
AUTHOR’S VIEW

The metabolic reprogramming and vulnerability of SF3B1 mutations
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ABSTRACT
Mutations in the splicing factor 3b subunit 1 (SF3B1) gene create a neomorphic protein that disrupts
RNA splicing, but the downstream consequences of this missplicing are unclear. Our recent study of
isogenic human cells demonstrated that SF3B1MUT induces reprogramming of energy metabolism and
a targetable vulnerability to deprivation of the nonessential amino acid serine.
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Initially found in >70% of myelodysplastic syndromes (MDS),
spliceosome mutations have now been described in many hema-
tologic and solid malignancies.1–3 The splicing factor 3b subunit 1
(SF3B1) gene is themost widelymutated, occurring inMDS, acute
myeloid leukemia (AML), chronic lymphocytic leukemia, mela-
noma, breast carcinoma, pancreas adenocarcinoma, and many
other cancers. SF3B1 is a member of the U2 small nuclear ribo-
nucleoprotein (U2snRNP) complex, essential for branch point
sequence recognition in pre-mRNA. Mutant SF3B1 is
a neomorphic protein that disrupts the usage of thousands of
splice junctions, leading to altered expression of hundreds of
genes, affecting dozens of cellular pathways.1,3 Given the variety
of affected processes, it has been a challenge to understand what
missplicing events are physiologically impactful in SF3B1MUT

cells.
To understand consequences of SF3B1MUT missplicing, we

recently characterized the transcriptome and proteome of
SF3B1MUT human isogenic cells.4 This analysis showed enrich-
ment ofmetabolic genes in SF3B1MUT cells, including a decrease in
mitochondrial complex III of the electron transport chain (ETC),
essential for cellular respiration. This was mediated through mis-
splicing and downregulation of its assembly factor, ubiquinol-
cytochrome c reductase complex assembly factor 1 (UQCC1), as
re-expression of this protein was able to rescue complex III levels.
SF3B1MUT also decreased cellular respiration, reduced citric acid
cycle metabolites, and misspliced and downregulated other meta-
bolic enzymes of the mitochondria – dihydrolipoamide
S-succinyltransferase (DLST) and methylmalonyl-CoA mutase
(MUT) (Figure 1). This reprogramming of mitochondrial meta-
bolism bears particular relevance to the form of MDS in which
SF3B1 is most frequently (>85% of cases) mutated:MDSwith ring
sideroblasts (MDS-RS).5 This disease is characterized by dysplastic
erythroblasts (the “sideroblasts”) with iron-overloaded mitochon-
dria (the “rings”). Interestingly, some forms of congenital side-
roblastic anemia (CSA) are characterized by mutations in ETC
genes, causally implicating impaired cellular respiration in ring
sideroblast formation.6 In this context, our results suggest that
ETC disruption by SF3B1MUT may contribute to the sideroblastic

anemia of MDS-RS. Consistent with this, data from 40 years ago
showed that in MDS-RS patients, granulocytes (SF3B1MUT in
>85% of cases) had reduced ETC activity when compared to
healthy controls, while ETC activity of lymphocytes (unmutated
in MDS-RS) was similar between groups.7 Hsu et al also recently
reported a decrease in metabolically active mitochondria in
induced pluripotent stem cells derived from SF3B1MUT MDS.8 It
will be interesting for future studies to determine howmissplicing
events, such as in UQCC1, DLST or ABCB7 (the latter down-
regulated by SF3B1MUT and also a cause of CSA), drive impair-
ment of cellular respiration and ring sideroblast formation in
SF3B1MUT MDS.5

Our study also identified another metabolic gene that was
heavily misspliced and downregulated by SF3B1MUT: phos-
phoglycerate dehydrogenase (PHGDH), the gatekeeper
enzyme controlling synthesis of the nonessential amino acid
serine. We found that SF3B1MUT cells had lower baseline
serine synthesis, as well as a reduced ability to increase its
relative synthesis when deprived of exogenous serine.
Accordingly, SF3B1MUT cells exhibited greatly decreased
growth without exogenous serine, as compared to their wild
type counterparts. This we observed in several contexts,
including untransformed and transformed breast epithelial
cell knockins, leukemia cell knockins, and AML cell lines
from patients with naturally acquired SF3B1MUT (the latter
cells simply died in the absence of exogenous serine).
Overexpression of PHGDH – or supplementation with its
reaction product, phosphohydroxypyruvate (PHP) – was
able to rescue growth without exogenous serine, supporting
deficient serine synthesis as a mechanism for this vulnerabil-
ity. Since Maddocks et al showed in mice that a serine-free
diet will drop serine levels by 60%, exert no clear toxicity, and
can produce anticancer activity,9 we performed this interven-
tion on two different naturally SF3B1MUT AML cell lines.
These experiments showed that SF3B1MUT cancers in mice
fed a serine-free diet grew significantly slower than that of
mice given a serine-replete diet, demonstrating that this vul-
nerability could be exploited in vivo.
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Our findings offer serine deprivation as a novel treatment
strategy for SF3B1MUT cancers. Modulating serine availability
in humans might be approached in several ways, including
dietary serine restriction (dietary restriction of individual
amino acids is commonplace in management of inborn errors
of metabolism), development of a therapeutic serine-
catabolizing enzyme (asparaginase is a backbone of acute
lymphoblastic leukemia treatment), inhibition of serine trans-
port (pharmacologic inhibition of cystine transport is under
clinical investigation), and other modalities.10 Further insight
into the mechanisms of serine auxotrophy in SF3B1MUT cells
may also help such efforts. Though our data causally impli-
cates decreased serine synthesis through PHGDH downregu-
lation, other mechanisms may contribute, such as decreased
cellular respiration, given that human cells increase their
reliance on oxidative phosphorylation as a compensatory
adaptation to serine starvation.9 Finally, it is worth noting
that it remains largely unclear how spliceosome mutations
confer a clonal advantage to cancer cells, so it is possible
that metabolic reprogramming by SF3B1MUT has advanta-
geous, and not just detrimental, effects. Future research is
certainly needed to better understand the mechanisms and
consequences of metabolic rewiring by SF3B1 mutations.
Nonetheless, our study provides a novel and therapeutically
relevant connection between two previously unacquainted
processes in molecular and cellular oncology: mutant spliceo-
somes and metabolic reprogramming.
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DLST = dihydrolipoamide S-succinyltransferase. MUT = methylmalonyl-CoA mutase. ABCB7 = ATP binding cassette subfamily B member 7.
PPOX = protoporphyrinogen oxidase.
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