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Innate immunity represents the first barrier for host defense against microbial infection. Toll-like receptors (TLRs) are the most
well-defined PRRs with respect to PAMP recognition and induction of innate immune responses. They recognize pathogen-
associated molecular patterns (PAMPs) and trigger innate immune responses by inducing inflammatory cytokines, chemokines,
antigen-presenting molecules, and costimulatory molecules. TLRs are expressed either on the cell surface or within endosomes
of innate immune cells. NK cells are one of the innate immune cells and also express TLRs to recognize or respond to PAMPs.
TLRs in NK cells induce the innate immune responses against bacterial and viral infections via inducing NK cytotoxicity and
cytokine production. In this review, we will discuss the expression and cellular function of TLRs in NK cells and also introduce
some therapeutic applications of TLR agonists for NK cell-mediated immunotherapy.

1. Introduction

Cells involved in the innate immune response were ini-
tially speculated to nonspecifically eliminate microbes with-
out presensitization; however, studies have reported that
innate immune cells recognize microbial-associated or
pathogen-associated molecular patterns (PAMPs) through
their pattern recognition receptors (PRRs) including Toll-
like receptors (TLRs), NOD-like receptors (NLRs), C-type
lectin receptors (CLRs), and RIG-I-like receptors (RLRs)
[1–3]. In particular, the discovery of TLRs in the mid-1990s
indicated that pathogen recognition by the innate immune
system actually depended on PRRs [1]. TLRs are the most
well-defined PRRs with respect to PAMP recognition and
induction of innate immune responses. TLRs are expressed
either on the cell surface or within endosomes [4–6]. The
interaction of different PAMPs with their cognate TLRs
induces numerous intracellular signal transduction resulting

in the activation of innate immune-related genes including
those encoding inflammatory cytokines, costimulatory mole-
cules, adhesion molecules, and antimicrobial mediators [6].

Innate immunity is coordinated by epithelial barriers,
plasma proteins, and tissue-resident or circulating leuko-
cytes including macrophages and neutrophils, dendritic
cells (DCs), natural killer (NK) cells, and innate lymphoid
cells [7]. Cells involved in the innate immune response rec-
ognize and prevent potential pathogen invasion that could
result in infectious diseases [8, 9]. During an infection, cells
involved in the innate immune response rapidly recognize
and activate complex responses by recognizing such patho-
gens. Among these, NK cells are lymphocytes that mediate
multiple effector functions and detect and eliminate trans-
formed or virus-infected cells. However, NK cells reportedly
express cell surface TLRs and directly recognize or respond to
pathogens [6, 10]. TLR expression and function in NK cells
were revealed owing to their potential involvement in the
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innate immune response to bacterial and viral infections
via induction of NK cell-mediated cytotoxicity and cytokine
production [6, 8, 11, 12].

Recent studies have furthered the current understand-
ing of TLR expression and their critical role in NK cell-
mediated innate immune responses against infections. This
review is focused on recent advancements in studies on the
expression and cellular function of TLRs in NK cell-
induced antiviral and antibacterial responses. Furthermore,
the potential applications of TLR agonists as potential
boosters in stimulating immunological effector function of
NK cells for cancer immunotherapy and infectious disease
therapy are discussed herein.

2. General Features of TLRs and
Their Ligands/Agonists

TLRs recognize conserved PAMPs, which serve as TLR
agonists/ligands (TLRLs) [13, 14]. Some recent studies
reported that endogenous, host-derived components, includ-
ing fibrinogen, heat shock proteins, RNA, and DNA, also
serve as TLRLs [14–16]. TLRs are expressed on cells involved
in the innate immune response (myeloid and NK cells) and
some cells of the adaptive immune system (regulatory and
activated T cells) and mediate innate immune responses
against microbial pathogens and induce adaptive immune
responses [16, 17].

Ten and 13 TLRs have been identified in humans and
mice, respectively, with TLR1–TLR9 being conserved in both
species. Mouse TLR10 is not functional owing to retrovirus
insertion, and TLR11, TLR12, and TLR13 have been lost
from the human genome [1, 18]. TLRs are type I transmem-
brane proteins with ectodomains containing leucine-rich
repeats (LRR) that mediate PAMP recognition, transmem-
brane domains, and a conserved region of ~200 aa intracellu-
lar Toll-interleukin 1 (IL-1) receptor (TIR) domains required
for downstream signal transduction [1, 13, 19]. All TLRs
induce the myeloid differentiation primary response protein
88- (MyD88-) dependent pathways except TLR3 [20]. These
sensors, TLRs, are differentially expressed among immune
cells and have distinct functions in terms of PAMP recogni-
tion and immune responses. Based on subcellular localiza-
tion, TLRs are of two types: cell surface types (TLR1, 2, 4, 5,
6, 10, and 11) and endosomal types (TLR3, 7, 8, 9, 12, and
13) [18]. TLR2 heterodimerizes with TLR1 or TLR6, and they
share an m-shaped structure. The TLR2-TLR1 heterodimer
recognizes triacyl lipopeptides from Gram-negative bacteria
and mycoplasma, whereas the TLR2-TLR6 heterodimer
recognizes diacyl lipopeptides from Gram-positive bacteria
and mycoplasma. For example, in the TLR2-TLR1 hetero-
dimer, TLR2 interacts with two of the three lipid chains
of Pam3CSK4 (a triacylated lipopeptide) and the third
chain binds the hydrophobic channel of TLR1 [1, 17, 21,
22]. TLR3 was previously reported to recognize double-
stranded RNA (dsRNA) produced by numerous viruses dur-
ing replication or a synthetic analog of dsRNA, polyinosinic-
polycytidylic acid (poly(I:C)), which mimics viral infection
and induces antiviral immune responses by inducing type I
interferons (IFNs) and inflammatory cytokines through the

interaction of its ectodomain with dsRNA [23–25]. TLR4
was identified as the long-sought receptor that responds
to bacterial lipopolysaccharide (LPS), a component of the
outer membrane of Gram-negative bacteria that can cause
septic shock [18, 26]. TLR4 heterodimerizes with cell surface
MD2, and the complex serves as an LPS-binding component
[27]. TLR5 recognizes the flagellin in bacterial flagella [18].
TLR7 reportedly recognizes imidazoquinoline derivatives,
guanine analogs including loxoribine; ssRNA derived from
RNA viruses such as vesicular stomatitis virus, influenza A
virus, and HIV; and certain siRNAs [18, 28, 29]. Mouse
TLR8 shares the highest homology with TLR7; however, it
is potentially nonfunctional, and human TLR8 recognizes
imidazoquinolines and ssRNA. TLR8 is upregulated in
monocytes upon bacterial infection [1, 30–32]. TLR9 recog-
nizes unmethylated 2′-deoxyribo CpG DNAmotifs in bacte-
ria and viruses, and the sugar backbone of DNA is important
for TLR9 recognition [33–35]. TLR9 directly recognizes the
insoluble crystal hemozoin, which is generated as a bypro-
duct of the detoxification process after digestion of host
hemoglobin by Plasmodium falciparum [36, 37]. PAMP rec-
ognition by TLRs triggers intracellular signaling pathways to
produce inflammatory cytokines, type I IFNs, and chemo-
kines for innate immune responses (Figure 1).

3. Cellular Functions of TLRs in NK Cells

3.1. Expression of TLRs on NK Cells. NK cells were previously
(in the 1970s) reported as large granular circulating lympho-
cytes accounting for approximately 10–15% of the total blood
cells and exhibiting “natural cytotoxicity” against tumor cells
by releasing perforin- and granzyme-containing cytotoxic
granules [38–40]. Furthermore, they protect the host by
limiting viral and bacterial infections before the initiation
of the adaptive immune response via activating macro-
phages, DCs, and neutrophils [12, 38]. Although the expres-
sion and cellular functions of TLRs have been extensively
studied in macrophages, numerous recent studies have
reported that TLRs are the first-line defense in NK cells via
TLR-mediated signaling pathways against bacterial, viral,
and fungal pathogens [38, 41–43]. Different TLRs are
expressed in NK cells, and TLR ligands can activate NK cells
directly or indirectly. In human NK cells, TLR1–TLR9mRNA
was reportedly expressed, TLR1 mRNA levels peaking,
followed by TLR2, TLR3, TLR5, and TLR6mRNA at moderate
levels, while TLR9mRNA expression levels were low or unde-
tectable [6, 44, 45].

3.2. TLR-Induced Cellular Signaling Pathways. The pres-
ence of TLRs has been directly demonstrated through the
activation of purified NK cells by TLR ligands and ago-
nists. TLRs are expressed on NK cells independently and
can cooperate with chemokines or cytokines to activate NK
cell functions including cytokine production and cytotoxicity
[11, 45]. As shown in Figure 1, TLRs are activated through
specific PAMPs and then differentially induce signaling path-
ways in NK cells. After ligand or agonist binding to TLRs,
TLRs dimerize and undergo conformational changes to
recruit downstream adaptor proteins [13] including myeloid
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differentiation primary response gene 88 (MyD88), TIR
domain-containing adaptor protein (TIRAP)/MyD88-adap-
tor-like (Mal), TIR domain-containing adaptor inducing
IFN-β (TRIF)/TIR domain-containing adaptor molecule-1
(TICAM-1), and TRIF-related adaptor molecule (TRAM).
MyD88 mediates intracellular signaling downstream of all
TLRs except for TLR3 [38] (Figure 1). Interaction of adaptor
proteins with TLRs is influenced by both the coligation of
TLRs with their ligands and oligomerization of TLRs. TLRs
activate nuclear factor κB- (NF-κB-) dependent and NF-
κB-independent pathways to generate cytokines and chemo-
kines [38]. Interaction of MyD88 with IL-1R-associated
kinases (IRAKs) activates a complex containing TNF
receptor-associated factor 6 (TRAF6) and TAB2, thus acti-
vating TGFβ-activated kinase 1 (TAK1). TAK1 is critical
to determine the differential pathways to activate the NF-
κB signaling pathway and mitogen-activated protein kinase
pathways [45–47]. Briefly, MyD88 contains an N-terminal
death domain (DD), which is separated from its C-terminal
TIR domain by a short linker sequence [13, 48–50]. TIRAP
is a second TIR-domain-containing adapter. Unlike MyD88,
TIRAP does not contain a DD [51, 52]. TRIF was a third
TIR-domain-containing adaptor and was identified as a
TLR3-binding molecule, also referred to as TICAMI [53,
54]. TRAM is a fourth TIR-domain-containing adaptor
identified on the basis of sequence homology in database
searches [55]. TRAM interacts with TRIF and TLR4 but not
TLR3 [13, 56].

The IRAK family comprises IRAK1, 2, 3, and 4 and
IRAK-M. IRAKs contain an N-terminal DD and a central
serine/threonine-kinase domain. IRAK1 and 4 exert kinase
activity, whereas IRAK2 and IRAK-M have no detectable
kinase activity [57]. TRAF6 comprises six members of the
TRAF family in mammals, and they comprise an N-
terminal coiled-coil domain and a conserved C-terminal

domain. TAK1 and TAB1/2 regulate TRAF6-induced activa-
tion of NF-κB and activator protein 1 (AP1) transcription
factor. Finally, transcription factors are activated to tran-
scribe their target cytokines, chemokines, and mediators of
immune responses (Figure 2).

In addition, TLR ligands or agonists differentially regu-
late TLR-mediated signaling pathways in NK cells. Numer-
ous studies have demonstrated stimulation of TLRs by TLR
ligands or agonists and reported the differential activation
of NK cells by them. K. pneumoniae OmpA and flagellin
reportedly stimulated TLR2 and 5 and induced IFN-γ and
α-defensin production in human NK cells [44]. M. bovis
and H. pylori (HpaA lipoprotein) stimulated TLR2 and
induced CD69 and CD25 expression and IFN-γ and TNF
production and IFN-γ production, respectively, in human
NK cells [58, 59]. Moreover, diacyl lipopeptide reportedly
induced IFN-γ production and cytotoxicity in mouse NK
cells via TLR2 stimulation [60]. Poly (I:C) stimulated TLR3
to induce cytotoxicity and CXCL10 and IFN-γ production
in human NK cells [61]. Another study reported that Poly
(I:C) and loxoribine stimulate TLR3 and 7 and induce IFN-
γ production and cytotoxicity in human NK cells [62]. Poly
(I:C) and CpG stimulated TLR3 and 9 in human NK cells
and upregulated CD69 and CD25 and increased cytotoxicity
and IFN-γ and TNF production [63]. Peptidoglycan, Poly
(I:C), LPS, and flagellin stimulated TLR2, 3, 4, and 5 and
induced cytotoxicity and IFN-γ production in human NK
cells [45]. Peptidoglycan and Poly (I:C) stimulated TLR2, 3,
and 7 to induce IFN-γ production and cytotoxicity in mouse
NK cells [64]. The CpG oligonucleotide reportedly serves as a
TLR9 agonist and induces CD69 expression, thus suppress-
ing bacterial growth in human and mouse NK cells, respec-
tively [65, 66]. Although TLR agonists can directly activate
NK cells, the microenvironment plays a potential role in acti-
vating their cytotoxicity and regulatory functions during
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Figure 1: PAMP recognition by TLRs and adaptor proteins to mediate cellular signaling pathways. TLR members can be divided into cell
surface types (TLR1, 2, 4, 5, and 6) and endosome types (TLR3, 7, 8, and 9). TLRs form homo- or heterodimer and have their respective
ligands to be activated. After ligand binding to TLRs, TLRs dimerize and undergo the conformational change to recruit downstream
adaptor proteins including myeloid differentiation primary response gene 88 (MyD88), TIR domain-containing adaptor protein
(TIRAP)/MyD88-adaptor-like (Mal), TIR domain-containing adaptor inducing IFN-β (TRIF)/TIR domain-containing adaptor molecule-1
(TICAM-1), and TRIF-related adaptor molecule (TRAM).
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TLR-mediated activation to induce subsequent immune
responses [1, 67, 68].

4. Application of TLR Agonists for NK Cell-
Mediated Therapy

TLR-mediated signaling pathways efficiently activate the
effector functions of NK cells in vitro and in vivo. A number
of clinical trials investigated the immunotherapeutic antican-
cer property of NK cells in various patient populations [69].
Interestingly, TLR agonists are potentially applicable to
enhance the therapeutic effector function of NK cells for
caner immunotherapy.

Trastuzumab is a humanized anti-HER2 monoclonal
antibody (mAb) and is the first HER2-targeted therapy
approved by the Food and Drug Administration. Trastuzu-
mab has significantly advanced the clinical management of
patients with HER2+ breast cancer by prolonging disease-
free survival and overall survival in patients with early-stage
breast cancer, and progression-free survival and overall
survival in patients with metastatic breast cancer [70, 71].
The therapeutic effect of trastuzumab therapy is partially
dependent on functional NK cells. NK cell recognition of
antibody-coated tumor cells through surface FcγRIII/CD16
provides a potent activation signal leading to antibody-
dependent cell-mediated cytotoxicity (ADCC) [72, 73]. A

polysaccharide krestin (PSK), a natural product extracted
from medicinal mushroom Trametes versicolor, has recently
been considered a potent TLR2 agonist. The effect of PSK
on human NK cells and the potential of PSK to enhance
HER2-targeted mAb therapy has been investigated. PSK
activates human NK cells to produce IFN-γ and to lyse
K562 target cells, enhances trastuzumab-mediated ADCC
against SKBR3 and MDA-MB-231 breast cancer cells, and
activates human NK cells and potentiates trastuzumab-
mediated ADCC. Concurrently, PSK and trastuzumab ther-
apy is a potentially novel method to induce the antitumor
effect of trastuzumab [74].

TLR3 is an endosomal receptor that senses viral dsRNA
[75]. Sensing of viral dsRNA by TLR3 leads to the secretion
of type I IFN and other proinflammatory cytokines [23].
The TLR3 agonist Poly (I:C) reportedly suppressed tumor
growth in mice [76, 77], and TLR3 agonists have been
assessed in phase I/II trials as adjuvants for therapeutic vac-
cination against melanoma and breast cancer [78]. TLR3
reportedly limited experimental B16F10 lung metastasis, an
immunologic constraint dependent on both IFN-γ secretion
and NK cells, and NK cells derived from Tlr3 null mice were
hyporesponsive to cytokine stimulation, thus suggesting a
pivotal role of endogenous TLR3 stimulation in the acquisi-
tion of complete NK cell functions and immune protection
against experimental metastasis [79].
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Figure 2: Overview of TLR-mediated signaling pathways. Activated TLRs trigger the association of adaptor proteins and activate their
downstream molecules to induce the production of cytokines and cytotoxicity of NK cells.
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Synthetic TLR7 ligands induced a type 1 interferon
response along with the secretion of proinflammatory cyto-
kines including IL-1b, IL-6, and IL-12 by recruiting MyD88,
interferon regulatory factors, and NF-κB [80–82]. A novel
small-molecule agonist, SC1, has been developed for TLR7,
and in vivo studies have attempted to determine the mode of
action of SC1. Mice bearing the NK cell-sensitive lymphoma
RMA-S were cured via repeated s.c. SC1 administration.
SC1 treatment reportedly activated NK cells in a TLR7- and
IFN-α-dependent manner, and SC1 thus reverses NK cell
anergy leading to efficient tumor cell lysis [83].

The anti-CD20 monoclonal antibody (mAb) rituximab
reportedly significantly improved patient survival; how-
ever, numerous patients ultimately experience relapse, thus
necessitating the development of novel therapies and
improved anti-CD20 mAbs [84, 85]. Immune stimulation
through TLR7 activation in combination with obinutuzu-
mab is hypothesized to further enhance lymphoma clear-
ance and the generation of long-term antitumor immune
responses. In syngeneic human CD20- (hCD20-) expressing
models of lymphoma, systemic administration of a TLR7
agonist (R848) reportedly augmented responses upon combi-
natorial administration with obinutuzumab, thus preventing
tumor recurrence. Furthermore, primary antitumor activity
depended on both NK cells and CD4+ T cells but not on
CD8+ T cells, suggesting that combinatorial treatment with
TLR7 agonists potentially improves the outcome of obinutu-
zumab treatment [86].

ADCC is a well-established effector pathway that con-
tributes to the mAb-mediated therapies including cetuximab,
an epidermal growth factor receptor- (EGFR-) specific mAb
approved for treating squamous cell carcinoma of the head
and neck (SCCHN). VTX-2337 is a selective TLR8 agonist
that is more potent than either resiquimod (R848) or 3M-
002 (CL075), which is currently in phase II clinical trials

for multiple oncological indications [87]. Cetuximab, a clini-
cally approved, epidermal growth factor receptor-specific
monoclonal antibody, activates NK cells through interac-
tions with FcγRIII and facilitates ADCC in tumor cells. A
phase I open-label, dose escalation trial including 13 patients
with recurrent or metastatic SCCHN reported that patient
NK cells become more responsive to stimulation by NKG2D
or FcγRIII after VTX-2337 treatment, suggesting that TLR8
stimulation and inflammasome activation by VTX-2337
potentially complements FcγRIII engagement and augments
clinical responses in SCCHN patients treated with cetuxi-
mab [88].

NK cells play an important role in the host response
against various pathogens. NK cells can detect and damage
various viral, bacterial, and fungal pathogens and also modu-
late or activate a variety of cells in the innate and adaptive
immune system. NK cells are active against pathogens, and
animal studies suggested that NK cells could be applied in
the antimicrobial immunotherapy [69].

Over the past decade, the effect of NK cells in controlling
HIV-1 infections in vivo has been reported [89, 90]. TLR ago-
nists are potent enhancers of innate antiviral immunity and
potentially reverse HIV-1 latency. Studies have attempted
to improve NK cell function, using TLR9 agonists, suggesting
that a novel TLR9 agonist, MGN1703, is potentially effective
in an HIV-1 eradication trial [91]. Incubation of peripheral
blood mononuclear cells with MGN1703 reportedly resulted
in NK cell activation and increased NK cell function, thus
significantly inhibiting the spread of HIV in a culture of
autologous CD4+ T cells. MGN1703 induced strong antiviral
innate immune responses, enhanced HIV-1 transcription,
and boosted NK cell-mediated suppression of HIV-1 infec-
tions in autologous CD4+ T cells, suggesting that the preclin-
ical basis for an HIV eradication clinical trial is the inclusion
of MGN1703 [92].
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NK cell activation during TLR stimulation by TLR
agonists including bacteria-associated peptidoglycan, LPS,
virus-derived dsRNA, and DNA with CpG motifs can be
potently and indirectly induced by cytokines released by
coexisting dendritic cells (DCs) and macrophages at sites of
infection [93–95]. The activation of NK cells by DCs is
dependent on both cell-to-cell interaction and soluble factors
[96, 97]. DC-derived IL-12, IL-15, IL-18, and type I IFN are
crucial for the production of IFN-γ in NK cells, and NK
cell-derived IFN-γ then facilitates the activation of DCs.
They have a positive feedback loop that amplifies TLR-
induced activation of NK cells and DCs [95, 98–100]. Macro-
phages secrete IL-12, IL-18, and type I IFN to activate NK
cells during microbial infection through TLR signaling path-
ways. Activated NK cells induce antimicrobial functions of
macrophages by producing IFN-γ and TNF-α [94, 95].
Although these positive feedback loops between NK cells
and DCs or macrophages facilitate beneficial functions of
microbial clearance, the excessive production of cytokines
can induce systemic inflammation in vivo [95] (Figure 3).

5. Conclusion

NK cells play an important role in the host response against
various pathogens. TLRs are expressed on innate immune
cells or some adaptive immune cells and mediate innate
immune responses against microbial pathogens and induce
adaptive immune responses. TLRs are also expressed in NK
cells, and TLR ligands can activate NK cells directly or indi-
rectly. Recent studies have reported that TLRs perform the
first-line defense in NK cells against bacterial and viral infec-
tions by inducing NK cytotoxicity and cytokine production.
TLR agonists were suggested as potential boosters in stimu-
lating immunological effector function of NK cells for cancer
immunotherapy and infectious disease therapy. However, to
develop new drugs targeting TLRs, we should understand the
complex mechanisms underlying TLR localization and func-
tion in NK cells. It will provide data for novel therapeutic tools
involving TLRs and their agonists, and these approaches may
be promising and have an important clinical impact for
immunotherapy using NK cells in the future.
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