for 

children is still significantly less accurate than that of adults [1]. With the recent increased 

deployment of speech based technologies it becomes ever more important to be inclusive 

towards children. Thus there is a need to robustly address the challenges brought by the 

variability in kids speech.

Researchers have studied how the speech patterns of children differ to that of the adults. 

Prior studies have looked into the factors affecting, and degrading, the performance of ASR. 

Children speech was found to exhibit high level of variability. The research suggests that the 

variability exists in two levels. Firstly, the variability is embedded in the acoustic signals in 

the form of spectral and temporal variability, due to the physiological and developmental 

differences of children. Secondly, there is variability in kids pronunciation patterns, due to 

differing and partial linguistic knowledge.

Acoustic variability can be attributed to three main factors (i) shifted overall spectral content 

and formant frequencies for children [1], (ii) high within-subject variability in the spectral 

content, that affects formant locations [2], (iii) high inter-speaker variability observed across 

age groups, due to developmental changes, especially vocal tract [3]. Lee et al. [2] 

conducted a detailed study analyzing the temporal and spectral parameters of children 

speech. The study found that the within-subject variability decreased with increase in age 

from 5 years to 12 years, reaching adult levels at an age of 15.

The word error rates (WER) for children’s ASR were found to be 2 to 5 times worse than 

adults [1]. Due to the unique acoustic characteristics of children’s speech, training children-

specific ASR models was found to be highly advantageous. Age dependent ASR models 

were also studied giving promising improvements, thereby confirming high inter-age 

dependent acoustic variability in children [4]. Li and Russell [5] studied the effect of speech 

bandwidth on recognition accuracy. The study found that the recognition performance 

degraded more rapidly for children when the bandwidth was reduced from 4kHz to 1.5kHz. 

Investigation of the possible causes showed that the average formant frequencies F1, F2 and 

F3 for children exceeded those of adults by more than 60% [6].

Several techniques to tackle the acoustic variability were proposed in recent times. Different 

front-end robust features such as Mel-Frequency Cepstral Coefficients (MFCC), Perceptual 
Linear Prediction (PLP) cepstral coefficients, and spectrum based filter bank features have 

been tried [7]. Several minor alterations of front-end features have also been investigated [7, 

8, 6, 9, 10]. However, MFCC features have dominated due to their robustness and 

compatibility with adult ASR systems.
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Potamianos and Narayanan [1] proposed several front-end frequency warping techniques 

and speaker normalization techniques with evaluations over different age groups. 

Particularly, Vocal Tract Length Normalization (VTLN) technique to suppress acoustic 

variability introduced by the developing vocal tracts in children has become a standard in 

children ASR systems [7, 11, 12], effectively reducing inter-speaker and inter-age-group 

acoustic variability. Adapting acoustic models with Maximum Likelihood Linear Regression 
(MLLR) and Maximum A-Posteriori (MAP) was found to be effective [13, 7, 14]. Further 

modest gains were achieved using Speaker Adaptive Training (SAT) based on Constrained 
MLLR (CMLLR) for children ASR [14, 7].

Some research efforts have also concentrated on dealing with the increased pronunciation 

variability and mispronunciations present in kids due to limited and developing linguistic 

knowledge. Performance gap between spontaneous speech recognition and read speech is 

particularly large for children [15]. Gerosa et al. [3] showed that spontaneous speech 

annotations are extremely useful. They showed that language usage efficiency increases with 

age for children reaching adult levels at 13 years of age i.e., disfluencies decrease with age. 

Potamianos and Narayanan [16] performed an in-depth analysis of linguistic variability in 

the context of spoken dialogue systems for children. Inter-speaker linguistic variability was 

found to be twice the intra-speaker variability. Mispronunciations in children were found to 

be twice as high for children of 8-10 years compared to that of 11-14 years, while the trend 

was reversed for filler pauses. Age dependencies were also found for the frequency of false-

starts, duration, utterance length and breathing.

Das et al. [17] showed that language models trained on children speech were advantageous 

to using adult models suggesting children use different grammatical constructs. In [14], 

language model adaptation from adult to children showed improvements.

Children tend to also mispronounce, thus customized dictionaries for children can provide 

performance benefits [5]. Pronunciation variations among children vary with age. Data-

driven pronunciation variation modeling is shown to be useful across children of all ages [7]. 

However, part of the variations are attributed towards the phonological processes and hence 

the customization of dictionaries have their limitations [18].

There are also significant efforts in speech applications for kids towards learning. For 

example [19, 20] focused on read speech assessment. Further, Tong et al. [21] focused on 

pronunciation assessment in Mandarin. Hagen et al. [22] proposed subword unit based 

speech recognition for children enabling assessment of children speech at finer details and 

detection of speech events such as partial words and mispronunciations.

More modern methods, specifically related to deep learning, have been extremely successful 

in improving ASR performance. The successes of Deep Neural Networks (DNN) have been 

attributed to DNN’s ability to use vast amount of training data and to better approximate the 

non-linear functions needed to model speech, thus surpassing GMM based ASR systems. 

However, relatively less work has investigated DNNs for children’s speech probably due to 

lack of large amounts of children’s training data. [23, 24] conducted ASR experiments using 

a hybrid DNN-HMM based ASR system. They trained on approximately 10 hours of Italian 
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children’s speech giving small improvements over traditional GMM based systems. Serizel 

and Giuliani [25] used a DNN to predict the frequency warping factors for VTLN which was 

later used to train a hybrid DNN-HMM system. [26] employed convolutional long short-

term memory recurrent neural networks to train children ASR for use with Youtube Kids. 

They further employed data augmentation through artificially adding noise for more 

robustness. Combining adults’ speech with children’s speech for training improved results 

for both adults and children [27, 26, 28, 29]. Particularly, combining female adult speech in 

the training was shown to be more advantageous [27]. Multi-task learning frameworks for 

adapting adults’ speech to children’s speech were presented in [30, 21]. In [31, 32], a 

technique similar to [30] was adopted to overcome limited training data for DNN. Most 

recently, multi-lingual data adaptation in a transfer learning and multi-task learning 

framework was found to be useful for the task of ASR for children speaking in non-native 

language [33].

However, most of the prior works pertaining to analysis of children’s speech in context of 

speech recognition has been on gaussian mixture based hidden markov models (GMM-

HMM). Although there has been a wide consensus in the community about the advantages 

of DNN acoustic modeling for children’s speech [27, 26, 28, 29, 30, 21, 31, 25, 23, 24], 

there has been no work to the best of our knowledge, which attempts to evaluate and analyze 

where the strengths of the DNNs lie in context to children’s ASR. More importantly there is 

a need for an analysis of the shortcomings of the DNN based ASRs, i.e., problems and 

challenges persisting in children speech recognition using state-of-the-art speech recognition 

systems. Our study attempts to contribute to this gap and provide insights towards future 

developments.

In this work, we conduct Evaluations on large vocabulary continuous speech recognition 

(LVCSR) for children, to:

1. Compare older GMM-HMM models and newer DNN models.

2. Investigate different transfer learning adaptation techniques. Particularly we look 

at two factors degrading children ASR: acoustic variability and pronunciation 

variability in a DNN setup.

3. Assess effectiveness of different speaker normalization and adaptation 

techniques like VTLN, fMLLR, i-vector based adaptation versus the employed 

transfer learning technique.

Further, we conduct Analysis over the following parameters in context of transfer learning:

1. DNN model parameters.

2. Amount of adaptation data.

3. Effect of children’s ages.

4. Age dependent transformations obtained from transfer learning and their validity, 

portability over the children’s age span.

Recommendations are provided from the insights gained from conducting the 

aforementioned evaluations and analysis for:

Shivakumar and Georgiou Page 4

Comput Speech Lang. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Favorable transfer learning adaptation strategies for low data and high data 

scenarios.

2. Suggested transfer learning adaptation techniques for children of different ages.

3. Amount of adaptation data required for efficient performance over children’s 

ages.

4. Potential future research directions and relevant challenges and problems 

persisting in children speech recognition.

The rest of the paper is formatted as follows: Section 2 motivates and describes the proposed 

transfer learning technique. Section 3 describes the databases used for recognition 

experiments. The experimental setup and baseline systems for both adult and children ASR 

models are described in Section 4. Section 5 presents experiment results and discussion. 

Section 6 analyzes the amount of adaptation data and its effect on the performance. We carry 

out analysis of transfer learning technique on children’s age in Section 7. Section 8 discusses 

the study of age dependent transfer learning transformations and Section 9 provides 

comparisons between the age dependent and age independent transfer learning 

transformations. Finally, Section 10 discusses potential future work and concludes.

2. Proposed Transfer Learning Technique

Transfer learning is a method of seeding models of a new task by using the knowledge 

gained from a related task. The method has been used successfully, for cross-lingual 

knowledge transfer in DNN-based speech recognition [34, 35] and character recognition 

tasks [36]. Transfer learning often exploits the various level of information that are captured 

by the different neural network layers. Often layers closer to the signal capture signal 

specific characteristics, e.g. edge characteristics, basic shapes, or spectral content. Higher 

layers capture information more related to the task at hand, e.g. phoneme classes, object 

types [37].

Prior literature (see Section 1) establishes that childrens speech is significantly different to 

that of adults. ASR performance suffers acutely for cross-domain tasks (children vs. Adults). 

In this study, we consider children ASR and adult ASR as two different tasks. We attack the 

mismatch problem as a transfer learning between the two tasks children ASR and adult 

ASR. Children, as described above, differ (i) in acoustics and (ii) pronunciation from adults. 

This motivates us to investigate the transfer learning between adult and children ASR 

systems in two ways: (i) acoustic variability, as those relate to layers near input, and (ii) 

pronunciation variability as it relates to layers near output.

2.1. Accounting for Acoustic Variability

We assume that acoustic variability affects the lower-level network structures only and hence 

these layers need to be adapted to better represent the children’s feature subspace. This 

could be thought of as retaining the knowledge of higher level abstract functions (mappings) 

from an adult’s ASR, while accounting for the spectral variabilities. This parallels alternate 

approaches such as feature space transforms like VTLN, fMLLR. One important difference 

is the degrees of freedom and hence parameters that this technique allows, likely resulting in 
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better transformations but also much larger demands on adaptation data. Hence, to account 

for the acoustic variability we retain all the hidden layers from adult models except the 

bottom-most layer as shown in Figure 1. The figure comprises of two input layers, one 

corresponding to original task (Adult’s ASR), and the second, a new estimate adapted to the 

target task (children’s ASR). The DNN is retrained with children speech until convergence 

to estimate the optimal parameters of the lowest layer. Note, most of the transfer learning 

techniques adapt the output layers [30, 21, 31, 32] while for this task we adapt the input 

layer(s).

Moreover, we also augment the MFCC features with i-vector information. The i-vector 

subspace has been shown to capture speaker specific information efficiently [38]. It has also 

been successfully used for capturing speaker age characteristics [39]. Further speaker 

specific information is useful for speaker adaptation of DNN acoustic models [40]. The 

augmentation of i-vectors enables for better adaptation of the bottom layers during transfer 

learning by estimating speaker and age specific spectral transformations which are highly 

relevant for modeling children speech.

2.2. Accounting for Pronunciation Variability

We assume that phonemic variability affects the higher-level network structures only and 

hence these layers need to be adapted to better represent the children’s pronunciation 

variance. Hence we propose to adapt higher layers towards modeling pronunciations as 

illustrated in Figure 2. The figure comprises of two output layers, one corresponding to 

original task (Adult’s ASR), and the second, a new estimate adapted to the target task 

(children’s ASR). This parallels work in adapting acoustic models across languages [34, 35] 

or for non-native speakers [33]. In this case we are only tackling the pronunciation 

variability and as such the lower-order layers will remain unchanged.

2.3. Accounting for Acoustic & Pronunciation Variability

Finally, to account for both the acoustic and pronunciation variability, we would like to 

update both the top-most and bottom-most layers and keep the rest of the layers fixed. This 

is attempted in two ways: (i) keeping weights of the middle hidden layers fixed and allow 

the top-most and bottom-most layer(s) to update simultaneously, (ii) dis-jointly and 

alternately training the various layers (top & bottom) until convergence. The motivation 

behind the disjoint training is to constrain the updatable parameters at any time, to limit the 

adaptation, and to regulate the amount of knowledge retained from adult acoustic models.

3. Databases

In this work we employ 5 different children speech databases and 1 adult speech corpora. 

All the data are processed at 16kHz.

The following children speech databases were used:

1. CU Kid’s Prompted and Read Speech Corpus [41]

2. CU Kid’s Read and Summarized Story Corpus [42]
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3. OGI Kid’s Speech Corpus [43]

4. ChIMP Corpus [16]

5. CID Children’s Speech Corpus [2]

Using multiple children’s speech corpora makes the problem more challenging and more 

relevant to real world scenarios. The CID Children’s Speech Corpus is used for testing and 

the rest for training. The summary of breakup of databases and their split for training and 

testing is provided in table 1. The distribution of data over the age is illustrated in Figure 3.

The adults corpus employed in this work is the TED-LIUM ASR corpus [44]. It consists a 

total of 206 hours of speech data of 774 speakers giving TED talks.

4. Experimental Setup & Baseline System

4. 1. Experimental Setup

The experimental setup is very similar to the one used in our previous work [7].

GMM-HMM System: We employ as a baseline a Gaussian Mixture Model based Hidden 

Markov Model ASR. For this system the features used are standard Mel-Frequency Cepstral 

Coefficients (MFCC) of dimension 13 with window size of 25ms and shift of 10 ms with 

their first order and second order derivatives. The HMMs were modeled using 3 states for 

non-silence phones and 5 for silence phones. The GMM-HMM system consists of 3976 

GMMs built from 100,124 gaussians. The choice of parameters are empirical and increasing 

the number of parameters didnt yield any significant improvements. We also employ the 

front-end adaptation techniques of Linear Discriminant Analysis (LDA), Maximum 

Likelihood Linear Regression (MLLR) and Feature space MLLR (fMLLR) for speaker 

independent and speaker adaptive training.

Dictionary: We employ the CMU Pronunciation dictionary [45]. This dictionary 

corresponds to American-English pronunciations and that makes it compatible with our 

available children and adult data. To account for the out-of-vocabulary (OOV) words during 

training, a grapheme to phoneme converter was used to generate phoneme transcripts for 

OOV words.

Language Model: Two language models were interpolated, one trained on a subset of 

children’s training data reference transcripts and the second generic English language model 

from CMU-Sphinx-41 [46]. The interpolation helps incorporating children’s grammar which 

is beneficial for children’s ASR along with the adult’s grammar to facilitate the transfer 

learning process between adults and children. Since this work deals with evaluating acoustic 

models, we keep the language model fixed for all our experiments.

Vocal Tract Length Normalization (VTLN)—VTLN is a speaker dependent transform 

aimed to normalize the variability found in vocal tract structures and reduce inter-speaker 

1Language model version: cmusphinx-5.0-en-us.lm
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variability. It involves computation of speaker specific frequency warping factors derived 

using maximum likelihood estimation. We adopt linear VTLN system [47], in which each 

warping factor is associated with a linear transformation, i.e.,

xα = Aαx + bα = W αχ
W α = Aα; bα χ = x; 1

(1)

where x is the feature vector, α is the warp factor (chosen using grid search), xα is the 

transformed feature vector for warp factor α, Aα is the linear transformation matrix & bα is 

the linear bias for warp factor α, Wα is the affine transformation matrix and χ is the 

extended feature set. Linear VTLN computation involves a total of 31 × (120 × 120 + 120) = 

450, 120 parameters for a MFCC feature dimension of 40 (with Δ & Δ-Δ’s) over a grid 

search of 31 warp factors.

Feature space maximum likelihood linear regression (fMLLR)—fMLLR, also 

known as constrained space maximum likelihood linear regression (CMLLR) [48] is used 

for speaker adaptive training in this study. fMLLR is a linear model-space transformation 

which is computed using expectation-maximization technique. The parameters of the 

transformation is found as follows:

Q(M, M) = K −

1
2 s 1

S

m 1

M

r 1

T(s)

γm(τ)[K(m) + log(|Σ(s, m)|)

+ (o(τ) − μ(s, m))TΣ(s, m) − 1(o(τ) − μ(s, m))]

(2)

where μ s, m  and Σ s, m  are the transformed mean and variance for speaker s and Gaussian 

component m, S is the number of speakers, M is the number of Gaussian components 

associated with the particular transform, OT = o(1), …, o(T) is the adaptation data (training 

data for the transform), K & K(m) are the normalization constant for transition probabilities 

and Gaussian component m respectively. γm(τ) is the posterior probability given by

γm τ = p qm τ M, OT (3)

where qm(τ) is the Gaussian component m at time τ. With fMLLR, a constraint is applied 

such that the transformation of the mean should correspond to the transformation of the 

variance, i.e.,

μ = A′μ − b′
Σ = A′ΣA′T (4)

The total number of parameters involved in fMLLR estimation is S × M × (D × (D + 1)) for 

feature dimension D.

i-Vector Setup: The i-vector extraction can be formalized as:

F = u + Tx (5)
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where F  is the mean super-vector, i.e., the vector of component means of the GMM obtained 

after maximum a-posteriori (MAP) adaptation of a universal background model (UBM), 

which is decomposed into u, the mean super-vector of the UBM, T, the total variability 

matrix spanning a low dimensional subspace estimated in a maximum likelihood sense, and 

x, the i-vector computed as a latent variable with standard normal prior via MAP. We 

employ high-resolution, 40-dimensional MFCCs as front-end features for i-vector training. 

To introduce context, we used an LDA transform with a context of 3 left and 3 right. Both 

the universal background model (UBM) and the total-variability matrix for the i-vector were 

trained on adults speech data to allow transfer learning from these as well. We used 2048 

Gaussian components to train the UBM, whereas the i-vector dimension was fixed to 100. 

We experiment with 2 versions of i-vectors: (i) online i-vector, computed on the fly on a 

sliding window of speech signal with no look-ahead, and (ii) offline i-vector, computed on 

all available speech data pertaining to a specific speaker.

Hybrid DNN-HMM System: We employed a hybrid DNN-HMM system, where the DNN 

is used to replace the posterior probabilities of a traditional GMM system. DNN architecture 

employed is a time delay neural network which uses sub-sampling for exploiting long 

contextual information [49]. The DNN consumes high resolution MFCC features with a 

context of 13 left and 9 right frames. The MFCC features were concatenated with the i-

vector and were used to train the DNN. The DNN has 7 hidden layers with p-norm non-

linearity, each of dimension 3500, consisting of approximately 12.2 million parameters. The 

choice of number of parameters are inspired from the TEDLIUM recipe in Kaldi, given the 

amount of children data (91.6 hours) is similar to that of TEDLIUM (118 hours). The output 

Softmax layer consists of 3976 units trained to predict the posterior. We used greedy layer-

wise training to train the DNN [50]. An exponential decay function is applied to the learning 

rate. To regularize the training, we use two techniques: (i) a normalization layer following 

each hidden activation layer [51], which normalizes the vector of activations such that the 

sum-square of the vector is 1.0, and (ii) a max-change limit for each hidden layer [51], to 

stabilize the training process. The convergence of the DNN is confirmed using a small 

subset of held-out training data.

Evaluation: To confirm the effectiveness of the proposed transfer learning techniques, we 

perform statistical significance test. We perform two statistical significance tests for (i) word 

error rate, and (ii) sentence error rates [52]. All the results reported in this study are 

statistically significant with p < 0.001, both in terms of word error rates and sentence error 

rates.

4.2. Baseline System

4.2.1. Children’s ASR—The Children’s ASR was trained only on the children speech 

data (splits illustrated in table 1). In order to compare to the DNN and to relate to the 

previous work [7], we provide the result of the GMM-HMM systems. To asses the advantage 

of the proposed transfer learning, we also trained a hybrid DNN-HMM based baseline 

system on children-only speech data. To provide a range of baselines we also employ 

popular adaptation techniques such as VTLN, SAT, i-vector, which have been proven 

successful for children’s speech, in conjunction with the Hybrid DNN-HMM.
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4.2.2. Adult’s ASR—An additional ASR was trained only on adults speech data from 

TED-LIUM. The performance of this system was evaluated by decoding on the test set of 

children speech to compare its performance to that of the baseline children ASR. This 

system is used for transfer learning to adapt to children speech.

5. Recognition Results and Discussions

5.1. Baseline Results

Table 2 shows the results of the baseline system. The GMM-HMM results are comparable to 

that of the previous study [7] although more data has been incorporated for training in the 

current system. We see that the SAT gives the best results among the GMM-HMM 

framework. The hybrid DNN-HMM system improves over its respective GMM counterpart 

by 1% absolute. We believe the reason for the minimal improvement is that DNN requires 

more data to generalize well for children speech.

We also compare different adaptation techniques for the DNN-HMM model. VTLN 

provides an absolute 3.25% improvement over the raw MFCC features. SAT performs much 

better and reduces the WER to 21.31% an absolute improvement of 14.66% over raw 

features. However, we find that a combination of VTLN and SAT doesn’t provide any major 

improvement. Trials augmenting raw features with i-vectors suggest that the best 

performance is achieved by using the offline version of i-vectors calculated on the whole 

utterance. However, these still fail to surpass the performance of the SAT by 4.22% absolute, 

thereby confirming SAT is crucial for children speech adaptation irrespective of GMM or 

DNN acoustic modeling.

5.2. Hypothesis Verification

In this section, we perform carefully designed experiments to prove our initial hypothesis 

that (i) transfer learning from adult ASR is advantageous, and (ii) adapting bottom layers of 

a DNN helps to address acoustic variability.

5.2.1. Transfer learning from Adults to children—We perform transfer learning 

from two different base models: (i) Adult’s model, (ii) Combined model (Adult + Children) 

and compare with (iii) Children’s ASR to verify our hypothesis for the need for transfer 

learning from adults to children. Table 4 shows the best results obtained on children’s test 

set with each of the model. Results confirm our hypothesis that transfer learning from 

Adult’s model leads to a more robust system.

5.2.2. Acoustic variability modeling—We conduct experiments on TEDLIUM 

(Adult’s speech) corpus by artificially creating acoustic feature level variability. We apply (i) 

pitch-shifting, (ii) time-stretching on the raw speech signals and (iii) random VTLN warping 

on the MFCC features. We choose the variabilities due to their close relevance to the ones 

found in children’s speech. The results of these experiments are presented in Table 3. From 

the table, the main observation is that the bottom-layer adaptation helps the most for 

handling acoustic variability. A more detailed look for each of the variability, indicates that 

VTLN can only be handled by adapting bottom layer and not the top-layer. We don’t 
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observe any improvements for time-stretching with adaptations, probably because of the 

HMM’s ability to compensate for variable speaking rates.

5.3. Transfer Learning Results

Table 5 shows results of the proposed transfer learning technique. Even-though the best 

performing model from Table 2 is obtained with LDA+MLLT+SAT, we choose the best 

performing i-vector (offline, utterance level) model as our baseline. This is because, we hope 

to estimate a feature level transform similar to fMLLR transform (SAT) with adaptation of 

bottom layers of the DNN. Since the fMLLR transform is a linear transform on the feature 

space, there is a possibility that the DNN adaptation is limited by the fMLLR transform. By 

allowing the adaptation directly on the features, we believe the DNN is able to estimate a 

more effective non-linear transformation of the feature space rather than being constrained 

to linear feature transforms like fMLLR, VTLN, LDA.

The baseline adult’s model is significantly worse than children’s model, as expected and 

consistent with previous studies. We first conduct adaptation experiments by adapting a 

single layer at a time. This allows us to assess the types of variability present in children’s 

speech relative to the adult-trained DNN. It also allows us to evaluate performance benefits 

through addressing specific variability types. Adapting bottom layers should help counter 

acoustic variability in kids. Adapting top layers should attempt to account for pronunciation 

variability.

We observe as hypothesized that with single-layer modifications addressing acoustic 

variability (24.26%) is more advantageous than accounting for pronunciation variability 

(26.97%). Both are providing big gains over both the original adult’s baseline of 39.32%.

Often, in transfer learning the top layers, representing high level abstract information, are 

used for adaptation [35, 34]. However, our finding is in agreement with prior studies 

showing high variability in spectral characteristics of children speech [1, 2, 4, 5] that denotes 

the need for input-layer adaptation. This suggests that the transfer learning adaptation 

configuration is task dependent.

We also investigate letting both the top and bottom layers update, i.e., by modeling both the 

acoustic and pronunciation variability simultaneously. We observe a further boost in 

accuracy with the WER dropping to 19.63% giving a relative gain of 23.1% over the 

baseline children model and 50.1% over adults model. One interesting observation is that the 

bottom layer adaptation (24.26% WER) is mostly complementary to the top layer adaptation 

(26.97% WER) and vice-versa, thus benefits from simultaneous adaptation of a bottom layer 

with a top layer (19.63% WER). This suggests that the acoustic variability and the 
pronunciation variability are fairly exclusive of each other in case of children. Dis-joint 

training doesn’t provide improvements, likely due to the sufficient amounts of data to 

simultaneously account for the degrees of freedom of joint training. It could however be 

beneficial in the case of less data as we show in the subsequent section (Section 6.1).

In our experiments we also found that using 2 layers to update instead of 1 gives further 

improvements. We achieve a word error rate (WER) of 17.8% which is a modest 9.3% gain 
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over using single layers for adaptation. Subsequent experiments with more layers did not 

provide any significant improvements. Adapting all the layers gives the same performance of 

17.8% WER. This suggests that all the variability present between the children and the adult 

is concentrated at the top (pronunciation level) and bottom (acoustic level) layers of the 

DNN in agreement with the initial hypothesis made in this work. This indicates that the 

underlying middle hidden layers efficiently model the basic human speech structure.

Overall, the proposed transfer learning technique outperforms the best results obtained using 

the baseline model trained on children’s speech with SAT by a relative 16.5% (relative 

54.7% improvements over the baseline adult model). The results highlight the power of 

transfer learning in the DNN framework in outperforming SAT, the prior best performing 

recipe for children ASR [7].

Finally, we compare the proposed adaptation technique against a model trained on combined 

data of adult’s and children’s speech which was proposed in [27, 26, 28, 29]. Combining 

adults’ and children’s data provides modest improvements over the baseline systems trained 

only on children (5.18% absolute) and adult (18.97% absolute) data. However, our proposed 

adaptation technique proves to be superior with 2.55% absolute improvement over the model 

trained on adults and children.

Informed by the above results, for the rest of this work, we experiment with four different 

adaptation configurations:

1. 2 layers: (bottom-most + top-most)

2. 4 layers: (2-bottom-most + 2-top-most)

3. 6 layers: (3-bottom-most + 3-top-most)

4. all layers.

We always adapt even number of layers, thus maintaining symmetry in the structure in terms 

of top and bottom layers for maximum performance. Moreover, from our experiments we 

found that adapting a single layer never surpasses the adaptation using symmetric 2 layers 

and thus we skip presenting those results.

5.4. Transfer learning with fMLLR transform, (Speaker adaptive training)

We perform further experiments with speaker adaptive training with fMLLR transforms. 

Particularly, we compare transfer learning results for fMLLR transform trained on (i) adult’s 

speech, and (ii) children’s speech. Table 6 displays the results. We observe that fMLLR 

transforms trained on children’s speech perform significantly better than the ones trained on 

adult’s speech. There is a huge offset in performance with fMLLR transforms trained on 

adult’s speech and the transfer learning is unable to compensate for performance degradation 

offset. The transfer learning on fMLLR transforms trained on children’s speech do not prove 

to be useful, but instead cause performance degradation compared to the baseline children 

ASR. These results suggest that fMLLR transforms bring constraints and are less suited for 

transfer learning.
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6. Analysis of Amount of Adaptation Data

Figure 4 shows the transfer learning adaptation performance curve over amount of 

adaptation data (in terms of WER and hours). Each curve represents different adaptation 

architectures of the DNN in terms of number of layers used for adaptation. The following 

inferences can be drawn from the plot:

• The WER decays exponentially with increase in amount of data.

• The curves are almost always monotonically decreasing, suggesting that more 

adaptation data always helps. We note that the graph has not converged, meaning 

more data could help the adaptation further, suggesting that the constraint is still 

the amount of children data available.

• Any amount of children data is helpful for adaptation, as in our experiments even 

as low as 35 minutes of children adaptation data was found to give improvements 

of up-to 9.1% (relative) over the adult model.

• Adapting less number of layers yields better results for low data scenario, i.e., we 

find that adapting only 2 layers consistently outperforms adapting with more 

layers until about 25 hours of adaptation data.

• With 25 hours of adaptation data, all of the 4 curves more or less intersect 

suggesting that all the four architectures gives approximately the same 

improvements.

• For more than 25 hours of data, we find that adapting 4, 6 and all layers converge 

to approximately same performance in agreement of the findings in section 5.3.

6.1. Transfer Learning for low resource scenarios

Table 7 represents three extreme low data adaptation scenarios. We apply dis-joint training 

to account for data sparsity as explained in section 2.3. Since earlier experiments indicated 

that 2 layers provided maximum benefits for low data, we present the effect of dis-joint 

training for 1 & 2 layers only. For 1-layer, the series of experiments involved first adapting 

bottom layer (layer-1) with other layers fixed, then on adapting layer-2 with the rest fixed 

and so on. For 2-layers, the series of experiments involved first training with top and bottom 

layer. Fixing those weights, we then continue training with layer-2 and layer-6 to update and 

so on. We find that the dis-joint training further improves the adaptation for small amounts 

of data i.e., 35 and 45 minutes. The improvements diminish when more data is used, as in 

the case of 2 hours and as seen earlier in table 5. For smaller amounts of data, dis-joint 

training of a single layer is more beneficial (6.4% and 4.5% relative improvements for 35 

and 45 minutes). For 2-layer adaptation, approximately 1.9% and 2.3% relative reduction in 

WER is observed with dis-joint training for 35 and 45 minutes respectively.

7. Age dependent analysis

7.1. Age vs. Adaptation layer configurations

In this section, we analyze the effect of different layer adaptation configurations on the 

children’s age. The model is adapted on all available children data independent of age (age-
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independent acoustic model). The results are plotted as a bar graph in Figure 5. We observe 

the following:

• Overall performance increases with increase in age, irrespective of the adaptation 

configuration. The two peaks corresponding to ages 12 and 13 years is probably 

a consequence of the acoustic model mismatch posed by relatively less training 

data for elder children (11 - 14 years) (See Figure 3).

• Performance is worse for younger children, consistent with past work [7].

• The adaptation configuration affects more younger children. To demonstrate this, 

Figure 6 shows the WER variance between the 4 configurations plotted over age. 

It is evident from the plot that the variance for younger children is significantly 

higher and decreases with increase in age. Similar peaks found in Figure 5 for 

ages 12 and 13 years is also apparent in variance plot.

• Younger children benefit with adaptation of more layers than older children. This 

aligns with the expectation that younger children manifest higher acoustic 

complexity and hence more parameters (layers) are necessary to capture the 

increased complexity. For example, from Figure 5, if 2 layers are adapted rather 

than all layers we have significantly fewer gains for 6 year olds than 14 year 

olds. This is also justified to certain extent by looking at the variances in Figure 

6. This also suggests that despite the acoustic and pronunciation variability, 

young-children speech encodes more variability that affects the whole network.

7.2. Amount of Adaptation Data vs. Age

We also investigate the amount of adaptation data and its effect on children’s age. Figure 7 

shows a 3-d plot of WER over the amount of adaptation data and the children’s age. 

Adaptation data are chosen at random and hence follow the proportions in Figure 3. We 

make the following inferences from the figure:

• It is evident that more the adaptation data better is the performance irrespective 

of age of the children.

• We see that younger children need more data to reach the same level of 

performance as older children. The trend is in accordance with the age, I e., as 

the age of children increases, less amount of adaptation data is sufficient.

• In-spite of large amount of matched-adaptation data, we observe that the 

performance of younger children of age 6-8 years doesn’t meet that of the elder 

children.

• Although the adaptation data for older children is mainly mismatched (see Figure 

3 for distribution of training data), they need as low as 30 minutes of adaptation 

data to surpass the performance of the younger children adapted on all (90 hours) 

of data.
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7.3. Layer configurations vs. Amount of Adaptation Data vs. Age

To gain insights into the optimal adaptation strategy in terms of 4 earlier mentioned 

adaptation layer configurations as a function of the amount adaptation data and age of 

children, we plot the difference of WER between different adaptation layer configurations. 

Figure 8 shows a 3-d plot for difference between the WER when adapting all layers and 

WER when adapting only 2 layers. Any positive values indicate that adapting with 2 layers 

to be superior than adapting all the layers and vice-versa. We can deduce the following by 

looking at Figure 8:

1. Adapting 2-layers is more beneficial when adaptation data available is low. 

When more adaptation data is available, it is advantageous to adapt more layers. 

The trend is consistent over all the children ages - 6 years to 14 years which is in 

accordance with the finding from Section 7.1 and Section 7.2.

2. For younger children, 6 years to 11 years, we find that it is better to use fewer 

adaptation layers when the adaptation data available is low. The performance of 

the system is significantly lower when adapting with all the layers. This is 

because of the increased variability affecting the overall performance of the 

system. This is especially true when a large amount of parameters are adapted 

with little data, due to noise introduced from high variability. The performance of 

the system eventually recovers and surpasses the 2-layer adaptation configuration 

when sufficient amount of adaptation data is available.

3. For younger children, with sufficiently high adaptation data, we find that the 

effective gains made between the layer configuration is much higher compared to 

elder children. Thereby asserting their sensitivity to adaptation data and layer 

configurations.

4. For older children, 12 years to 14 years, the system adapts rapidly with 

considerably less data compared to younger children.

5. For older children, the performance gains are comparable between 2-layer 

adaptation and all layer adaptation.

The analysis is only presented for differences between adapting all the layers and adapting 

only 2-layers. The particular plot was chosen to illustrate the differences as in an extreme 

case. Similar trends were observed for differences of other configurations, i.e., adapting 

more layers versus fewer layers.

The observations in the section make sense from an acoustic point of view, because as the 

children grow their vocal tracts mature and voices tend to sound more like that of an adult. 

Therefore, the adaptation is less important in this case.

8. Analysis of Age Dependent Transformations

In order to assess the validity of the transformations learnt by adapting the layers and its 

extensibility and relevance to children’s speech, we analyze age specific transformations 

resulting from age dependent transfer learning adaptation. The transformations would be 
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meaningful if there exists some level of meaningful portability between different ages. Note: 

these transformations are not equivalent and shouldn’t be mistaken to age specific models.

Figure 9 shows the 3-d plot of WER from application of age dependent transformations on 

each age group, when adapting the model with all the layers. The following can be inferred 

from the plot:

1. For younger children, ages 6 years to 10 years, the matched models i.e., 

application of same aged transformations provide significant improvements.

2. For younger children, as the mismatch increases (in terms of age), the 

performance decreases.

3. For younger children, the rate of performance degradation is much more drastic 

as the mismatch (in terms of age) increases compared to older children.

4. For ages 11 years to 14 years, the surface is more or less plateaued, this is 

probably because of data scarcity for estimation of meaningful transformations 

(See Figure 3).

5. The overall surface is tilted towards the left, indicating that performance of elder 

children are significantly better irrespective of the applied transformation.

The above observations confirm the validity of the transformations and its portability across 

the ages. Although the transformations are not equivalent to age-dependent models, the 

above observations prove they exhibit similar trends (performance-wise) as reported in 

previous literature [13].

8.1. Age dependent transformations versus Adaptation layer configurations

Figure 10 illustrates the confusion matrix obtained by the application of age dependent 

transformations on each group for each of the 4 adaptation configurations. A quick 

inspection shows that all of the configurations exhibit similar trends observed in Section 8.

9. Age dependent transformations versus Age independent 

transformations

Figure 11 compares the performance of the age independent transformations (obtained by 

adapting on all the data) against the application of matched age dependent transformations. 

To keep the analysis consistent over different adaptation layer configurations, we consider 

only the configuration of adapting all the layers. We find that the age independent 

transformation trained on significantly more data outperforms the age dependent 

transformations consistently over all the ages. This finding suggests that DNN can exploit 

more data to offset and surpass the performance and effectively generalize over different 

ages due to its large parameter space. It does not lose its generalizability when exposed to 

different ages. This is in contrast to GMM models, that when adapted (e.g. via MLLR), to a 

wider diverse population with limited data underperform specific adaptations [53]. By 

examining the difference between the WER trajectories over age, we find a peak over the 
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ages 11 years to 14 years, highlighting the aforementioned effect of limited data for these 

age groups as in Figure 3.

However, by providing a correction factor to compensate for the difference between the 

amount of data between the age dependent and independent transforms, enables for a more 

fair comparison between the transforms. To enable such an analysis we adopt 2 different 

types of data correction factors for age independent transformation:

1. We train an age independent model by randomly sampling data equal to the 

average data (over ages - Figure 3) which in our case is approximately 10 hours. 

We refer to this as average age-independent transform (Blue line in Figure 12). 

We then compute the performance on test set for each age category.

2. We train multiple age independent transforms, each trained with the 

corresponding amount of data available in each age category (see Figure 3). This 

gives us one age-independent model for each age best matched to age-dependent 

transform in terms of adaptation data. We refer to this as matched age-

independent transform (Green line in Figure 12).

Since the sampling of data in either case is random, this retains the original corpus 

proportions (with respect to age).

Figure 12 compares the data normalized age independent transform against the age 

dependent transformations. The following observations are apparent from the plot:

1. After normalizing the amount of data, we now see that the age dependent 

transformations outperform the age independent transformations for younger 

children (ages 6 years to 10 years) in both cases (average and matched versions).

2. We observe that the improvements from age dependent transforms gets more 

prominent as the age decreases, with maximum gains for 6 year old.

3. We observe a crossover for elder children (ages 11 years to 14 years) in both the 

cases of average and matched versions, i.e., the age independent transformations 

are better compared to that of age dependent. (For elder children, the average 

version of age independent transformation shows higher demarcation due to the 

heightened mismatch in adaptation data. Hence, the matched version is more 

representative.). This interesting finding could be attributed towards the higher 

similarity between the speech of adults and elder children. (Note: this is not a 

case of age-dependent acoustic modeling, but rather an adaptation from adult’s 

speech).

4. Looking at the difference between the ‘best performing’ age-independent 

transformation and the age dependent transform, i.e., the potential gains from 

exploiting more data with age-independent transform increases with increase in 

age. This is expected, considering that the elder children exhibit relatively lower 

variability in acoustic and pronunciation constructs and hence exhibit much 

similar speech structure to that of the adult.
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9.1. Effect of adaptation layer configurations

Figure 13 plots the difference between the age-dependent transform and the matched version 

of age-independent transform for different adaptation layer configurations. The takeout from 

the plot is, the age-dependent transforms outperform the age-independent transforms for 

younger children, whereas the age-independent transforms are beneficial for elder children. 

The trend observed earlier, with all the layers, remains apparent over all the layer 

configurations. Note the absolute values (trajectories) are a function of the amount of data 

present for each age and age itself, as supported by our earlier observations in Section 7.3. 

Hence, the inter-relations of different configuration trajectories is complex.

10. Conclusion & Future Work

In this study, we conduct an analysis of LVCSR adaptation and transfer learning for 

children’s speech using multiple databases. We compare the advantages of DNN acoustic 

models over the GMM-HMM systems. We also compare adult and children DNN acoustic 

model performance for decoding children speech. Several transfer learning techniques are 

evaluated, on adult models, specifically to address the increased acoustic variability and 

pronunciation variability found in children. Extensive analysis is performed to study the 

effect of the amount of adaptation data, DNN transfer learning configurations and their 

impact on different age groups. In the case of severely limited in-domain (kids) data we 

proposed and analyzed disjoint adaptation. We also analyzed the amount of adaptation data 

required for children of different ages. We investigated various transfer learning 

configurations and their effect on different age groups and data sizes. Our work validated the 

benefits of age dependent transfer learning and examined the portability and extensibility of 

models over the different age groups. We also presented comparisons of age dependent and 

age independent transfer learning. These provide valuable insights towards future research 

directions in terms of persisting challenges and problems in children’s speech recognition.

In future we would like to analyze the variability internal to the DNN, i.e. how the weights 

of the “adapted layers” change. Comparisons of such variability between adult and child 

models can inform on linguistic and structural aspects of kids speech. These can also help 

identify the aspects of non-linearities in normalization and adaptation techniques towards 

improved kids speech processing. Such models can provide insights in analyzing the effect 

on various speech parameters in regards to pitch, intensity, voice quality, duration, formant 

frequencies etc, which are valuable aspects in assessing the difficulties faced for children 

ASR.
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Appendices

Appendix

Analysis on Balanced-Age data

In this section we present results on age-balanced set of data. Although, ideally, we would 

want to perform analysis with age balanced data over the entire range of ages, i.e., 6 years to 

14 years, we are restricted in terms of available speech data for children of each age 

category. From Figure 3, it is evident we have less than an hour of data available for 

balanced analysis. Thus, we perform analysis only over the range of 6 years to 10 years. 

This gives us approximately 11.5 hours of data in each of the 5 age categories.

Appendix A.: Age vs. Adaptation layer configurations

We repeat the experiments of Section 7.1 here with age-balanced data. The model is adapted 

on 11.5 hours of children’s speech of each age category (from 6 years to 10 years) and tested 

on matched age category. Figure A.14 presents the analysis of adaptation layer 

configurations as a function of age. Following observations are made:

• Similar trend is evident as Figure 5, i.e., performance increases with increase in 

children age.

• Adapting all layers is beneficial for children of age 6, i.e., more parameters are 

required to capture high acoustic variabilities found in younger children.

• For children of ages 7 and 8, adapting 6 layers provides the best performance, 

hinting at decrease in variabilities and hence relatively lesser parameters required 

for better adaptation.

• For children of ages 9 and 10, adaptation with only 2 layers provide optimal 

performance (for 11.5 hours of speech), supporting previous observations.

Shivakumar and Georgiou Page 19

Comput Speech Lang. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure A.14: 
Children Age vs. Adaptation layer configurations (Age Balanced Data)

Appendix B.: Analysis of Age Dependent Transforms

In this section, we repeat the experiments from Section 8 but with balanced amount of data 

in each age category. Figure B.15 illustrates the WER 3-D plot for each of the age dependent 

models against each test categories. The following observations can be made:

• The observations are consistent with the ones made in Section 8 for the ages 

(6-10 years).

• The surface plot is much smoother, exhibits better linearity and is more 

predictable compared to Figure 9.

• Age dependent transforms are critical for younger children (6-8 years), higher 

slope in the surface plot along both axes, versus the elder ones (9-10 years) 

where the performance plateaus.
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Figure B.15: 
Age dependent model performance - Adapting all layers (Age balanced data)

Appendix C.: Age dependent transformations vs. Adaptation layer 

configurations

In this section, we repeat the experiments from Section 8.1 with age balanced data. The 

observations are similar to as in Section 8.1. In addition the following observations are 

made:

• The models adapted with all layers on younger children (age 6 & 7) tend to be 

less generalizable on elder children (age 9 & 10). We believe as per our earlier 

hypothesis adaptation with all layers increases the noise in the model and hence 

is less robust overall for other ages.

• The models adapted with only 2 layers on elder children (age 8-10 years) 

perform considerably worse on younger children compared to models adapted 

with more layers. This agrees with our earlier findings that younger children 

exhibit more complexity and hence need more parameter adaptation.
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Figure C.16: 
Age dependent model performances - All layer configurations (Balanced Age) Colorbar 

pertains to WER
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Highlights

• In this work, we conduct Evaluations on large vocabulary continuous speech 

recognition (LVCSR) for children, to:

• We Compare older GMM-HMM models and newer DNN models.

• Investigate different transfer learning adaptation techniques.

• Assess effectiveness of different speaker normalization and adaptation 

techniques like VTLN, fMLLR, i-vector based adaptation versus the 

employed transfer learning technique.

• Further, we conduct Analysis over the following parameters in context of 

transfer learning:

• DNN model parameters.

• Amount of adaptation data.

• Effect of children’s ages.

• Age dependent transformations obtained from transfer learning and their 

validity, portability over the children’s age span.

• We finally provide Recommendations on:

• Favorable transfer learning adaptation strategies for low data and high data 

scenarios.

• Suggested transfer learning adaptation techniques for children of different 

ages.

• Amount of adaptation data required for efficient performance over children’s 

ages.

• Potential future research directions and relevant challenges and problems 

persisting in children speech recognition.
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Figure 1: 
Acoustic Variability Modeling

Neuron color scheme: Red-Output, Blue-Hidden, Gray-ivector input, Green-MFCC input
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Figure 2: 
Pronunciation Variability Modeling

Neuron color scheme: Red-Output, Blue-Hidden, Gray-ivector input, Green-MFCC input
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Figure 3: 
Distribution of training data over Children Age
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Figure 4: 
Amount of Adaptation Data (Log-scale) versus Word Error Rate; Four Different DNN 

configurations
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Figure 5: 
Children Age vs. Adaptation layer configurations
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Figure 6: 
WER Variance over Adaptation Layer Configurations across Children Age Groups
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Figure 7: 
Amount of training data vs. Children Age
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Figure 8: 
Layer configurations vs. Amount of Adaptation Data vs. Age
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Figure 9: 
Age dependent model performance - Adapting all layers
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Figure 10: 
Age dependent model performances - All layer configurations Colorbar pertains to WER
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Figure 11: 
Age dependent transformations versus Age independent transformations
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Figure 12: 
Age dependent transformations versus data-normalized Age independent transformations 

(Adapting all layers)
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Figure 13: 
Effect of adaptation layer configurations: Difference of WER between Age dependent 

transformations and matched age-independent transformations
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Table 1:

Summary of Corpora and their training-testing splits

Corpus # Hours # Speakers Age Split

CU Prompted & Read 25.69 663 6-11 Train

CU Read & Summarized 33.11 320 6-11 Train

OGI 22.56 509 6-11 Train

ChIMP 10.25 97 6-14 Train

CID 2.26 324 6-14 Test

Total (Children-Train) 91.61 1589 6 - 14 Train

TED-LIUM (Adult) 205.82 774 NA Train
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Table 2:

Baseline results of ASR trained only on children’s speech (91 hours).

Model WER

GMM-HMM Monophone 54.53%

GMM-HMM Triphone 36.96%

GMM-HMM Triphone LDA+MLLT 32.79%

GMM-HMM Triphone LDA+MLLT+SAT 24.55%

GMM-HMM Triphone LDA+MLLT+SAT + VTLN 25.66%

Hybrid DNN-HMM 35.97%

Hybrid DNN-HMM + VTLN 32.72%

Hybrid DNN-HMM + LDA+MLLT+SAT 21.31%

Hybrid DNN-HMM + LDA+MLLT+SAT + VTLN 21.82%

Hybrid DNN-HMM + online i-vector (speaker) 28.03%

Hybrid DNN-HMM + online i-vector (utterance) 26.59%

Hybrid DNN-HMM + offline i-vector (utterance) 25.53%
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Table 3:

WER results for artificially generated acoustic variability on TEDLIUM

Time-stretching Pitch-shifting VTLN-warping Global

No adaptation 16.08 37.14 13.52 20.05

Bottom layer 16.41 20.68 13.11 16.27

Top layer 16.88 26.77 13.95 18.37
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Table 4:

Best results obtained for different base models

Model (Proposed) Adult (TL) Adult + Children (TL) Children ASR

WER % 17.8% 19.06% 25.53%
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Table 5:

Transfer Learning Results (DNN: Hybrid DNN-HMM + offline i-vector AV: Acoustic Variability Modeling, 

PV: Pronunciation Variability Modeling) - 91 hours

Model AV PV Configuration WER

DNN Children ✗ ✗ Baseline 25.53%

DNN Adult ✗ ✗ Baseline 39.32%

DNN Children + Adult ✗ ✗ - 20.35%

DNN TL ✗ ✓ 1 layer 26.97%

DNN TL ✓ ✗ 1 layer 24.26%

DNN TL ✓ ✓ 1 layer each 19.63%

DNN TL ✓ ✓ dis-joint 1 layer each 20.01%

DNN TL ✓ ✓ 2 layers each 17.8%

DNN TL ✓ ✓ dis-joint 2 layers each 18.74%

DNN TL - - all layers 17.8%
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Table 6:

Transfer learning on fMLLR Transforms (SAT)

fMLLR/Adult fMLLR/Children

No transfer learning 59.59% 21.31%

1-middle & 1-top 36.76% 23.61%

2-middle & 2-top 36.09% 23.8%

3-middle & 3-top 35.16% 23.74%

all layers 34.38% 24.04%

Comput Speech Lang. Author manuscript; available in PMC 2021 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shivakumar and Georgiou Page 46

Table 7:

Adaptation at extreme low data scenarios

Adaptation Data Model (training) WER

35 minutes 1 layer 36.47%

35 minutes 1 layer (dis-joint) 34.13%

35 minutes 2 layers (simultaneous) 35.73%

35 minutes 2 layers (dis-joint) 35.04%

45 minutes 1 layer 35.23%

45 minutes 1 layer (dis-joint) 33.62%

45 minutes 2 layers (simultaneous) 35.13%

45 minutes 2 layers (dis-joint) 34.33%

2 hours 1 layer 33.25%

2 hours 1 layer (dis-joint) 33.62%

2 hours 2 layers (simultaneous) 32.35%

2 hours 2 layers (dis-joint) 32.94%
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