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Abstract

Background: Many statistics for measuring linkage disequilibrium (LD) take the form of a 

normalization of the linkage disequilibrium coefficient D. Different normalizations produce 

statistics with different ranges, interpretations, and arguments favoring their use.

Methods: Here, to compare the mathematical properties of these normalizations, we consider 

five of these normalized statistics, describing their upper bounds, the mean values of their maxima 

over the set of possible allele frequency pairs, and the size of the allele frequency regions 

accessible given specified values of the statistics.

Results: We produce detailed characterizations of these properties for the statistics d and ρ, 

analogous to computations previously performed for r2. We examine the relationships among the 

statistics, uncovering conditions under which some of them have close connections.

Conclusion: The results contribute insight into LD measurement, particularly the understanding 

of differences in the features of different LD measures when computed on the same data.
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1 INTRODUCTION

Linkage disequilibrium (LD) refers to the non-random association of the alleles at a pair of 

genetic loci. It manifests as a deviation of observed haplotype frequencies from the 

frequencies expected under the assumption that alleles at the two loci associate 

independently. As a fundamental concept in population genetics, LD appears in a wide 

variety of contexts, such as association mapping and detection of natural selection [1–5].
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The original measure of LD for a pair of biallelic loci, one with alleles A and a and the other 

with alleles B and b, was D = pAB − pApB, where pA and pB represent the frequencies of 

alleles A and B, respectively, and pAB is the frequency of the two-locus haplotype containing 

alleles A and B [6]. The frequencies pA and pB can be measured for the two loci separately, 

each in the absence of information on the other locus, whereas evaluation of the frequency 

pAB uses information on co-occurrence within individuals of alleles at the two loci.

Because LD is a property of a relationship between a pair of loci, values of the allele 

frequencies at the two loci under consideration can affect the potential strength of that 

relationship. This dependence is a recognized feature of LD measurement: soon after the 

initial development of the measure D, the quantity |D′| was introduced as a normalization of 

D that has the same maximal value irrespective of the allele frequencies at the constituent 

loci [7].

Many measures of LD have been proposed, each with different arguments favoring its use 

[1, 3, 8–12]. For example, the popular measure r2 [13] has the property that it can be 

interpreted as a squared correlation coefficient between indicator variables for the presence 

of allele A at the first locus and allele B at the second locus. Each allelic indicator variable is 

a Bernoulli trial, so that the squared covariance in the numerator of r2, D2, is obtained by 

examining the probability that both indicator variables simultaneously equal 1. Features of r2 

in a population evolving according to a standard neutral model are closely related to the 

population recombination rate 4Nec, where Ne is the effective population size and c is the 

recombination rate between two loci [14–15]. In addition, a calculation of the sample size 

necessary to detect disease association at a marker locus in linkage disequilibrium with a 

disease locus relies specifically on a measurement of r2 between the marker and disease loci 

[3, 16].

The measure d [17] contains an asymmetry between the pair of loci that can be useful if 

ascertainment of haplotypes forces specific frequencies for one of the loci. This asymmetry 

is potentially of use in association mapping in the context of a case-control study, where the 

B/b locus is taken to contain the disease allele, with A/a being a marker locus [9, 18]. In this 

context, d can also be interpreted as the difference in the proportions of disease and normal 

alleles found on the same haplotype with a particular marker allele [9].

The measure ρ has been argued to be informative in a model-based perspective on LD, in 

which it is treated as the probability that a haplotype chosen at random descends without 

recombination from a population of haplotypes that excludes the aB haplotype [19]. 

Specifically, given a set of allele and haplotype frequencies, ρ satisfies

ρ
pB pA − pB
0 1 − pA

+ (1 − ρ)
pApB pA(1 − pB)

(1 − pA)pB (1 − pA)(1 − pB) =
pAB pAb
paB pab

. (1)

A fifth measure, a normalization of r2 termed r2/rmax2  [20], has the same property as |D′| that 

its maximum is invariant with respect to the values of pA and pB.
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All of these normalized measures — |D′|, r2, d, ρ, and r2/rmax2  — have numerators that are 

functions of D and denominators that are functions of the single-locus quantities pA and pB. 

The normalizations introduce different consequences for the maximal values of the statistics 

as functions of pA and pB [8, 20–21]. They also affect the symmetries of the statistics both 

with respect to exchanges of the two loci and with respect to exchanges of the alleles at one 

or both loci.

In applying LD statistics, many uses implement numerical cutoffs to assess if a desired 

degree of association has been met by a pair of loci, with only those locus pairs whose LD 

value exceeds the threshold regarded as having done so. For example, pairwise LD 

thresholds have been used in defining the boundaries of haplotype blocks [22–23]. They 

have also been applied to select tag SNP sets to assay in association studies, choosing tags 

by the number of non-tags with which they achieve a minimum LD cutoff and evaluating the 

fraction of non-tags that achieve an LD cutoff with at least one tag [24–25]. LD thresholds 

have also been employed for such purposes as visualizing tiered LD levels [26], pruning 

correlated markers in polygenic risk score calculations [27], and generating networks whose 

vertices represent loci and whose edges connect locus pairs with LD values exceeding a 

cutoff [28].

The frequent use of pairwise LD thresholds motivates studies of the implicit properties of 

allele frequencies forced by the thresholds, and more generally, of the way in which 

numerical values and interpretations of the various statistics depend on allele frequencies. 

This paper examines such properties and other mathematical features of the various D-based 

statistics. Although the statistics all range from 0 to 1, owing to their different 

normalizations and constraints, the meaning of a numerical value of one statistic can differ 

from the meaning of the same value of another statistic. Our goal is to characterize 

properties of the range, dependencies, and typical magnitudes of the measures, in order to 

assist in giving insight about values observed in empirical and theoretical studies of LD.

VANLIERE AND ROSENBERG [20] studied the maximal value of r2 as a function of pA and pB 

(see also [29]), in addition to considering such quantities as the mean maximal value of r2 

over the unit square for the pair of allele frequencies, the mean maximal value for r2 over 

values of pB for fixed values of pA, and the set of permissible values of pB given r2 and pA 

(see also [30]). With the current emphasis on rare variants in human genetics [31–32], a 

salient observation concerning r2 is that if rare mutations occur at two loci on the same 

common haplotype in different individuals, then r2 for the pair of loci is likely to have an 

extremely low value [33–34], complicating the use of r2 in comparing LD across locus pairs. 

Here, we examine aspects of the mathematical properties of LD measures for each of the 

five normalized measures. We also consider the relationships between pairs of measures, 

finding that some pairs of measures are equal in particular scenarios.

2 THEORY

2.1 Setting

We consider two biallelic loci, locus 1 with alleles A and a, and locus 2 with alleles B and b. 

The population frequencies of these alleles are then given by 
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pA, pa = 1 − pA, pB, and pb = 1 − pB, respectively. Because both pA and pB lie in [0, 1], a set 

of frequencies can be characterized as a point in the unit square with axes pA and pB. For 

ease of notation, following VANLIERE AND ROSENBERG [20], we split this square into octants 

S1, S2,...,S8, as illustrated in FIGURE 1. The conditions on pA and pB that characterize these 

octants appear in TABLE 1. We henceforth assume that the loci are both polymorphic, so that 

pA, pa, pB, and pb all lie in (0, 1). The two pairs of alleles associate into four distinct 

haplotypes: AB, Ab, aB, and ab, with frequencies pAB, pAb, paB, and pab, respectively 

(TABLE 2).

We consider parametric values for the allele frequencies, so that our interest is in LD 

statistics computed as functions of quantities pA, pa, pB, pb, pAB, pAb, paB, and pab . This setting 

amounts to considering the statistics in an idealized setting of an infinite population.

2.2 The five normalized LD measures

As mentioned earlier, the most basic measure of LD is D = pAB − pApB, the difference 

between the observed frequency of the AB haplotype and its expected frequency under 

independence of loci 1 and 2. Expressions for D can also be formulated using each of the 

three other possible combinations of alleles at the two loci (Ab, aB, and ab). The four 

formulations all give an identical value, up to a change in sign.

If no association exists between the two loci, then we expect pAB = pApB, and hence D = 0. 

We consider several LD measures, each of which is a normalization of D. For instance, D′ is 

obtained by normalizing D by its maximal magnitude, given the sign of D:

D′ = D
Dmax

, where Dmax =
min[pA(1 − pB), (1 − pA)pB] if D > 0
min[pApB, (1 − pA)(1 − pB)] if D < 0 . (2)

The r2 measure is defined as D2 normalized by the product of all four allele frequencies:

r2 = D2

pA(1 − pA)pB(1 − pB) . (3)

The next two LD measures represent the two ways in which D can be normalized by the 

product of two of the four allele frequencies. If the two frequencies represent alleles from 

the same locus, then we have d, given by NEI AND LI [17]:

d = D
pB(1 − pB) . (4)

By convention, in an association mapping setting, locus 2 is designated as a disease locus, 

and hence B or b is regarded as a potential disease-causing allele.

If the two frequencies instead represent alleles from different loci, then we have ρ, given by 

COLLINS AND MORTON [35]:
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ρ = D
(1 − pA)pB

. (5)

Unlike D′ and r2, both d and ρ introduce an asymmetry in the pair of loci by virtue of the 

choice of alleles assigned to their denominators.

Lastly, as was noted by VANLIERE AND ROSENBERG [20], the maximal value of r2 is 

constrained by the values of the allele frequencies pA and pB. Let rmax2  be the maximal value 

of r2 possible given pA and pB. The measure r2/rmax2 , introduced by VANLIERE AND 

ROSENBERG [20], is then simply equal to r2 normalized by rmax2 .

2.3 Prescribed domains

The measures D′ and r2 can be applied for all values of pA and pB in (0,1), that is, in all 

octants in FIGURE 1. r2/rmax2 , being derived from r2, also has all octants available. However, d 

and ρ are defined only on part of the domain (0, 1) × (0, 1). For d, because locus 2 is usually 

taken to be a disease locus—with one relatively rare allele—and locus 1 is the marker locus, 

it is assumed that min(pB, pb) ⩽ min(pA, pa). This assumption restricts d to S1, S2, S5, and 

S6. For ρ, the allele frequencies are assigned labels such that 

D ⩾ 0, paB ⩽ pAb, pB ⩽ pA, and pB ⩽ 1 − pB [19]. Note that paB ⩽ pAb is equivalent to 

pB ⩽ pA, as paB = pB − pAB and pAb = pA − pAB . Together, these conditions restrict the 

available octants to S4, S5, and S6. Domain restrictions are summarized in TABLE 3, and for d 
and ρ, we restrict our subsequent analysis to octants in which these measures apply.

2.4 Upper bounds, mean maximum values, and accessible regions

We are interested in analyzing mathematical properties of the five LD measures. Because the 

magnitude of these measures is the quantity of interest, we work with the absolute values 

|D′| and |d | . r2 and r2/rmax2  are always non-negative owing to the fact that D2 is used in their 

expressions, and ρ is always non-negative because its definition requires D ⩾ 0.

We seek to determine the upper bound, mean maximal value, and accessible region for each 

of the five measures, given the values of pA and pB. The mean maximum E[mmax] of a 

measure m is defined as its average maximum value, assuming (pA, pB) follows a bivariate 

uniform distribution on the permissible domain over which m applies. Its accessible region 

for a constant c ∈ [0, 1], pm(c), is defined as the proportion of the domain in which the upper 

bound for the measure is greater than or equal to c.

To determine these mathematical properties, we first must choose a value of pAB that 

maximizes |D|, because all other variables in the expressions for the five statistics are fixed 

given pA and pB. The values of pAB that achieve this maximum are the same as those given 

by VANLIERE AND ROSENBERG [20] for finding the upper bound on r2 (FIGURE 2A), because |D| 

is maximized if and only if D2 is maximized. Hence, on S1 and S4, the maximum |D| occurs 

if pAB = pA + pB − 1; on S2 and S7, if pAB = pA; on S3 and S6, if pAB = pB; and on S5 and S8, 
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if pAB = 0. These values appear in TABLE 1. For all five measures, the values of 

E[mmax] and pm(c) appear in TABLE 4.

|D′|: Because |D′| is simply |D| normalized by its maximum value Dmax, both its upper 

bound and the mean maximum E[|D′|max] are equal to 1. Furthermore, its accessible region 

p|D′|(c) is also 1, irrespective of the value of c.

r2: The upper bound of r2 as a function of pA and pB, for each octant S1,...,S8, was 

calculated in eqs. 2–5 of VANLIERE AND ROSENBERG [20]. These results appear in TABLE 1, and 

a contour plot of rmax2  is reproduced in FIGURE 2A. In addition, VANLIERE AND ROSENBERG [20] 

derived the mean maximum of r2, obtaining E[rmax2 ] = 2π2/3 − 4(ln2)2 + 4ln2 − 7 ≈ 0.43051, as 

well as its accessible region, which is

pr2(c) = 1 + 4c
1 − c +

8cln 1
2 + 1

2c
(1 − c)2 . (6)

A plot of pr2(c) appears in FIGURE 3.

|d|: By substituting the appropriate value of pAB into the expression for |d|, we obtain |d|max 

as a function of pA and pB in octants S1, S2, S5, and S6:

S1: |d |max (pA, pB) = |pA + pB − 1 − pApB|
pB(1 − pB) = 1 − pA

pB
(7)

S2: |d |max (pA, pB) = pA − pApB
pB(1 − pB) = pA

pB
(8)

S5: |d |max pA, pB = |0 − pApB|
pB 1 − pB

= pA
1 − pB

(9)

S6: |d |max pA, pB = pB − pApB
pB 1 − pB

= 1 − pA
1 − pB

. (10)

These results are summarized in TABLE 1. FIGURE 2B shows a contour plot of |d|max in S1, S2, 

S5, and S6, combining eqs. 7–10. We note some similarities, as well as some differences, 

with the plot of rmax2  in FIGURE 2A. Examining the characteristic X-shape of the figure, we 

see that |d|max can equal 1 if and only if the allele frequencies are identical at the two loci, pA 

= pB or pA = pb, as is the case with rmax2 . However, instead of having a symmetric shape over 

all octants, |d|max is symmetric with respect to an exchange of pA and pa or pB and pb, but 

not with respect to an exchange of pA and pB (and thus also pa and pb) or pA and pb (and 

thus also pa and pB). Its shape is symmetric over S1, S2, S5, and S6, the four octants on 
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which it can be calculated. Unlike rmax2 , |d|max does not approach 0 as pB approaches either 0 

or 1. This feature enables |d| to maintain a considerable range of allowable values, even if the 

minor allele frequency (MAF) at locus 2 is low, as is likely the case in a mapping study in 

which locus 2 is regarded as causal for a rare disease.

We can quantify the difference in range for |d| and r2 by comparing the mean maximum 

value of |d| to that of r2. First, we compute the volume V2, which we define to be the volume 

of |d|max over the octant S2:

V 2 = ∫1
2

1∫pA

1 pA
pB

dpBdpA

= 3
16 − 1

8ln2 ≈ 0.10086.
(11)

Owing to symmetry, V2 is equal to corresponding values V1, V5, and V6. Assuming a 

uniform joint distribution of pA and pB over the octants S1, S2, S5, and S6, and noting that 

these octants have a total area 1
2 , the mean maximum value of |d|max is

E |d|max = 4V 2/ 1
2

= 3
2 − ln2 ≈ 0.80685.

(12)

This value exceeds E[rmax2 ] ≈ 0.43051 derived by VANLIERE AND ROSENBERG [20] under the 

same assumption of a uniform distribution on the domain, suggesting that |d| can achieve a 

high magnitude over a considerably larger portion of the allele frequency space than is seen 

for r2. To quantify this difference, we calculate the accessible region p|d|(c). We first focus on 

S6, and extend the result to the remaining octants using symmetry.

Let A6 denote the area of the portion of S6 in which |d|max ⩾ c. Using eq. 10, the portion of 

S6 in which |d|max ⩾ c satisfies pB ⩾ (pA + c − 1)/c. We now set up an integral to calculate 

the complement of the desired area, the area of the portion of S6 in which |d|max ⩾ c. 

Observe from FIGURE 2B that in S6, for c ⩾ 1
2 , the horizontal plane |d |max = c intersects the 

upper bound at pA = 1 − c if pB = 0. Therefore, we have

1
8 − A6 = ∫

1 − c

1
2 ∫

0

pA + c − 1
c 1dpBdpA = (2c − 1)2

8c
A6 = (4c − 1)(1 − c)

8c .
(13)

For c ⩽ 1
2 , all points in octants S1, S2, S5, and S6 have |d|max ⩾ c (FIGURE 2B). Hence, in this 

situation, p|d|(c) is simply 1. For c ⩾ 1
2 , applying eq. 13,
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p|d|(c) = 4A6/ 1
2

= (4c − 1)(1 − c)
c .

(14)

The piecewise function p|d|(c) appears in FIGURE 3, alongside a plot of pr2(c) from eq. 6. The 

permissible fraction of the frequency space for |d| decreases more slowly as a function of c 
than does the corresponding function for r2.

ρ: For the upper bound on ρ, the following conditions all must be satisfied when assigning 

labels to the alleles: D ⩾ 0, pB ⩽ pA, and pB ⩽ 1 − pB [19, 36]. The latter two conditions 

imply that ρ applies only in S4, S5, and S6. The condition 

pB ⩽ pA implies pB − pApB ⩽ pA − pApB, which in turn implies (1 − pA)pB ⩽ pA(1 − pB) . This 

result, in addition to the requirement that D ⩾ 0, indicates that ρ is exactly equal to |D′| 
under the conditions in which ρ applies. Consequently, the upper bound of ρ, its mean 

maximum E[ρmax], and its accessible region pρ(c) all equal 1.

r2/rmax2 : The upper bound, the mean maximum E[{r2/rmax2 }max] . and the accessible region 

pr2/rmax2 (c) all equal 1, by the definition of the statistic as r2 normalized by rmax2 .

2.5 Mean maximum of r2 and |d| under a beta distribution

In SECTION 2.4, we examined the mean maximum of the five measures, assuming (pA, pB) 

follows a bivariate uniform distribution. For r2 and |d|, the two measures that do not have a 

mean maximum of 1, we can also calculate their mean maximum value under less restrictive 

assumptions. We now assume pA and pB follow independent beta distributions. To preserve 

symmetry between loci and exchangeability of the alleles at a locus, we consider pA, pB ~ 

Beta-(α, α), and compute E[|d|max] and E[rmax2 ] as functions of α.

By analogy with eq. 12, again using octant S2, we can set up an integral for E[|d|max]:

E |d|max = 8∫1
2

1∫pA

1 pA
pB

pA
α − 1 1 − pA

α − 1

B(α, α)
pB

α − 1 1 − pB
α − 1

B(α, α) dpBdpA

= 8
[B(α, α)]2∫1

2

1∫pA

1 pA
pB

pA − pA
2 α − 1 pB − pB

2 α − 1dpBdpA .
(15)

Here, B(α, α) = [Γ(α)]2/Γ(2α). To compute E rmax2 , we use rmax2 on S2 (TABLE 1):

E rmax2 = 8∫1
2

1∫pA

1 pA 1 − pB
1 − pA pB

pA
α − 1 1 − pA

α − 1

B(α, α)
pB

α − 1 1 − pB
α − 1

B(α, α) dpBdpA

= 8
[B(α, α)]2∫1

2

1∫pA

1 pA 1 − pB
1 − pA pB

pA − pA
2 α − 1 pB − pB

2 α − 1dpBdpA .
(16)
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We evaluate eqs. 15 and 16 numerically, using values of α ranging from 0.2 to 5. The results 

appear in FIGURE 4. Low values of α imply that the distribution of allele frequencies is 

skewed toward loci with a low MAF, whereas high α values correspond to greater density in 

loci with a high MAF. Note that setting α = 1 gives a uniform distribution and recovers the 

values derived in SECTION 2.4 for the case of pA, pB ~ Uniform-(0,1).

From FIGURE 4, we observe that E[rmax2 ] varies considerably as a function of the allele 

frequency distribution, whereas E[|d|max] is more stable as α changes.

2.6 The five measures as functions of pAB for fixed pA, pB

For most of our subsequent calculations, to facilitate comparison, we restrict our analysis to 

values of pA and pB in S6, as all five measures have S6 in their prescribed domains. Any 

point not in S6 can be mapped to a point in S6 by performing one or more of a set of 

transformations: (i) reflection over pB = 1
2  (corresponding to exchanging the pA and pa 

labels), (ii) reflection over pA = 1
2  (exchanging the pB and pb labels), and (iii) reflection over 

the pA = pB line (exchanging the pA and pB labels, and thus also the pa and pb labels).

We first compare how each measure varies with the haplotype frequency pAB. FIGURE 5 

illustrates |D′|, r2, |d | , and r2/rmax2  as functions of the haplotype frequency pAB, for fixed 

values of pA and pB. In this analysis, ρ is omitted because under the conditions in which it 

applies, it is exactly equal to |D′|. Each of the measures has a value of 0 in the case of 

linkage equilibrium, at which pAB = pApB. Using pAB = pApB as a reference point, we can 

split the plots for each of the measures into two portions: the right arm, where 

pAB ⩾ pApB (or D ⩾ 0, corresponding to the case with an excess of haplotypes containing 

both minor alleles), and the left arm, where pAB ⩽ pApB (or D ⩽ 0, corresponding to the 

case with a deficit of haplotypes containing both minor alleles).

|D′|: |D′| varies linearly with pAB. However, its left and right arms are in general not 

symmetric about the line pAB = pApB; the absolute value of the derivative of |D′| as a 

function of pAB differs in the two arms. This phenomenon results from the different 

normalizations applied in obtaining D′, depending on whether D is positive or negative. The 

left and right arms of |D′| are symmetric only if pA = 1
2 , pB = 1

2 , or both. The value of |D′| 

can always reach 1 irrespective of whether the haplotype containing both minor alleles is in 

excess or in deficit; in general, no such result holds for the other three measures.

r2: r2 varies quadratically as a function of pAB, with the measure increasing at a faster rate 

the further pAB is from pApB. As reported by VANLIERE AND ROSENBERG [20], in S6, r2 can 

only reach 1 if pA = pB, and even then only if an excess of haplotypes containing both minor 

alleles occurs. Finally, ignoring the truncation imposed by the lower limit of pAB = 0, the 

arms of r2 are symmetric with respect to the line pAB = pApB.

|d|: |d|, like |D′|, varies linearly as a function of pAB. However, unlike for |D′|, the left and 

right arms of |d| are symmetric, and they have the same absolute value of the derivative as a 

function of pAB. This pattern occurs because |d| does not necessarily have to reach 1 at the 
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points where pAB lies at its maximum or minimum values, given pA and pB. Like r2, |d| can 

only reach 1 on its right arm if pA = pB. As a result, |D′| = |d| if pA = pB and D ⩾ 0, as can 

be observed from FIGURE 5.

r2/rmax2 :r2/rmax2  varies quadratically as a function of pAB, but increases more quickly 

compared to r2 as pAB moves away from pApB. It can always reach 1 irrespective of the 

values of pA and pB but does so only if the haplotype containing both minor alleles is in 

excess. If pA = pB, then r2/rmax2 = r2, as the maximum of r2 is 1 in this case.

Comparison: In general, for all values of pA, pB, and pAB, |D′| ⩾ |d | ⩾ r2 . To demonstrate 

this, we first show that |D′| ⩾ |d|. Consider D > 0, where D is normalized by min [pA(1 − 

pB), (1 − pA)pB] in the calculation of 

|D′| . If pA ⩾ pB, then pA 1 − pB ⩾ pB 1 − pB ⩾ 1 − pA pB, but if pA ⩽ pB, then pA 1 − pB
⩽ pB 1 − pB ⩽ 1 − pA pB . In either case, pB 1 − pB ⩾ min pA 1 − pB , 1 − pA pB ,
and therefore |D′| ⩾ |d | .

 A 

similar calculation shows also that |D′| ⩾ |d | if D < 0.

To see that |d | ⩾ r2 where |d| applies (S1, S2, S5, S6), we show r2/ |d | ⩽ 1. We have

r2

|d| = |D|
pA 1 − pA

= |pAB − pApB|
pA 1 − pA

. (17)

Consider S6, where pA ⩾ pB and pAB = pB maximizes |D| (TABLE 1):

|pAB − pApB|
pA(1 − pA) ⩽ pB − pApB

pA(1 − pA) = pB
pA

. (18)

Because pA ⩾ pB, r2/ |d | ⩽ 1. Eq. 18 and other similar calculations for S1, S2, and S5 show 

that |d | ⩾ r2 for all possible values of pA and pB.

2.7 Mean LD values given fixed pA and pB

In SECTION 2.4, we have described upper bounds of the five measures given values of pA and 

pB. We have also computed the mean of the maximum value. Next, we specify a distribution 

on pAB and calculate the mean values of the measures over the possible domain.

For this section, we again use S6; analogous results for other octants follow the same 

framework. Because pB ⩽ pA in S6, pAB lies in [0, pB]. If we further assume pAB ~ 

Uniform-(0, pB), then we can compute the mean value of each LD measure as a function of 

pA and pB. For completeness, associated variances are derived in the APPENDIX.

|D′|:D > 0 if pAB > pApB, and D < 0 if pAB < pApB . We split the integral for the mean to 

account for both cases. If pAB is distributed uniformly on (0, pB), then E |D′|  has a constant 

value of 1
2 , and does not depend on pA or pB.
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E |D′| = 1
pB ∫

0

pApB pApB − pAB
pApB

dpAB + ∫pApB

pB pAB − pApB
1 − pA pB

dpAB

= 1
2 .

(19)

r2: For r2, it is not necessary to split the integral.

E r2 = 1
pB∫0

pB pAB − pApB
2

pA 1 − pA pB 1 − pB
dpAB

=
pB 1 − 3pA + 3pA

2

3pA 1 − pA 1 − pB
.

(20)

The result is plotted in FIGURE 6A.

|d|: For d, we again split the integral as we did for |D′|.

E[ |d | ] = 1
pB ∫

0

pApB pApB − pAB
pB 1 − pB

dpAB + ∫pApB

pB pAB − pApB
pB 1 − pB

dpAB

=
1 − 2pA + 2pA

2

2 1 − pB
.

(21)

The result is plotted in FIGURE 6B.

r2/rmax2 : The result appears in FIGURE 6C. Note that in octant S6, E r2/rmax2  is a function of 

only pA (or in general, allele frequencies at the locus with the higher MAF).

E r2/rmax2 = 1
pB∫0

pB
pAB − pApB 2

pA 1 − pA pB 1 − pB
1 − pA pB

pA 1 − pB

dpAB

=
1 − 3pA + 3pA

2

3 1 − pA
2 .

(22)

E r2/rmax2  varies less across the domain for pA than do E[r2] and E[|d|].

2.8 Constraints on one allele frequency given an LD value and the allele frequency at the 
other locus

In this section, we examine for each of the five LD measures the allowable values of one 

allele frequency (either pA or pB) while fixing the allele frequency at the other locus and 

specifying the value of the LD measure. Owing to symmetry in the loci, for 

|D′|, r2, and r2/rmax2 , fixing pA is equivalent to fixing pB, and we need only examine one case. 

For |d| and ρ, owing to asymmetries in the formulation of the measures, two cases must be 

considered. For the calculations in this section, we assume for convenience that pA and pB 

Kang and Rosenberg Page 11

Hum Hered. Author manuscript; available in PMC 2021 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are the minor allele frequencies (octants S6 and S7), and that the constraints on the major 

allele frequencies will follow accordingly. The results of this section are summarized in 

TABLE 5.

Allowable values of pB, given |D′| and pA: Having a value of |D′| and a value of pA does 

not constrain pB, as all values of |D′| between 0 and 1 are accessible given a pair of allele 

frequencies pA and pB. This result can be shown from the fact that given pA and pB, |D′| is a 

continuous rational function of pAB. Because 0 and 1 are the extreme values of |D′|, by the 

intermediate value theorem, |D′| can take on any value in [0, 1] (also see FIGURE 5).

Allowable values of pB, given r2 and pA: Assuming that pA, pB ⩽ 1
2 , given pA and r2, the 

constraint on pB is

r2pA
1 + r2pA − pA

⩽ pB ⩽ min 1
2, pA

r2 − r2pA + pA
. (23)

This result has been previously reported in eqs. 10 and 11 of VANLIERE AND ROSENBERG [20] 

and TABLE 2 of WRAY [30].

Allowable values of pB, given |d| and pA: Because |d| is not symmetric in the two loci, we 

first assume |d| and pA are specified, and solve for the range of pB. Recalling that d applies 

only in S1, S2, S5, and S6, and assuming pA, pB ⩽ 1
2 , we consider S6. From eq. 10,

|d | ⩽ 1 − pA
1 − pB

pB ⩾ pA + |d | − 1
|d| .

(24)

Taking into account 0 ⩽ pB ⩽ pA ⩽ 1
2 , we have

max 0, pA + |d | − 1
|d| ⩽ pB ⩽ pA . (25)

Allowable values of pA, given |d| and pB: Next, we assume |d| and pB are specified, and 

solve for the range of pA. In S6, from eq. 10,

|d | ⩽ 1 − pA
1 − pB

pA ⩽ 1 − |d | + |d | pB .
(26)

Taking into account 0 ⩽ pB ⩽ pA ⩽ 1
2 , we have
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pB ⩽ pA ⩽ min 1
2, 1 − |d | + |d | pB . (27)

The upper bound here corresponds to the upper bound for the “frequency difference” 

measure of LD reported in TABLE 2 of WRAY [30], noting that labels pA and pB are reversed 

in that study. However, a difference exists between the reported lower bounds, which can be 

attributed to the fact that pA ⩽ 1
2  is not mandated by WRAY [30].

Allowable values of pB, given ρ and pA: Because all values of ρ in [0, 1] can be reached 

with any given set of allele frequencies in the permissible domain, no additional constraint 

exists on pB given ρ and pA.

Allowable values of pA, given ρ and pB: For the same reason as in the case in which pA is 

instead specified, no additional constraint exists on pA given ρ and pB.

Allowable values of pB, given r2/rmax2  and pA: Being given a value of r2/rmax2  and pA does 

not constrain the values pB can take, as all values of r2/rmax2  in [0, 1] are accessible for a 

given set of allele frequencies pA and pB.

3 DATA ILLUSTRATION

We now examine how LD distributions from data, as given by the various measures, relate to 

our bounds. We use the 1000 Genomes Project (data at http://csg.sph.umich.edu/abecasis/

MACH/download/1000G-PhaseI-Interim.html), considering LD values on chromosome 22 

of its pooled European population, consisting of 381 individuals: 87 Utah residents of 

Northern and Western European ancestry, 93 Finnish from Finland, 89 British from England 

and Scotland, 14 Iberians from Spain, and 98 Toscani from Italy. To ensure inclusion of 

locus pairs with substantial LD, calculations are restricted to pairs of loci that lie at most 

1,000 base pairs apart. Once again, for ease of comparison, all pairs of allele frequency 

values outside S6 are mapped to corresponding points within S6.

3.1 Pairs of loci for which |D′| = 1

From 225,159 loci biallelic in the European data (of 494,975 loci in total), we obtain 

1,742,020 pairs of loci separated by at most 1,000 base pairs. Of these, 1,465,140 pairs have 

|D′| = 1, indicating the presence of only two or three of the four possible haplotypes. 

Recalling that |D′| can reach 1 either if an excess or a deficit of haplotypes containing both 

minor alleles occurs, 349,837 locus pairs belong to the former case, and 1,115,303 to the 

latter.

r2: We now examine on S6 how r2 is distributed in relation to the upper bound. If |D′| = 1 for 

a pair of loci, then the r2 value lies on one of two surfaces. If |D′| = 1 as the result of an 

excess of haplotypes containing both minor alleles, corresponding to pAB = pB, then r2 lies 

on the surface that defines the upper bound on S6, or
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r2 = 1 − pA pB
pA 1 − pB

, (28)

as given by eq. 4 in VANLIERE AND ROSENBERG [20]. In S6, with a deficit of haplotypes 

containing both minor alleles, |D′| = 1 is achieved if pAB = 0, which results in the r2 surface

r2 = 0 − pApB
2

pA 1 − pA pB 1 − pB
= pApB

1 − pA 1 − pB
. (29)

The surfaces and data points for these two cases appear in FIGURES 7A AND 7B.

|d|: As was seen with r2, |d| for a locus pair lies on one of two surfaces if |D′| = 1 (FIGURES 

7C AND 7D). Once again, if pAB = pB, then the associated surface is the upper bound of |d| on 

S6, as in eq. 10. If pAB = 0, then the points lie on

|d | = |0 − pApB|
pB 1 − pB

= pA
1 − pB

. (30)

r2/rmax2 : Finally, we repeat the analysis for r2/rmax2  values. If pAB = pB, then r2 = rmax2 , and 

therefore r2/rmax2  = 1. If instead pAB = 0, then using eqs. 28 and 29, we obtain

r2

rmax2 =

pApB
(1 − pA)(1 − pB)

(1 − pA)pB
pA(1 − pB)

= pA
1 − pA

2
(31)

The surfaces and points corresponding to these two cases appear in FIGURES 7E AND 7F.

3.2 Pairs of loci for which |D′| < 1

In the special case in which |D′| = 1 for a pair of loci, we have seen that corresponding 

values for r2, |d|, and r2/rmax2  lie on well-defined surfaces. Although most locus pairs from 

our data fall within this category, for 276,880 of 1,742,020 pairs, |D′| < 1. For these pairs, 

we examine how the values of |D′|, r2, |d|, and r2/rmax2  are distributed within their ranges.

Recognizing that the four measures can exhibit different distribution patterns at different 

allele frequencies, we sample pairs of loci for which pA and pB have MAF values within 

four specified ranges, representing very low, low, intermediate, and high MAF: (0, 0.02], 

[0.04, 0.06], [0.24, 0.26], and [0.44, 0.46]. Distributions of values for the measures appear as 

a series of histograms in FIGURE 8, with each panel representing one pair of allele frequency 

ranges for pA and pB; because pB ⩽ pA in S6, only 10 of the 16 possible combinations of 

joint allele frequency ranges are possible.

From FIGURE 8, we can observe a few properties of the distributions. First, in accordance 

with our theoretical results, the range of values for r2 and |d| does not extend to 1 in the 
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panels that are off the diagonal, where pA = pB is not possible. In particular, the limitation on 

the range of r2 is more pronounced than that of |d|, when comparing within similar allele 

frequency ranges. This constraint also results in a large number of r2 values being close to 0, 

especially if pB is small (bottom row).

In addition, although we selected only locus pairs at most 1,000 bp apart, if pB is small, then 

relatively few pairs have a high LD value. This result holds especially for r2, but also for 

measures such as |D′| and r2/rmax2  that always have upper bound 1. If one of the loci has a 

low MAF, then small changes in the haplotype frequency can have large effects on LD 

measures, especially those normalized to potentially reach 1 irrespective of the marginal 

allele frequencies (see also the pB = 0.1 panels of FIGURE 5).

Comparing scenarios on the diagonal, where it is possible in principle for all four measures 

to achieve high LD values, we see that high LD values are more frequently observed for high 

and intermediate MAF than for low and very low MAF. For pairs of loci with low MAF, it is 

unusual for haplotypes to contain the rare allele at both loci, as the rare alleles likely result 

from relatively recent mutations that have taken place on the same common haplotype, but in 

different individuals. Thus, because the rare alleles are unlikely to co-occur, the nature of 

evolutionary descent makes it improbable that the LD-maximizing scenario that couples the 

rare variants will obtain. These considerations support a cautious perspective when 

interpreting LD measures in the case that one or both loci have a low MAF.

4 DISCUSSION

In this paper, we have described the domains of five LD measures that are defined by 

normalizations of D or its square, with a function of pA and pB in the denominator. Based on 

these domains, we have calculated the upper bound, mean maximum, and accessible region 

for each of the five measures. Three of the measures (|D′|, ρ, and r2/rmax2 ) can be considered 

“unrestricted,” in that their upper bound, mean maximum, and accessible region are all equal 

to 1. However, for the remaining two measures (r2 and |d|), these values depend on the allele 

frequencies of the pair of loci under consideration.

For each of the five measures, its description, proposed usages, and mathematical properties 

are summarized in TABLE 6. The table provides examples illustrating how a measure’s 

mathematical properties can inform its use. For instance, |d| allows for a theoretically wider 

range of values compared to r2, with a mean maximum of 0.80685 compared to 0.43051 for 

r2. The increased range of |d| is evident in the analysis of genetic data, which suggests that 

empirical |d| values are more differentiated than corresponding r2 values (FIGURE 8).

In a sense, |d| can be considered a measure that is “intermediate” between |D′| and r2. First, 

its value always lies between r2 and |D′|. It also has properties in common each with r2 and |

D′|. Like |D′|, given pA and pB, |d| varies linearly as a function of pAB, possessing a property 

that r2 does not share. However, like r2 but unlike |D′|, |d| is symmetric in pAB around the 

linkage equilibrium value pAB = pApB (FIGURE 5).
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We have also identified situations in which some of these measures are equal to one another. 

Among the measures, ρ uniquely requires D ⩾ 0. This requirement, along with the 

conditions pB ⩽ pA and pB ⩽ 1 − pB, can be satisfied by (i) reflection over pA = 1
2

(exchanging the pA and pa labels), (ii) reflection over pB = 1
2  (exchanging pB and pb), or 

both. Under these prescribed conditions for the use of ρ, it exactly equals |D′|, a fact that had 

also been noted by Shete [36] and Mangin et al. [37]. Furthermore, |d| = |D′| if pA = pB and 

the haplotype containing both minor alleles is in excess. This result can be seen by 

observing the right arms of |D′| and |d| in plots along the diagonal of FIGURE 5, and also from 

noting that in the right arm, where D ⩾ 0, the normalizations 

min pA 1 − pB , 1 − pA pB and pB 1 − pB for |D′| and |d|, respectively, agree if pA = pB.

By quantifying the degree to which values for the different LD statistics change in response 

to shifts in allele and haplotype frequencies, the results provide context to the use of LD 

thresholds in various statistical genetics applications. Some uses impose thresholds in LD 

measures alongside minimal-MAF cutoffs [24–25, 27], and our results can be used to 

understand the behavior of the statistics in permissible ranges specified by simultaneous LD 

and MAF thresholds. Additionally, the results are useful for low-MAF loci, for which the 

rare alleles are unlikely to occur on the same haplotype. In particular, they illustrate that r2 is 

the most tightly constrained measure (FIGURE 5, eq. 18), so that other measures might 

provide a broader range of values when computing LD statistics for loci with rare variants.

We note that we have focused on parametric aspects of LD measures rather than LD 

estimated from samples. Sampling properties can be examined, both in models that view 

alleles as draws from a parametric allele frequency distribution and in coalescent 

perspectives whose allele frequencies represent outcomes of a generative model (e.g. [38–

40]). The functional forms of estimators can then potentially be combined with bounds on 

parametric LD measures to produce corresponding bounds on the estimators (e.g. [41, p. 

1590]).

Many other measures of LD exist that are not included in our analysis [1, 3, 8–11]. Other 

measures are sometimes normalized by a quantity that includes a haplotype frequency, rather 

than a function of allele frequencies only, and thus do not lend themselves well to the 

framework in this paper. Similarly, LD measures used specifically in cases pertaining to 

multiallelic loci, such as the multiallelic |D′| [8, 42–43], require additional parameters. Of 

the LD measures that are described by a ratio of a function of D to a product of allele 

frequencies for biallelic loci, we have taken a comprehensive look at the most natural 

statistics with that form.

We initially assumed Uniform-(0,1) distributions on the allele frequencies to perform 

computations for the mean maximum of the various measures. This choice, as in VANLIERE 

AND ROSENBERG [20], permits us to obtain mathematical insight into those measures across 

their prescribed ranges. In some applications, weighted distributions, such as the Beta-(α, α) 

distribution we subsequently used, can be applied in place of the uniform distribution.
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Appendix

In this appendix, we provide the variances of |D′|, r2, |d | , and r2/rmax2 , under the assumptions 

in SECTION 2.7. For computing the variances, we use eqs. 19, 20, 21, and 22 to supply the 

means E[|D′|], E[r2], E[|d|], and E[r2/rmax2 ], respectively.

E |D′|2 = 1
pB ∫

0

pApB pApB − pAB
2

pA
2 pB

2 dpAB + ∫pApB

pB pAB − pApB
2

1 − pA
2pB

2 dpAB

= 1
3 .

(32)

Var |D′| = 1
3 − 1

2
2

= 1
12 . (33)

E r4 = 1
pB∫0

pB pAB − pApB
4

pA
2 1 − pA

2pB
2 1 − pB

2dpAB

=
pA

5 + 1 − pA
5 pB

2

5pA
2 1 − pA

2 1 − pB
2 .

(34)

Var r2 =
pA

5 + 1 − pA
5 pB

2

5pA
2 1 − pA

2 1 − pB
2 −

1 − 3pA + 3pA
2 pB

3pA 1 − pA 1 − pB

2

=
4 − 15pA + 15pA

2 pB
2

45pA
2 1 − pA

2 1 − pB
2 .

(35)

E |d|2 = 1
pB∫0

pB pAB − pApB
2

pB
2 1 − pB

2 dpAB

=
1 − 3pA + 3pA

2

3 1 − pB
2 .

(36)
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Var[ |d | ] =
1 − 3pA + 3pA

2

3 1 − pB
2 −

1 − 2pA + 2pA
2

2 1 − pB

2

=
1 − 12pA

2 + 24pA
3 − 12pA

4

12 1 − pB
2 .

(37)

E r2/rmax2 2 = 1
pB∫0

pB
pAB − pApB 2

pA 1 − pA pB 1 − pB
1 − pA pB

pA 1 − pB

2

dpAB

=
pA

5 + 1 − pA
5

5 1 − pA
4 .

(38)

Var r2/rmax2 =
pA

5 + 1 − pA
5

5 1 − pA
4 −

1 − 3pA + 3pA
2

3 1 − pA
2

2

=
4 − 15pA + 15pA

2

45 1 − pA
4 .

(39)
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Figure 1: 
A unit square showing all possible combinations of the frequencies pA and pB. The region is 

subdivided into eight octants S1,...,S8.
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Figure 2: 
rmax2  and |d|max as functions of pA and pB. (A) Contour plot of rmax2 . (B) Contour plot of |d|

max. The plots consider the maximum over all possible values of pAB. The functions plotted 

appear in TABLE 1. |d| is defined only in octants S1, S2, S5, and S6.
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Figure 3: 
The portion of the permissible allele frequency space where r2 and |d| can exceed a specific 

value of c, as a function of c. pr2(c) is taken from eq. 6, p|d|(c) is taken from eq. 14, and both 

functions appear in TABLE 4.
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Figure 4: 
Mean maximum value of r2 and |d|, if pA and pB are drawn from independent Beta-(α, α) 

distributions. The dotted line indicates α = 1, which gives values that are identical to the 

case in which pA and pB are drawn from independent Uniform-(0, 1) distributions.
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Figure 5: 
Values of linkage disequilibrium statistics as functions of the haplotype frequency pAB, for 

fixed values of pA and pB in S6.
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Figure 6: 
Mean value of three linkage disequilibrium statistics in S6 as functions of pA and pB, 

assuming pAB ~ Uniform- 0, pB . (A)r2 . (B) |d | . (C)r2/rmax2 .
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Figure 7: 
The distributions of r2, |d|, and r2/rmax2  values calculated from data in S6, when |D′| = 1. (A) 

r2 values if pAB = pB, lying on the surface r2 = (1 − pA)pB/[pA(1 − pB)]. (B) r2 values if pAB 

= 0, lying on the surface r2 = pApB/[(1 − pA)(1 − pB)]. (C) |d| values if pAB = pB, lying on 

the surface |d| = (1 − pA)/(1 − pB). (D) |d| values if pAB = 0, lying on the surface 

|d | = 1 − pA / 1 − pB . (E) r2/rmax2  values if pAB = pB, lying on the surface 

r2/rmax2 = 1. (F) r2/rmax2  values if pAB = 0, lying on the surface r2/rmax2 = pA/ 1 − pA
2 .
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Figure 8: 
The distributions of values of linkage disequilibrium statistics calculated from data in S6, 

given specific ranges of values for pA and pB. For each of four windows for pA and four 

windows for pB, we divide points into bins based on their values of each of four statistics 

(|D′|, r2, |d | , r2/rmax2 ) . The number of locus pairs falling into a pair of bins appears in the top 

right corner of the group of four histograms associated with the bin pair.
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Table 1:

The eight octants in the space of possible allele frequencies, along with their associated rmax2 , |d |max , and ρmax
values.

Octant

Condition

pAB achieving maximal |D| rmax2 |d|max ρmax
pA < 

1
2 pB < 

1
2

pA < pB pA + pB < 1

S1 Yes No Yes No pA + pB − 1
(1 − pA)(1 − pB)

pApB
1 − pA

pB
-

S2

No No Yes No
pA

pA(1 − pB)
(1 − pA)pB

pA
pB

-

S3 No No No No pB

(1 − pA)pB
pA(1 − pB) - -

S4 No Yes No No pA + pB − 1
(1 − pA)(1 − pB)

pApB
- 1

S5 No Yes No Yes 0
pApB

(1 − pA)(1 − pB)
pA

1 − pB
1

S6
Yes Yes No Yes

pB (1 − pA)pB
pA(1 − pB)

1 − pA
1 − pB

1

S7 Yes Yes Yes Yes pA

pA(1 − pB)
(1 − pA)pB

-
-

S8 Yes Yes Yes Yes 0
pApB

(1 − pA)(1 − pB) - -
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Table 2:

Notation for the allele and haplotype frequencies for a pair of biallelic loci.
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Table 3:

Octants of the allele frequency space in which the different linkage disequilibrium measures can be applied.

Octant D′ r2 d ρ r2/rmax2

S1 Yes Yes Yes No Yes

S2 Yes Yes Yes No Yes

S3 Yes Yes No No Yes

S4 Yes Yes No Yes Yes

S5 Yes Yes Yes Yes Yes

S6 Yes Yes Yes Yes Yes

S7 Yes Yes No No Yes

S8 Yes Yes No No Yes
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Table 4:

Mean maximum values and accessible regions for the five measures. The mean maximum value of a measure 

is its average maximum value over its prescribed domain, assuming pA and pB are independent and uniformly 

distributed over the domain. The accessible region of a measure for a constant c ∈ [0, 1] is defined as the 

proportion of the applicable domain in which the upper bound for the measure is greater than or equal to c.

Mean maximum value Accessible region

|D′| 1 1

r2

2π2/3 − 4(ln 2)2 + 4 ln 2 − 7 ≈ 0.43051

1 + 
4c

1 − c  + 
8c ln(1

2 + 1
2c)

(1 − c)2

|d| 3
2  − ln 2 ≈ 0.80685 1, if c ⩽ 0.5; 

(4c − 1)(1 − c)
c , if c > 0.5

ρ 1 1

r2/rmax2 1 1
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Table 5:

Constraints on one allele frequency given an LD value and allele frequency at the other locus, for the five 

measures. Here, we assume pA, pB ⩽ 1
2 . Owing to symmetry in the loci, for |D′|, r2, and r2/rmax2 , fixing pA is 

equivalent to fixing pB.

Fixed allele frequency

pA pB

|D′| 0 ⩽ pB ⩽ 1 0 ⩽ pA ⩽ 1

r2 r2pA
1 + r2pA − pA

⩽ pB ⩽ min 1
2 ,

pA
r2 − r2pA + pA

r2pB
1 + r2pB − pB

⩽ pA ⩽ min 1
2 ,

pB
r2 − r2pB + pB

|d| max 0,
pA + |d | − 1

|d| ⩽ pB ⩽ pA pB ⩽ pA ⩽ min 1
2 , 1 − |d | + |d | pB

ρ 0 ⩽ pB ⩽ 1 0 ⩽ pA ⩽ 1

r2/rmax2 0 ⩽ pB ⩽ 1 0 ⩽ pA ⩽ 1
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Table 6:

Description, usages, and mathematical properties of five LD measures for biallelic loci.

Statistic Description Noted usages in the literature Mathematical properties

|D′| Normalization of |D| by its 
theoretical maximum value 
for a given set of allele 
frequencies

Detecting “complete” LD (where 
one of the four haplotypes is 
absent), an indication of whether 
recombination has occurred 
between the two loci [11]

|D′| varies linearly as a function of pAB (FIGURE 5)
Upper bound of 1 for all allele frequencies
Assuming a uniform distribution of pAB over the range 
of values it can take, the mean and variance of |D′| are 
both constant values (eqs. 19 and 33)

r2 Squared correlation 
coefficient measure between 
allelic indicator variables

Testing for independence between a 
pair of loci by a χ2 test [16]
Association studies, where a 
mathematical relationship exists 
between r2 and the sample size 
needed to detect association 
between a marker and disease 
phenotype [16]

r2 varies quadratically as a function of pAB (FIGURE 5)
Low upper bound and small range of values if MAF is 
low (FIGURE 2A)
Mean maximum value varies considerably as a function 
of the allele frequency distribution (FIGURE 4)

|d| Difference in the proportions 
of disease and normal alleles 
found on the same haplotype 
with a particular marker allele

Association mapping for rare 
diseases in which case-control 
sampling is employed [9]

|d| varies linearly as a function of pAB (FIGURE 5)
Upper bound has an intermediate value; measure still has 
a considerable range even at low MAF (FIGURE 2B)
Mean maximum value relatively stable as a function of 
the allele frequency distribution (FIGURE 4)

ρ Probability that a haplotype 
chosen at random descends 
without recombination from a 
population of haplotypes that 
excludes one of the four 
possible haplotypes

Mapping of marker association and 
localization of disease loci [19]

Identical to |D′| in the octants in which it can be applied

r2/rmax2 Normalization of r2 by its 
theoretical maximum value 
for a given set of
allele frequencies

If a range that is independent of 
allele frequency is desired, but the 
measure still maintains some 
connection to r2

[20]

r2/rmax2  varies quadratically as a function of pAB 

(FIGURE 5)
Upper bound of 1 for all allele frequencies
Assuming a uniform distribution of pAB over the range 

of values it can take, the mean and variance of r2/rmax2
both depend only on the locus with the larger MAF (eqs. 
22 and 39)
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