
Associations of Air Pollution With Obesity and Body Fat 
Percentage, and Modification By Polygenic Risk Score for BMI in 
the UK Biobank

Melissa A. Furlong1, Yann C. Klimentidis2

1University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of 
Community, Environment, and Policy, Division of Environmental Health Sciences

2University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of 
Epidemiology and Biostatistics

Abstract

Air pollution has consistently been associated with cardiometabolic outcomes, although 

associations with obesity have only been recently reported. Studies of air pollution and adiposity 

have mostly relied on body mass index (BMI) rather than body fat percentage (BF%), and most 

have not accounted for noise as a possible confounder. Additionally, it is unknown whether genetic 

predisposition for obesity increases susceptibility to the obesogenic effects of air pollution. To 

help fill these gaps, we used the UK Biobank, a large, prospective cohort study in the United 

Kingdom, to explore the relationship between air pollution and adiposity, and modification by a 

polygenic risk score for BMI. We used 2010 annual averages of air pollution estimates from land 

use regression (NO2, NOX, PM2.5, PM2.5absorbance, PM2.5–10, PM10), traffic intensity (TI), inverse 

distance to road (IDTR), along with examiner-measured BMI, waist-hip-ratio (WHR), and 

impedance measures of BF%, which were collected at enrollment (2006–2010, n=473,026) and at 

follow-up (2012–2013, n=19,518). We estimated associations of air pollution with BMI, WHR, 

and BF% at enrollment and follow-up, and with obesity, abdominal obesity, and BF%-obesity at 

enrollment and follow-up. We used linear and logistic regression and controlled for noise and 

other covariates. We also assessed interactions of air pollution with a polygenic risk score for 

BMI. On average, participants at enrollment were 56 years of age, 54% were female, and 32% had 

completed college or a higher degree. Almost all participants (~95%) were white. All air pollution 

measures except IDTR were positively associated with at least one continuous measure of 

adiposity at enrollment. However, NO2 was negatively associated with BMI but positively 

associated with WHR at enrollment, and IDTR was also negatively associated with BMI. At 

follow-up (controlling for enrollment adiposity), we observed positive associations for PM2.5–10 

with BMI, PM10 with BF%, and TI with BF% and BMI. Associations were similar for binary 

measures of adiposity, with minor differences for some pollutants. Associations of NOX, NO2, 
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PM2.5absorbance, PM2.5 and PM10, with BMI at enrollment, but not at follow-up, were stronger 

among individuals with higher BMI polygenic risk scores (interaction p <0.05). In this large, 

prospective cohort, air pollution was associated with several measures of adiposity at enrollment 

and follow-up, and associations with adiposity at enrollment were modified by a polygenic risk 

score for obesity.
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Introduction

Worldwide, the prevalence of obesity tripled from 1975 to 2016 (Flegal, Kruszon-Moran et 

al. 2016, Fryar, Carroll et al. 2016), and in the United States, high BMI has an economic 

cost in excess of $215 billion per year (Hammond and Levine 2010). Although much 

attention has been given to the role of personal behaviors and genetics in obesity, the rapid 

rise of obesity over the past few decades also implies a strong role of environmental factors 

and gene-environment interactions (Ogden, Yanovski et al. 2007).

Environmental contaminants, and air pollution in particular, may act to alter basal 

metabolism (Chen and Schwartz 2008), adipose deposition (Heindel and vom Saal 2009), 

craving and/or satiety mechanisms that are hormonally or neurologically regulated (Bolton, 

Smith et al. 2012, Chen, Herting et al. 2018), and inflammation and oxidative stress 

mechanisms (Risom, Møller et al. 2005, Chuang, Chan et al. 2007), which are also closely 

related to obesity (Keaney Jr, Larson et al. 2003, Fernández-Sánchez, Madrigal-Santillán et 

al. 2011). Recently, some epidemiological and animal studies suggest that air pollution is not 

only associated with these biological mechanisms, but also may be associated with clinically 

relevant obesity outcomes (Jerrett, McConnell et al. 2014, McConnell, Shen et al. 2015, Wei, 

Zhang et al. 2016, Mao, Nachman et al. 2017), although most studies to date in Western 

countries have focused on children. In adults, the relationship between air pollution and 

obesity is relatively unexplored, with existing epidemiological studies reporting mixed 

results (Li, Dorans et al. 2016, White, Jerrett et al. 2016, James, Kioumourtzoglou et al. 

2017, Wallwork, Colicino et al. 2017).

In these early stages of epidemiological research on the relationship between air pollution 

and obesity, most studies focused on BMI, with only one study that we have identified 

examining associations with adipose tissue (Li, Dorans et al. 2016). BMI is often used as a 

proxy for body fat, although BMI cannot distinguish between lean and fat body mass. No 

studies have examined associations of air pollution with body fat percentage, despite the fact 

that it is an excellent predictor of subsequent health outcomes, even in the presence of 

normal BMI (Gómez-Ambrosi, Silva et al. 2011, Shah and Braverman 2012, Shea, King et 

al. 2012). Additionally, two studies have found that 29%−39% of those classified as normal 

weight by BMI standards were actually obese by body fat percentage standards (Gómez-

Ambrosi, Silva et al. 2012, Phillips, Tierney et al. 2013). However, body fat is a difficult and 

somewhat expensive metric to capture, while BMI and WHR are easily measured and are 

Furlong and Klimentidis Page 2

Environ Res. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



currently standard measurements in a wide variety of public health and clinical settings. 

Thus, evaluating epidemiological associations with multiple measures of obesity may help 

clarify whether there is any advantage to using body fat over BMI. Additionally, using 

multiple measures may help reduce outcome misclassification and more fully capture the 

range of obesity metrics.

The relationship between air pollution and adiposity may also be confounded by noise, 

which has recently been associated with measures of adiposity (Christensen, Raaschou-

Nielsen et al. 2015, Pyko, Eriksson et al. 2015, Pyko, Eriksson et al. 2017, Foraster, Eze et 

al. 2018). Traffic may be a key generator of both noise and air pollution, which may serve to 

open a backdoor pathway for noise to confound the air pollution-obesity relationship.

Finally, as genetic factors play a substantial role in susceptibility to obesity, they may also 

modify the obesogenic effects of environmental factors (Tyrrell, Wood et al. 2017). Since 

many genes contribute to obesity susceptibility, polygenic risk scores can be used to 

combine information across multiple single nucleotide polymorphisms (SNPs), and thus 

capture an individual’s overall level of genetic predisposition towards obesity. By examining 

whether they modify the effect of an environmental exposure, they can help to identify 

individuals that are more susceptible to the detrimental effects of that exposure, or help to 

show that the exposure is similarly detrimental across different individuals.

Here, we use a large, prospective dataset to examine associations of several air pollution 

measures with measures of obesity, using traditional measures (e.g., BMI and waist-hip ratio 

(WHR)), as well as body fat percentage, while also controlling for noise and other relevant 

covariates. We also evaluated a polygenic risk score for obesity as a modifier of these 

relationships. Since the interpretation of epidemiological investigations of environmental 

exposures that are measured concurrently with (or after) the outcome may be limited by 

concerns about temporality, we estimated associations of air pollution measured in 2010 

with obesity measured at enrollment (2006–2010), and also with obesity measured at follow-

up (2012–2013), controlling for adiposity values at enrollment.

Methods

The UK Biobank is a prospective longitudinal cohort that enrolled approximately 500,000 

participants at ages 40 to 69 years across the United Kingdom from 2006–2010. A detailed 

description of enrollment procedures has been previously published (Sudlow, Gallacher et al. 

2015). At enrollment, participants answered questions about demographic and baseline 

characteristics via a touch-screen questionnaire and a computer-assisted interview. Between 

2012 and 2013, approximately 20,000 participants returned for a follow-up visit that 

included repeat anthropometric measurements. The median time between baseline and 

follow-up visits was approximately 4.4 years, with minimum and maximum time between 

visits equaling 2.1 and 6.1 years. Ethical approval of the UK Biobank study was given by the 

North West Multicentre Research Ethics Committee, the National Information Governance 

Board for Health & Social Care, and the Community Health Index Advisory Group.
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Air pollution values were estimated by the Small Area Health Statistics Unit as part of the 

BioSHaRE-EU Environmental Determinants of Health project. These values were calculated 

for the year 2010 using protocols from the European Study of Cohorts for Air Pollution 

Effects (ESCAPE) (Eeftens, Beelen et al. 2012, Beelen, Hoek et al. 2013). These estimated 

values for 2010 are a proxy for a measure of chronic, long-term exposure to air pollution. 

Briefly, annualized estimates of air pollution were derived from land use regression models 

that were created on a site-specific basis from monitors across Europe. These estimates 

represent annual averages of air pollution in 2010 for the reported residence at enrollment 

and include Nitrogen Oxides (NOx), Nitrogen Dioxide (NO2), Particulate Matter≤ 2.5 μm 

(PM2.5), Particulate Matter 2.5 – 10 μm (PM2.5-10), Particulate Matter ≤ 10 μm (PM10), and 

PM2.5 Absorbance (a measure of black carbon)(Eeftens, Beelen et al. 2012, Beelen, Hoek et al. 

2013). The UK Biobank also provides estimates for other measures of the local environment. 

For this analysis, we included log inverse distance to nearest major road (1/meters), and log 

traffic intensity on nearest major road (vehicles per day). We also evaluated an annual 

average of 24-hour sound level of noise pollution as a potential confounder. Noise estimates 

were derived from a simplified version of the Common Noise Assessment Methods in 

European Union (CNOSSOS-EU) framework (Kephalopoulos, Paviotti et al. 2014), which 

uses land use characteristics including road networks and flows, land cover and meteorology, 

and the properties of noise propagation from diffraction and refraction, absorption, distance, 

and angles. These characteristics were used to derive an LDen, or a day-evening-night 

equivalent level, with a weighted Leq noise level measured over a 24-hour period with a 10 

decibel penalty added to the levels between 23:00 and 07:00.

Body weight, anthropometry, and body composition measures were assessed at enrollment 

and at the first follow-up visit. Height, weight, hip circumference, and waist circumference 

were measured by an examiner. Body fat percentage was measured with whole-body bio-

impedance measures using the Tanita BC418MA body composition analyzer, at enrollment 

and at follow-up. We used Center for Disease Control (CDC) cutoffs for BMI-based obesity, 

where a BMI of 30 or above is considered obese, and we used the World Health 

Organization’s standards for abdominal obesity, where a 0.90 waist-hip-ratio (WHR) and 

above is abdominally obese for men, and 0.85 and above is abdominally obese for women. 

We used conventional estimates for body fat percentage cutoffs for obesity, where >25% is 

obese for men, and >35% is obese for women.

All UK Biobank participants were genotyped as previously described (Bycroft, Freeman et 

al. 2018). Polygenic risk scores for obesity were calculated based on 96 out of the 97 SNPs 

identified by Locke et al., that were also available in the UK Biobank (Locke, Kahali et al. 

2015). One SNP (rs12016871) was not available in the UK Biobank. All SNPs passed QC 

criteria of minor allele frequency, Hardy-Weinberg equilibrium, and imputation accuracy. 

Genotypes at these SNPs were extracted, and for each individual, a polygenic risk score was 

calculated by taking the sum of BMI-increasing alleles across all 96 SNPs, weighting each 

one by the estimated effect size from Locke et al., and dividing by the number of non-

missing genotypes for that individual.
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Statistical Analysis

We first evaluated whether the demographics of the study group at follow-up were different 

from the group at enrollment with a series of t-tests and chi-squared ANOVA tests. We 

evaluated them based on their age, average Townsend Deprivation Index score, race/

ethnicity, education, annual average air pollution levels for 2010, and body composition 

measures at enrollment. We also calculated the percentage of people that gained or lost 

weight between enrollment and follow-up, and calculated the mean change in weight by 

enrollment weight categories.

We used linear regression to evaluate the relationships between air pollution and body 

composition at enrollment and at follow-up. Air pollution measures for NOx, NO2, PM2.5, 

PM2.5absorbance, PM2.5–10, and PM10 were scaled so that a one-unit increase in the measure 

represented a one inter-quartile-range (IQR) increase. For inverse-distance-to-road and 

traffic intensity, we used logs of the raw values after examining distributions. Body 

composition measures included inverse-normalized BMI, inverse-normalized waist-hip-ratio 

(WHR), and inverse-normalized body fat percentage (BF%), at enrollment and at follow-up. 

In analyses of associations at follow-up, we additionally controlled for the relevant measure 

at enrollment (e.g., we controlled for BMI at enrollment when examining associations with 

BMI at follow-up). In sensitivity analyses, we controlled for BMI in the models of 

associations between air pollution and WHR. To ease interpretability, we also report effect 

estimates of 10 unit increases in PM2.5, PM2.5–10, and PM10 with one-unit increases in BMI, 

WHR, and body fat percentage. Since WHR is expressed as a ratio, we multiplied WHR by 

100 in these sensitivity analyses. Since any observed differences between associations at 

enrollment and associations at follow-up may be due to the differing populations at 

enrollment and follow-up, we additionally report associations with adiposity at enrollment 

for the entire population (N=473,020 for NOx and 440,193 for PM), against associations 

with adiposity at enrollment for only the subset of the population that returned for follow-up 

(N=19,518).

We used logistic regression to examine associations with BMI-based obesity, WHR-based 

abdominal obesity, and body-fat based obesity at enrollment and at follow-up. To evaluate 

associations with a measure that approximates incident obesity, we restricted the follow-up 

study participants to only those who did not qualify as obese for that particular measure at 

enrollment (e.g., models of “incident” abdominal obesity were restricted to those who did 

not qualify as being abdominally obese at enrollment based on their WHR).

To evaluate interactions between air pollution and the polygenic risk score for BMI, we 

restricted the population to those who identified as British/Irish white. We then evaluated the 

dose-response relationship between polygenic risk score and the obesity measures using 

linear regression. We used the chi-squared LRT p-values to assess the interactions between 

the continuous air pollution variables and the continuous polygenic risk score variable. Since 

the polygenic risk score variable is a measure of risk for BMI, we evaluated this risk score as 

a modifier of air pollution only in relation to BMI. We set our alpha for interaction at 0.05. 

In order to better characterize the scope of interactions, we additionally show the 

associations between pollutants and BMI by quartile of polygenic risk score. We also 

calculated average air pollution values by weight change status and genetic polymorphisms 
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for the 5 SNPs with the largest effect size on BMI, based on the original discovery study 

(Locke, Kahali et al. 2015).

All models were a priori adjusted for sex, white race/ethnicity, age, enrollment centre, 

education (binary for college or higher), genetic risk score for BMI (Locke, Kahali et al. 

2015), and the Townsend Deprivation Index, a community measure of relative deprivation 

(Townsend 1987). We also controlled for noise, and we present models that did not control 

for noise separately, since we were partially interested in investigating whether noise is a 

confounder of the air pollution-obesity relationship.

Results

The complete case participants in this study at enrollment were middle aged (mean age ~57, 

sd = 8.09), with low Townsend Deprivation Index Scores (mean= −1.35), and moderate 

education (32% with college degree or higher) (Table 1). Study participants were mostly 

female (54%) and British or Irish White (95%). Air pollution levels were moderate. For 

almost all characteristics, the participants that returned for follow-up were significantly 

different than those that did not.

Approximately 45% of participants that returned for follow-up had a lower BMI at follow-

up than at enrollment, and 55% of participants had either the same or higher BMIs at follow-

up. Across BMI categories (underweight, normal, overweight, obese), participants generally 

gained weight, although participants in the obese category were more likely to lose weight 

(Supplementary Table 3).

At enrollment, we observed associations between several measures of air pollution at 

enrollment and the Waist-Hip-Ratio (WHR), BMI, and body fat percentage (BF%) (Figure 

1). PM2.5, PM2.5–10, PM10, and traffic intensity on nearest major road were all positively 

associated with BMI, WHR, and BF% at enrollment. NOX, NO2 and PM2.5 absorbance were 

positively associated with WHR, but not BMI, at enrollment. In fact, NO2 was unexpectedly 

negatively associated with BMI at enrollment, as was inverse distance to road. At follow-up, 

these estimates were generally attenuated towards the null, although PM2.5–10, PM10, and 

traffic intensity remained associated with BMI, but not WHR or BF%. There was minimal 

confounding by noise, as estimates were generally negligibly altered (Supplementary Table 

1a and Supplementary Table 1b). The only significant associations that changed after 

controlling for noise were for NOx and BMI at enrollment, and PM10 and BMI at follow-up. 

The NOx/BMI association was attenuated towards the null after controlling for noise, while 

the effect estimate for the PM10/ BMI relationship stayed the same, but the confidence 

intervals widened after accounting for noise. In general, effect sizes were relatively modest. 

For instance, for a one IQR increase in PM2.5 (1.28 ug/L), inverse-normalized BMI at 

enrollment increased by 0.005, inverse-normalized WHR at enrollment increased by 0.014, 

and inverse-normalized body fat percentage at enrollment increased by 0.009. To facilitate 

interpretation, we also considered 10 unit increases in particulate matter variables with the 

untransformed outcomes. Thus, these translate such that a 10 unit increase in PM2.5 was 

associated with a 0.30 unit increase in BMI at enrolment (e.g. from 21 to 21.30), a 0.95 

increase in WHR (e.g., an increase from 80.00 to 80.95 for the WHR x 100 variable), and a 
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0.79 increase in body fat percentage (e.g., an increase from 24.00% to 24.79% body fat) 

(Supplementary Figure 1). However, the range of PM2.5 in the study participants did not 

span 10 ppb (the min and max were 5.57 and 12.82); thus the estimates for 10 unit increases 

extrapolate beyond the observed data.

We observed somewhat similar patterns of associations for binary measures of adiposity 

(Figure 2). For instance, NOX, PM2.5, PM2.5–10, PM10, and traffic intensity were all 

associated with BMI-based obesity, abdominal obesity, and BF% obesity, at enrollment. 

NO2 and PM2.5 absorbance were associated with abdominal obesity and body fat obesity, but 

not BMI obesity, at enrollment. For incident obesity, we observed associations with BMI-

obesity for PM2.5 absorbance, PM2.5–10, PM10, and traffic intensity, but not associations with 

abdominal obesity or BF% obesity. Associations were small to moderate, with significant 

ORs ranging from 1.011 (NO2 & BF% obesity) to 1.173 (traffic intensity and incident BMI-

obesity). Again, associations were not confounded by noise (Supplementary Tables 2a and 

2b).

Polygenic risk score for BMI was associated with all measures of body weight in our study 

participants, at both enrollment and at follow-up (Supplementary Figure 3). For instance, at 

enrollment, individuals in the fourth quartile of the polygenic risk score had a BMI that was, 

on average,1.6 units higher than individuals in the first quartile. We observed a dose-

response relationship of the polygenic risk score with BMI, at both enrollment and follow-

up, such that p-trends were all <0.05. Associations for the polygenic risk score were most 

precise (e.g., confidence intervals were smallest) for BMI at enrollment, likely because the 

polygenic risk score is based on BMI. We also observed modification of the air pollution-

BMI association at enrollment by GRS for BMI, for NOX, NO2, PM2.5 Absorbance, PM2.5, 

and PM10 (Figure 3). Associations between air pollution and BMI at enrollment were 

stronger among individuals with a higher genetic risk score for BMI. For NOx, PM2.5, and 

PM2.5 absorbance, effect sizes for air pollution on BMI were largest among those in the 

highest quartiles of genetic risk score for BMI. However, associations were actually negative 

for NO2 and PM2.5 absorbance among those in the lowest quartiles for genetic risk score for 

BMI. We did not observe any modification by genetic risk score for associations with 

adiposity at follow-up.

In sensitivity analyses, controlling for BMI in models examining WHR did not materially 

change the findings, suggesting associations with WHR at enrollment are independent of 

BMI. When we examined associations of air pollution with obesity measures at enrollment 

among the full study participant group, compared to associations at enrollment among only 

those participants who subsequently returned for follow-up, we did not observe materially 

different associations (Supplementary Figure 2). Generally, the confidence intervals for the 

associations in the larger sample were narrower but overlapped to a large degree with the 

confidence intervals for the smaller sample.

Discussion

In this large prospective cohort with low to moderate air pollution levels, we observed 

associations of several air pollution components with several measures of adiposity. Traffic 
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intensity, PM2.5–10, and PM10 were associated with the most measures of adiposity, 

including all of the continuous measures at enrollment and follow-up (with the exception of 

WHR at follow-up), all three binary measures of adiposity at enrollment, and BMI-based 

obesity at follow-up. We additionally observed modification by genetic susceptibility to 

BMI, where associations between some air pollution components and adiposity at 

enrollment were strongest among those with the greatest BMI genetic susceptibility scores.

Reported associations in the prior literature are mixed, with low consistency across 

pollutants and susceptible populations. Studies of adults in western countries have reported 

associations between PM2.5 and BMI (although this association in this study appeared to be 

driven primarily by walkability) (James, Kioumo urtzoglou et al. 2017), and associations 

with distance to roadway (but not PM2.5) and overall and abdominal adiposity (Li, Dorans et 

al. 2016). Another study of adults in the United States showed that although PM2.5 was 

associated with metabolic syndrome, it was not associated with abdominal obesity (Hazard 

Ratio = 1.00) (Wallwork, Colicino et al. 2017). Interestingly, another study of African 

American adult women showed no associations of PM2.5 or O3 with BMI change. They also 

reported an unexpectedly negative association with NO2, with the strongest associations 

among the leanest participants (White, Jerrett et al. 2016). We also observed an 

unexpectedly negative association of NO2 with BMI at enrollment, which appeared to be 

driven by associations among those with lower genetic susceptibility to obesity. However, 

we also observed a positive association for NO2 and WHR, and positive relationships for 

NO2 and abdominal obesity and BF%-obesity. These conflicting associations have also been 

observed with cigarette smoking, where cigarette smoking is routinely associated with lower 

overall BMI but higher WHR (Barrett-Connor and Khaw 1989, Canoy, Wareham et al. 2005, 

Chiolero, Faeh et al. 2008). Cigarette smoke contains high levels of nitrogen dioxides 

(Bokhoven and Niessen 1961, Norman and Keith 1965), which may imply that our findings 

are in line with prior literature on cigarette smoking and adiposity.

Recent studies in China have reported associations of long-term PM1, PM2.5, PM10, and 

NO2 with overweight/obesity (Yang, Guo et al. 2019), associations between PM2.5 and 

gestational weight gain (Liao, Yu et al. 2018), and associations of PM10, NO2, and O3, with 

obesity, but only among women (Li, Qian et al. 2015). Yang et al 2019 also showed that 

associations for air pollutants and cardiometabolic risk factors were stronger among those 

with a family history of CVD, which may support our findings of an interaction with genetic 

susceptibility to high BMI. Epidemiological studies in children report similar findings. In 

Southern California children, traffic-related air pollution and NOx has been associated with 

obesity and/or childhood BMI trajectories (Jerrett, McConnell et al. 2014, Kim, Alderete et 

al. 2018), while in Barcelona, PM10 was associated with overweight/obese, with some 

evidence of non-linear relationships reported for NO2, PM2.5, and elemental carbon, with 

overweight/obese, but generally no consistent linear associations reported for BMI (de Bont, 

Casas et al. 2019). Another study in the Netherlands reported associations between NO2 and 

overweight/obesity in children, but no associations for PM2.5 or PM10 (Bloemsma, Wijga et 

al. 2019), and another in Sweden showed no association between NOx exposures during 

pregnancy and overweight/obesity at age 4 (Frondelius, Oudin et al. 2018). Virtually no 

studies, to our knowledge, have been reported on these air pollutants in adults and body fat 

percentage.
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Some of these conflicting findings of significance may be due to sample size. For example, 

at enrollment, we were exceptionally well-powered with an N of 473,026 to detect very 

small effect sizes, and at follow-up, we were also well-powered to detect associations with 

an N of 19,518. In Li et al 2016, they report no association between a 1.5 ug/m3 increase in 

PM2.5 with BMI (effect size 0.08, 95% CI −0.14, 0.30). In our data, when we estimate a 

comparably scaled exposure and outcome, we find an effect size of 0.05, 95% CI 0.03, 0.08. 

The effect size in our data is actually smaller than that reported in Li, although ours reaches 

significance and theirs does not, possibly due to sample size. Even within our own study, we 

report no significant associations with BF% obesity at follow-up (when we had 

approximately 19,000 participants), despite effect sizes for BF% obesity at follow-up being 

higher than effect sizes for BF% obesity at enrollment (where the n was >450,000). 

However, these were not significant at follow-up, likely due to the loss of power from the 

decreased sample size.

In other analyses of cardiometabolic risk factors, a recent meta-analysis reported 

associations between NO2 and PM10 with triglyceride levels (Gaio, Roquette et al. 2019), 

while another study showed that near-roadway air pollution exposures were associated with 

altered fatty acid oxidation in young adults (Chen, Newgard et al. 2019). Air pollution has 

also been associated with fasting blood glucose (Peng, Bind et al. 2016) and insulin 

responses (Toledo-Corral, Alderete et al. 2018, Kim, Chen et al. 2019). In mouse models, 

researchers have shown that in mice fed a high-fat diet, ambient PM2.5 exposure resulted in 

exaggerated insulin resistance and visceral inflammation and adiposity (Sun, Yue et al. 

2009), and the same research group has shown that PM2.5 upregulates mouse genes involved 

in adipocyte differentiation, lipid-droplet formation, lipogenesis, and lipolysis in white 

adipose tissue (Mendez, Zheng et al. 2013).

In general, we found that associations were consistent across continuous measures of 

adiposity, with the exception of NO2, which we discussed earlier. If these findings are 

generalizable, then BMI is likely a good proxy for WHR and BF% in other studies. 

However, this may not be true when examining associations with NO2 or cigarette smoking, 

where WHR may be more appropriate. A few minor differences were observed, which may 

or may not be clinically meaningful. For instance, at follow-up, continuous measures of BF

% seemed to be the most sensitive marker for air pollution-dependent obesity measures. 

Since these measures controlled for the relevant obesity measure at enrollment, this pattern 

may reflect a slight tendency for BF% to change in response to air pollution more rapidly 

than the other metrics. However, the binary measures did not reflect a similar pattern, and at 

follow-up, only BMI-based obesity was associated with any pollutants. This may be due to 

the relative utility of the cutoffs for BMI and BF% obesity measures. BMI obesity cutoffs 

were developed by insurance companies, based on associations with mortality (reviewed in 

(Komaroff 2016)), and have since withstood the scrutiny of time. However, the BF% cutoffs 

are a metric borne from less evidence-based research (Ho-Pham, Campbell et al. 2011) and 

may be less clinically meaningful than BMI. Since the WHR associations were generally 

null for both the continuous and binary measures at follow-up, this may in part reflect 

reduced power due to a smaller sample size at enrollment. We did observe strong 

associations for air pollution and WHR at enrollment, which may be more reflective of a 

chronic response to air pollution.
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Several additional biological mechanisms may underlie the relationship between air 

pollution and obesity. In recent metabolomic, epigenetic, and toxicological studies of air 

pollution, leukotriene, valine, fatty acid oxidation, and oxidative stress mechanisms have 

been implicated (Gruzieva, Xu et al. 2016) (Panni, Mehta et al. 2016, Plusquin, Guida et al. 

2017, Liang, Moutinho et al. 2018) (Xu, Yavar et al. 2010). Leukotriene has been associated 

with obesity and insulin resistance (Martínez-Clemente, Clària et al. 2011, Spite, Hellmann 

et al. 2011, Bäck, Avignon et al. 2014, Ying, Wollam et al. 2017) and fatty acid oxidation 

plays an important role in the development of adipose tissue (Kelley, Goodpaster et al. 1999, 

den Besten, van Eunen et al. 2013, Simopoulos 2016), suggesting that these factors may be 

mediators in the air pollution-obesity relationship.

Unfortunately, little research has been done on gene-environment interactions for air 

pollution and obesity. Investigations of genetic modification of air pollution on 

cardiovascular risk have been reported, with some studies suggesting a role for oxidative 

stress genes & inflammation (Hee, Adar et al. 2010), metals processing (Bind, Coull et al. 

2014), and microRNA processing (Wilker, Preis et al. 2015) (reviewed in (Ward-Caviness 

2019)). These studies have predominantly used candidate genes, with a few using GWAS-

identified SNPs, to evaluate interactions. Another study of cardiometabolic risk factors 

reported interactions with an air pollution susceptibility score (Bind, Coull et al. 2014), 

although in general, genetic susceptibility scores are relatively novel and have yet to be 

widely adopted,. We used a genetic susceptibility score for obesity, which has also been 

shown to interact with several lifestyle factors including dietary fat and total energy intake 

(Celis-Morales, Lyall et al. 2017), and with sedentary behaviors and physical activity (Celis-

Morales, Lyall et al. 2019). Many of the SNPs in this BMI genetic risk score may operate 

through pathways including synaptic plasticity, glutamate receptor activity, insulin action, 

lipid metabolism and adipogenesis, and may thus partly affect satiety mechanisms and 

eating behavior (Locke, Kahali et al. 2015). Interestingly, a recent study showed that air 

pollution increases voluntary intake of highly palatable foods and increases the caloric 

efficiency of high fat foods in rats (da Silveira, Di Domenico et al. 2018), and a novel 

epidemiological study showed that even after accounting for access to fast food, higher air 

pollution levels were associated with higher intake of trans-fats and fast food (Chen, Herting 

et al. 2018). If the genetic risk score is highly predictive of seeking out a high-fat diet, the 

observed interaction may be partially capturing this phenomenon. Overall, the prior 

literature, together with the current findings, suggest genes and air pollution may interact in 

a complex manner, on multiple different pathways, to affect adiposity.

We did observe some differences by enrollment or follow-up status. For instance, no 

associations of air pollution with WHR were significant at follow-up, despite being 

consistently associated with all pollutants and pollutant sources except for distance to road, 

at enrollment. This may in part reflect a survival effect, since we used a chronic measure of 

air pollution and controlled for WHR at enrollment. Participants who were susceptible to the 

effects of air pollution on adiposity may have been already obese/overweight at enrollment, 

so the associations at follow-up would only be amongst those who were less susceptible to 

these effects. However, we did still observe associations with BMI and BF. Therefore, it is 

also possible that air pollution acts more immediately on BMI and body fat, and may take 

longer to induce changes in abdominal adiposity.
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Our study had several strengths and limitations. The strengths include the exceptionally 

large sample sizes at enrollment and follow-up, the well-validated air pollution metrics, 

examiner-measured BMI & WHR, impedance-measures of body fat percentage, and a 

previously validated genetic risk score for BMI. We were able to detect relatively small 

effect sizes at enrollment and follow-up in our population of nearly half a million, and for 

the first time, we also report associations with body fat percentage at enrolment & follow-

up. Limitations are predominantly centered around the availability of air pollution measures, 

which were only available from ESCAPE in 2010 for all of the air pollutants included in this 

study. However, NO2 estimates for 2005, 2006, and 2007 (but not 2008, 2009, or 2010, and 

not the other air pollutants) were available for participants using a different method, and the 

correlation coefficients for these years for NO2 ranged from 0.98 to 0.99. This suggests that 

a given annual average is likely representative of long-term chronic air pollution exposures. 

Air pollution metrics in 2010 did precede measures at follow-up, which were taken in 2012–

2013. Additionally, air pollution and obesity measures may partially reflect residual 

confounding by other obesogenic factors, such as stress, neighborhood walkability and green 

space, and residual error in household wealth or income. Finally, this is a cohort of 

predominantly Caucasian, middle-aged UK participants. The physiologic response to air 

pollutants may depend on a number of factors, including diet/nutrition, social stress/

resiliency, occupation, and other metrics of SES that may be unique to this cohort. Thus, the 

extent to which our results can be generalized to other populations is not known. 

Furthermore, as the polygenic that we used was developed based on individuals of European 

descent, our results may not generalize to individuals of other ancestries.

Conclusions

Air pollution may be associated with markers of adiposity and weight, both at enrollment 

and follow-up. Associations for some pollutants may be stronger among those who are 

genetically susceptible to higher BMI.
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Figure 1. Associations (ß, 95% CI) of Air Pollution With Continuous Measures of Adiposity at 
enrollment and at follow-up
N=473,026 at enrollment for NO and NOx models, N=440,193 for PM models. 
N=19,518 at follow-up. IDTR = log Inverse distance to road; TI = log Traffic Intensity. Air 

pollutants are scaled such that a one unit increase represents a one inter-quartile range 

increase, although inverse distance to road and traffic density are logged. All models 

controlled for race/ethnicity, age, assessment centre, Townsend Deprivation Index, 

education, genetic risk score for BMI, noise, and sex. BMI, WHR, and Body Fat percentage 

are modeled as inverse normalized variables. Associations with measures at follow-up 

additionally controlled for the relevant body composition measure at enrollment.
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Figure 2. Associations (Odds Ratios & 95% CIs) of Air Pollution With Binary Measures of 
Adiposity at Enrollment and Follow-Up
At enrollment, N=473,026 for NOx and NO2 models, and N = 440,193 for PM models. 
At follow-up, N=19,518 and N= 19,514. BMI indicates BMI-based obesity; WHR indicates 

WHR-based obesity; and BodyFat% indicates body fat percentage-based obesity. IDTR = 

log Inverse distance to road; TI = log Traffic Intensity; these were modeled as log variables. 

Other air pollutants are scaled such that a one unit increase represents a one inter-quartile 

range increase. Models control for race/ethnicity, age, assessment centre, Townsend 

Deprivation Index, education, genetic risk score for BMI, noise, and sex. Associations with 

measures at follow-up are incident associations and exclude participants with the condition 

at enrollment. Note that the scales are different for enrollment and follow-up, for 

visualization purposes.
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Figure 3. Associations of Air Pollution with BMI at Enrollment, by Genetic Risk Score for BMI
At enrollment, N = 445,257 for NOx and NO2 models, N = 440,193 for PM models. Models 

are restricted to those of British/Irish white race/ethnicity and control for sex, age, 

enrollment centre, education, noise, and the Townsend Deprivation Index. Interaction p 

values represent the likelihood ratio test p-value for models of interactions between the air 

pollutant and the continuous genetic risk score for BMI.
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Table 1

Characteristics of the Study Participants

Enrollment N=473,026 Follow-Up N=19,518 P for difference

Age (mean (sd)) 56.55 (8.09) 57.17 (7.40) <0.01

Townsend Deprivation Index (mean (sd)) −1.35 (3.07) −2.05 (2.68) <0.01

Male 216,154 (45.69%) 9,521 (48.78%) <0.01

Race/Ethnicity

 British or Irish White 448, 320 (94.78)% 19,096 (97.84%) <0.01

Education

 College Graduate or Higher 152,586 (32.26%) 8,513 (43.62%) <0.01

Air Pollution in 2010 (mean, IQR)

 NOX 44.00 (16.35) 43.22 (16.16) <0.01

 NO2 26.63 (9.74) 26.06 (8.85) <0.01

 PM2.5 9.99 (1.28) 9.97 (1.34) 0.07

 PM2.5absorbance 1.18 (0.30) 1.17 (0.24) <0.01

 PM2.5–10 6.43 (0.79) 6.34 (0.60) <0.01

 PM10 16.23 (1.76) 15.94 (1.73) <0.01

 Distance to Road, m (median, sd) 378.79 (62.94) 358.42 (70.75) <0.01

 Traffic intensity, VPD (median, sd) 17,053 (21,049) 15,763 (21,961) <0.01

Anthropometric and body composition Measures at Enrollment

 BMI (mean (sd)) 27.42 (4.78) 26.89 (4.52) <0.01

 Waist-Hip-Ratio (mean (sd)) 0.87 (0.09) 0.86 (0.09) <0.01

 Body Fat % (mean (sd)) 31.41 (8.53) 30.54 (8.44) <0.01

 Obesity (BMI) (N %) 115,041 (24.32%) 3,929 (20.13%) <0.01

 Abdominal Obesity (WHR) (N %) 234,240 (49.52%) 8,851 (45.35%) <0.01

 Body Fat % Obesity (N %) 262,778 (56.38%) 10,073 (52.43%) <0.01

BMI Genetic Risk Score 0.024 (0.002) 0.024 (0.002) <0.01

Enrollment numbers include complete cases with values for waist hip ratio, age, NO2 air pollution values, the BMI risk score, education, Townsend 

Deprivation Index, race/ethnicity, and assessment centre. A smaller number of these participants have available PM values (n=440,193 at 
enrollment, and 19,514 at follow-up); PM values were not reported for participants in some regions due to unreliability of the air pollution 
estimates. All air pollution estimates are annual averages from 2010. P for difference indicates the difference between those who returned for 
follow-up and those who did not return for follow-up (t-tests for continuous variables, chi-square tests for categorical). Traffic intensity in vpd is 
vehicles per day, and distance to road is meters.
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