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ABSTRACT
We recently developed and validated a bedside tissue-to-diagnosis pipeline using stimulated Raman
histology (SRH), a label-free optical imaging method, and deep convolutional neural networks (CNN) in
prospective clinical trial. Our CNN learned a hierarchy of interpretable histologic features found in the
most common brain tumors and was able to accurately segment cancerous regions in SRH images.
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Conventional methods for intraoperative tissue diagnosis have
remained largely unchanged for nearly 100 years in surgical
oncology.1 Standard light microscopy is used in combination
with hematoxylin and eosin (H&E) staining to provide image
contrast for interpretation by a clinical pathologist. The con-
ventional method for intraoperative histology is cumbersome,
requiring tissue transport to a remote pathology laboratory,
processing by skilled laboratory technicians, and interpreta-
tion by a board-certified pathologist. Each of these steps is
a potential barrier to providing efficient, reproducible, and
accurate intraoperative cancer diagnosis. Moreover, there is
currently a discrepancy between the number of board-
certified pathologists and the number of medical centers per-
forming cancer surgery.2 In the setting of neurosurgical
oncology, this imbalance is expected to increase in the coming
years, with up to 40% of neuropathology fellowship positions
remaining vacant.3

To augment the existing intraoperative pathology work-
flow and address the contracting workforce, we recently
developed a parallel diagnostic pipeline that combines fiber-
laser-based optical imaging and deep learning to provide
near-real time brain tumor diagnosis.4 Stimulated Raman
histology (SRH) is a label-free, optical imaging method that
provides submicron-resolution images of fresh, unprocessed
biological tissues. SRH uses the intrinsic vibrational properties
of biological macromolecules (e.g., proteins, lipids, nucleic
acids) to generate image contrast.5 We have previously
shown that SRH is able to capture classic diagnostic image
features seen in brain tumors (e.g., microvascular prolifera-
tion in glioblastoma, glandular formation in metastatic ade-
nocarcinoma), in addition to histologic findings not seen in
conventional H&E histology, including myelin-rich axons and
lipid droplets.2 Because SRH requires no tissue processing,
image interpretation is not complicated by freezing and

section artifact that results from conventional processing in
intraoperative H&E histology.

SRH images are natively digital and we had previously
demonstrated that SRH is ideally suited for computer-
augmented diagnostic techniques(refs).2,6 Our previous meth-
ods required manual feature engineering due to limited data
size. Advances in computer vision for classification tasks have
demonstrated that explicit feature engineering can result in
decreased accuracy.7 Therefore, armed with 2.5 million SRH
images, we aimed to train a CNN, composed of a trainable
feature extractor for optimal performance. Human-level accu-
racy has been achieved on simulated diagnostic tasks with
deep neural networks across several clinical domains, includ-
ing ophthalmology,8 radiology,9 and dermatology.10

Our pipeline consisted of three steps: 1) image acquisition, 2)
image processing, and 3) CNN diagnostic prediction (Figure 1).
An unprocessed surgical specimen are passed off the surgical
field and a small sample (e.g., 3 mm3) is compressed into
a customized microscope slide. Images are then acquired at
two Raman shifts, 2,845 cm−1 and 2930 cm−1. Second, a dense
sliding window algorithm is used to generate semi-overlapping,
high-resolution and high-magnification SRH patches to be used
at both training and inference. We implemented and trained the
benchmarked Inception-ResNet-v2 architecture with randomly
initialized weights to classify 13 histologic classes.

To rigorously test the diagnostic performance of our
trained CNN, we performed a multicenter, prospective, non-
inferiority, randomized clinical trial comparing conventional
H&E histology with pathologist interpretation (control arm)
versus SRH with CNN-based interpretation (experimental
arm). A total of 278 patients from three tertiary medical
centers were included in the study. Overall diagnostic accu-
racy was 93.9% in the control arm and 94.6% in the SRH-
CNN arm, demonstrating that our parallel tissue-to-diagnosis
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pipeline was noninferior to the current standard of care.
Additionally, diagnostic errors were mutually exclusive; errors
made by study pathologists in the control arm were correctly
classified by the SRH-CNN pipeline, and vice versa. These
results indicate that two diagnostic pathways are complemen-
tary and the combination of human expertise and artificial
intelligence has the potential to improve intraoperative deci-
sion making in surgical oncology.

We used neuron activation maximization, a method to qua-
litatively evaluate the learned latent representations of deep
neural networks, to improve the interpretability of our trained
CNN. This revealed a hierarchy of SRH feature representations
with increasingly complex cytologic and histoarchitectural
structures being detected in higher-layers of our CNN.
Myelinated axons, high nuclear-cytoplasmic ratios, lipid dro-
plets, pleomorphism, and chromatin organization were differ-
entially detected across brain tumor subtypes. These
demonstrate that our CNN learned the diagnostic importance
of specific histomorphologic, cytologic, and nuclear features
classically used by pathologists to diagnose brain cancer.

Finally, we developed a SRH semantic segmentation method
designed to identify the diagnostic and cancerous regions with
whole-slide SRH images. By using a semi-overlapping, sliding
window method for patch generation, every pixel in an SRH
image has an probability distribution over the diagnostic classes
that is a function of the local overlapping patch-level predic-
tions. A red-green-blue transparency indicating tumor tissue,
normal/non-neoplastic tissue and nondiagnostic regions,
respectively, allows for image overlay of pixel-level CNN pre-
dictions. Our semantic segmentation method achieved a mean
intersection-over-union value of 61.6 ± 28.6 for the ground
truth diagnostic class and 86.0 ± 19.2 for the tumor inference
class, for patients in our prospective study cohort.

In our study, we demonstrated how combining SRH with
deep neural networks can be used to rapidly evaluate fresh

surgical specimens and provide intraoperative brain tumor
diagnosis. Our pipeline provides a validated means of deliver-
ing expert-level intraoperative diagnosis where neuropathol-
ogy resources are scarce, and augmenting diagnostic accuracy
in resource-rich centers. The workflow allows surgeons to
access histologic data in near real-time, enabling more seam-
less use of histology to inform surgical decision-making based
on microscopic evaluation of intraoperative specimens.
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Figure 1. The SRH-CNN pipeline for automated intraoperative brain tumor diagnosis. (1) A patient newly diagnosed with a brain lesion undergoes a brain biopsy or planned
resection. Fresh tissue is loaded directly into a stimulated Raman histology (SRH) imager for image acquisition. Images are acquired at two Raman shifts, 2,845 cm−1 and 2,930
cm−1, and a third image channel is generated via pixel-wise subtraction. Time to acquire a 1 × 1-mm2 SRH image is approximately 2min. (2) A dense sliding window algorithm
generates image patches that are preprocessed to optimize image contrast. (3) Each patch undergoes a feedforward pass through the network. Our inference algorithm is
designed to retain the patches with high probability of being diagnostic, filtering the regions that are normal or nondiagnostic. Patch-level predictions from tumor regions are
then summed and renormalized to generate a patient-level probability distribution over the diagnostic classes. Our pipeline can provide tissue diagnoses in <2.5 min using
a 1 × 1-mm2 image, decreasing time to diagnosis by a factor of 10 compared with conventional intraoperative histology.
MRI, magnetic resonance imaging; H&E, hematoxylin and eosin; CNN, convolutional neural network.
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