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Abstract

There is a critical need for phenotypes with substantial heritability that can be used as 

endophenotypes in behavioral genetic studies. Activity monitoring, called actimetry, has potential 

as a means of assessing sleep and circadian rhythm traits that could serve as endophenotypes 

relevant to a range of psychopathologies. This study examined a range of actimetry traits for 

heritability using a classic twin design. The sample consisted of 195 subjects from 45 

monozygotic (MZ) and 50 dizygotic (DZ) twin pairs aged 16–40 years. Subjects wore both a 

research-grade actimeter (GENEActiv) and a consumer-oriented device (FitBit) for 2 weeks. Sleep 

and circadian traits were extracted from GENEActiv data using PennZzz and ChronoSapiens 

software programs. Sleep statistics for a limited number of FitBit-collected traits were generated 

by its accompanying mobile app. Broad sense heritability was computed on a set of 33 MZ and 38 

DZ twin pairs with complete data using both OpenMX and SOLAR software. These analyses 

yielded a large number of actimetry-derived traits, 20 of which showed high heritability (h2 > 0.6), 

seven of which remain significant after Bonferroni correction. These results indicate that actimetry 

enables assessing a range of phenotypes with substantial heritability that may be useful as 

endophenotypes for genetic studies.

Keywords

actimetry; circadian; endophenotype; heritability; sleep; twin

Correspondence: Philip Gehrman, PhD, Department of Psychiatry, University of Pennsylvania, 3535 Market Street, Suite 670, 
Philadelphia, PA 19104. gehrman@upenn.edu. 

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

HHS Public Access
Author manuscript
Genes Brain Behav. Author manuscript; available in PMC 2020 May 05.

Published in final edited form as:
Genes Brain Behav. 2019 June ; 18(5): e12569. doi:10.1111/gbb.12569.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 | INTRODUCTION

Understanding the genetic basis of psychiatric disorders would significantly improve their 

treatment. With increasing number of participants, genome-wide association studies have 

become very successful in identifying common risk variants.1 However, each individual 

locus or allele identified to date explains only a small proportion of heritability or relatively 

small changes in risk.2,3 These small effects and likely existence of diagnostic subtypes with 

genetic heterogeneity have made it difficult to define specific pathways and molecular 

mechanisms underlying psychiatric disorders, including major depressive and bipolar 

disorders.4,5 For example, there are multiple pathways to reach a state of depression, that 

each may have distinct genetic mechanisms.6 A sample of patients with depression will 

contain individuals with diverse etiologies, making it difficult to find consistent genetic 

associations.

One approach to address genetic heterogeneity is to improve phenotyping. In conventional 

genetic studies, phenotyping usually consists of characterizing clinical symptoms, ideally 

using semi-structured interviews. Self-reports and clinician-assessed phenotypes are often 

confounded by a range of factors including self-report biases, inter-rater variability and a 

focus on only perceived behavioral, cognitive or emotional manifestations of the disorder.7 

An alternate approach is to use objective, quantifiable endophenotypes that mediate between 

susceptibility genes and full clinical expression of the disease.8 Gottesman and Gould 

proposed criteria for defining an endophenotype: (a) an endophenotype is associated with 

illness, in the population; (b) an endophenotype is heritable; (c) an endophenotype is state-

independent; (d) within families, an endopheoptype and illness cosegregate; and (e) an 

endophenotype identified in probands is found in nonaffected family members at a higher 

rate than in the general population.8

The initial expectation was that endophenotypes, such as traits obtained by neuroimaging, 

EEG or performance tasks, would be less complex and more tractable than the disease state.
8,9 While endophenotypes may be useful as quantifiable markers of the disease, they do not 

necessarily exhibit a simpler genetic architecture.10 In terms of the criterion that 

endophenotypes show heritability, earlier studies found that the heritability of 

endophenotypes was not greater than that of diagnostic phenotypes.11 Yet, even without 

showing strong heritability, endophenotypes can provide insight into underlying mechanisms 

and may serve as biomarkers of treatment response.

Actimetry, the measurement of patterns of rest/activity, has been used for several decades as 

an assessment of physical activity and to estimate sleep/wake patterns.12 Wrist-worn activity 

trackers are unobtrusive and can collect quantitative behavioral information over a very long 

time in the participant’s home environment.13 Actimetry also has a number of advantages 

over self-report including reduced influence of cognitive biases, substantially higher 

frequency of data sampling across the day, and no reliance on subjects’ remembering to 

complete daily entries. Actimetry traits have been used to examine the associations between 

sleep and health showing, for example, that total sleep time is associated with obesity in 

older adults.14 Actimetry traits also yield putative endophenotypes that are important 

dimensions of psychopathology because rest/activity and sleep/wake patterns are disturbed 
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in a range of psychiatric disorders, satisfying the first criterion above.15–17 Activity 

monitoring also allows cross-species comparisons, thereby enabling the study of disease-

related traits in model organisms.

In the context of affective disorders, changes in rest/activity and sleep/wake cycles are 

among the most prominent aspects of both manic and depressive episodes.18,19 Several 

groups used actimetry in patients with affective disorders and reported changes in the 

activity levels, not only in the manic and depressive phases, but also in the euthymic state 

when compared with controls.20,21 Pagani and col leagues collected actimetry data from 26 

bipolar disorder pedigrees (558 individuals) and computed 73 different activity-based 

phenotypes.22 Forty-nine of the phenotypes showed substantial heritability and 13 were 

associated with bipolar disorder, with patients having lower activity levels compared with 

euthymic family members. This paper also showed cosegregation of actimetry traits with 

illness, meeting criterion four for an endophenotypes.

We sought to build on this approach by utilizing a classic twin design to assess which 

actimetry traits show high heritability in a population-representative sample (using both 

scientific and commercial devices, GENEActiv and FitBit, respectively) to determine which 

might meet the second criterion for endophenotypes. Twin studies can quantify “broad 

sense” heritability—the degree of genetic influence on a trait as distinct from the effects of 

the shared family environment and unique environment.23 Our results show that a number of 

actimetry traits show high heritability and are therefore candidate traits for use in behavioral 

genetic studies.

2 | MATERIALS AND METHODS

Pairs of monozygotic (MZ) and dizygotic (DZ) twins were recruited through the 

Pennsylvania Longitudinal Study of Parents and Children (PALSPAC) twin registry and 

through advertising in the Philadelphia metropolitan region. The subjects were between 16 

and 40 years old. Subjects were required to have sufficient verbal and reading ability in 

English to be able to sign the consent and respond to interviews and checklist. All 

procedures were approved by the University of Pennsylvania Institutional Review Board and 

all subjects provided written informed consent prior to participation in the study.

Subjects were given wrist actimeters to wear on the nondominant wrist for 2 weeks. All 

subjects in this study wore the GENEActiv device (Activinsights Ltd., Kimbolton, UK). A 

subset of subjects (n = 97) also wore FitBit Charge or FitBit Flex (FitBit Inc; San Francisco, 

California). GENEActiv measures body movements and light exposure. It is a tri-axial 

accelerometer and was set to sample activity at a frequency of 30 Hz. Data were downloaded 

onto a computer and customized GENEActive software was used to aggregate data into two 

files with 1-second and 1-minute epochs as these are the epoch lengths used by the sleep 

scoring algorithms (see below). FitBit devices, worn on the same wrist as GENEActiv, 

collected data that were synchronized via the FitBit app and stored on FitBit servers. The 

FitBit app computes a limited number of traits on sleep and physical activity that were then 

downloaded using the fitabase.com website. During the 2 weeks of actimetry, subjects 

completed daily sleep diaries by answering questions related to their previous night of sleep 
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(wake time, sleep time, number of awakenings, number of hours asleep, along with other 

sleep related variables).24

2.1 | Data processing

Actimetry data were analyzed using two algorithms; PennZzz, an algorithm recently 

developed by our group for scoring sleep in actimetry data and implemented in Python 

(McCloskey et al, submitted; source code available at https://github.com/rjmccloskey/

PennZZZ), and ChronoSapiens (Chronsulting), a comprehensive tool for analyzing 

longitudinal actimetry data.25 The raw acceleration data were transformed into a sum vector 

magnitude (SVM), defined as the sum of acceleration in three dimensions with gravity 

subtracted from the sum of all readings in the designated 1 second epochs. In PennZzz, 

tempovascillatory activity (TVA) was computed by finding the SVM-variance within a 2 

minutes moving window. The algorithm utilizes the TVA to categorize each 1-second epoch 

as wake, light sleep, intermediate sleep or deep sleep. In parallel, homothermic states were 

computed based on computing variance (oscillations) of absolute temperature in a 3 minutes 

moving window, and temperature below 24°centigrade was considered as nonwear period. 

The algorithm produced a set of parameters, which fall into four categories: (a) sleep during 

rest episodes, (b) activity during rest episodes (c) activity during awake and (d) overall 

activity level. While there are a large number of computed variables, the goal was to cast a 

wide net in order to identify potentially novel variables that might have utility as 

endophenotypes.

While the PennZzz program was used to compute sleep and activity statistics, phase analysis 

of the data was conducted using the ChronoSapiens program (Figure 1).25 This function in 

ChronoSapiens is based on the traditional approach of fitting a cosine curve to actimetry 

data.26 ChronoSapiens models both first and second harmonic fits. In addition, the fit-

models’ parameters can be computed on moving averages allowing sensitive detections of 

changes over time and different conditions. Here, we chose a static cosinor fit for each 24-

hour day. The model parameters are used to compute the center of gravity (CoG) for activity 

(see Figure 1). The parameters generated by ChronoSapiens provide a range of indicators of 

activity’s timing (represented by the CoG phase for the 1H-fit and by the phases of the 

potentially two maxima and minima for the 2H-fit) and activity’s amplitude (represented by 

the max value of the CoG for the 1H-fit or the range of oscillation, RoO = Max − Min for 

the 2H-fit). Additional parameters are the Munich Rhythmicity Index (MRI), which 

quantifies the extent of rhythmicity in the time series by taking both the fit’s goodness and 

amplitude into account27—a high MRI indicates rhythms that are close to 24 hours and high 

in amplitude; finally, the alpha/rho ratio (Figure 1A,B), which was originally developed to 

reflect the relative durations of activity (alpha) and rest (rho) within a day. We use it here 

based on the time when activity values are above vs the time they are below the daily mean.

We have also imported 1-minute epoch aggregated data from GENEActiv into “nparACT” 

package for R Core Team28,29 to compute five additional measures not available in PennZzz 

and ChronoSapiens. These include the interdaily stability, intradaily variability and relative 

amplitude (RA) of activity and gives the start times and average activity values of M10 (ie, 
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the 10 hours with maximal activity) and L5 (ie, the 5 hours with least activity). The formula 

for the computation of RA is:

RA = M10 − L5
M10 + L5

Finally, statistics from the FitBit devices were downloaded through the Fitabase website 

(https://www.fitabase.com/) and consisted of the following variables: sleep efficiency, 

minutes after wakeup, minutes asleep, time in bed, awake duration, restless count and 

restless duration. The definition of each of these variables and the formulas for their 

computation are not provided by FitBit so their exact meaning is unknown.

For the sleep diaries, the overall mean of each variable was computed. The mean total sleep 

time from the sleep diary was then compared with that computed from the PennZzz 

algorithm and from the FitBit using Pearson correlations. This comparison was only made 

for total sleep time as it was the primary parameter available across all three methods.

2.2 | Data analysis

Descriptive statistics for each of the actimetry variables were computed. Plots were created 

to display the distributions of each trait separately for all MZ and all DZ twins in order to 

visually compare their means and variances. We examined outliers to determine if there 

were errors in data entry or in computations but all observations were found to be valid and 

were retained in the analyses. Given the large number of variables computed by the PennZzz 

program, the correlations among the variables were computed to better understand how the 

parameters related to each other. Next, the Broad sense heritability of each of the statistics 

was computed using the open-access program OpenMX (http://openmx.ssri.psu.edu/). We 

estimated heritability using the basic ACE model where ACE stands for(A) Additive genetic 

variance, (C) Shared environmental variance from environmental influence shared by family 

members and (E) Residual variance from environmental influence that are not shared by 

family members. The program subsequently employs maximum likelihood modeling 

procedures to determine what combination of A, C and E best fits the observed data. The 

models were conducted under the default settings that assume a common mean and variance 

between zygosity groups.

The heritability of each of the statistics was further verified using Sequential Oligogenic 

Linkage Analysis Routines (SOLAR) (Almasy and Blangero, 1998). The SOLAR software 

package https://helix.nih.gov/Documentation/solar-6.6.2-doc/03.chapter.html provides 

extensive capabilities for analyzing heritability and has been widely used in family and twin 

studies. We used SOLAR to estimate heritability of traits by creating a pedigree structure of 

MZ and DZ twin families, and we considered three possible covariates, sex, age and body 

mass index (BMI), given their known influence on sleep/wake and circadian traits.30–33 The 

SOLAR “polygenic” command performs a variance component analysis to determine broad 

sense heritability.

2.2.1 | Data availability—We deposited accelerometry files to the NIMH Data Archive.
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3 | RESULTS

Complete data were available from 190 subjects from 45 MZ and 50 DZ twin pairs. 

Descriptive statistics for the sample are provided in Table 1. Data for one MZ twin pair were 

excluded because they were outliers on multiple phenotypes, drawing into question the 

validity of their data. Additionally, subjects were required to have seven or more days of 

complete actigraphy data on twin pairs (both siblings) to be included in analyses (see 

supplemental Figure S1), resulting in 65 pairs of twins (33 MZ and 38 DZ).

Descriptive statistics for the parameters derived for the GENEActiv (analyzed by PennZzz, 

ChronoSapiens and traits computed by the nparACT package) and FitBit devices are 

provided in Tables 2–5. Given the large number of PennZzz statistics, we examined the 

distributions for each parameter (Supplemental Figure S2A) and the correlations among the 

parameters to better understand the extent to which they captured unique information 

(Supplemental Figure S2B). Generally, correlations were high among parameters that fell 

within the same category. For example, parameters describing aspects of activity levels 

during rest episodes were all highly correlated with each other (both positively and 

negatively, for example, number and mean duration of sleep episodes). This suggests that 

many of the parameters are not contributing much unique information relative to other 

related parameters and that it should be possible to reduce the number of parameters to a 

minimal set that captures the same amount of information.

Distributions of ChronoSapiens traits and their inter-correlations are shown in Supplemental 

Figures S3A and S3B. The correlations among parameters were much lower in magnitude 

compared to the PennZzz variables, indicating that they each capture unique aspects of 

rhythmicity and should be retained in future studies. Distributions of rest-activity measures 

from nparACT are shown in Figure S4. Plots of the distributions of each trait separated by 

their MZ or DZ status are shown in Figures S5A–S5C.

For almost all parameters an AE model provided the best fit. The only exceptions to this 

pattern were intermediate sleep, primary max value, primary mas phase and center of gravity 

max phase, for which an ACE model provided a better fit. For intermediate sleep, C was 

equal to A in magnitude but for the other variables C ws much less than A.

Ten traits among the 29 PennZzz variables showed high heritability (using a threshold of h2 

> 0.6; Tables 6 and S1; Figure 2; SOLAR results are in Figure S6). High heritability was 

seen for the number of minutes of active wake, number of sleep episodes, number of wake 

episodes, overall mean activity, overall variance in activity, mean activity during wake, 

variance of activity during wake, number of sleep episodes during the main sleep period, 

number of wake episodes during the main sleep period, total time in homothermic state and 

total time in homothermic state during wake. Variables related to the number of sleep or 

wake episodes were highly correlated with each other, as were those related to homothermic 

state. Heritability estimates for parameters from ChronoSapiens, nparACT and FitBit are 

shown in Figures 3–5 (SOLAR results are in Figures S7–S9 for ChronoSapiens, nparACT 

and FitBit, respectively). For ChronoSapiens, six of the traits showed high heritability: CoG 

phase, Primary max value, Primary offset, Primary min phase, RoO and MRI (see Table 2 
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for variable definitions). Only one variable from nparACT showed high heritability, the 10 

period with maximal activity. The heritability of FitBit statistics were moderate-to-high, 

with 5 out of 10 variables showing heritability >0.6.

The mean total sleep time derived from each method was 442.5 minutes for the sleep diary, 

469.1 minutes for the PennZzz analysis of the GENEActiv, and 427.9 minutes for the FitBit. 

Sleep diary total sleep time was significantly correlated with that from GENEActiv (r = 

0.41, P = 0.0001) and FitBit (r = 0.39, P = 0.0004) but the actimetry methods were not 

correlated with each other (r = 0.003, P = 0.987).

4 | DISCUSSION

The goal of this study was to identify actimetry traits as potential endophenotypes for 

behavioral genetic studies. A large number of parameters were generated using software to 

compute statistics on sleep and activity (PennZzz) and phase analysis (ChronoSapiens and 

nparACT) from a research grade actimeter. A limited set of sleep traits were collected with 

FitBit, a widely used consumer-oriented device. By examining a large number of 

parameters, we identified several traits with high heritability using a classical twin design. 

The high heritability of these traits suggest that they may be appropriate for use in 

behavioral genetic studies.

The traits with the highest heritability estimates covered a number of different sleep and 

rhythmicity features. For PennZzz, these traits included measures of variability in activity, 

fragmentation of sleep and wake and time spent in periods of stable temperature. Several 

traits related to measures of phase and range of oscillation emerged from ChronoSapiens. It 

is noteworthy that phase of activity and rest was more dominant than activity levels. Phase 

relates to temporal behavior, which is controlled to a large extent by the circadian clock. The 

dominance of phase in heritability of complex behavior was to be expected because the 

circadian system is known for its strong genetic basis. Only one trait from nparACT was 

highly heritable. The FitBit traits with the strongest heritability were related primarily to 

periods of restless sleep, although overall sleep efficiency was also prominent. This shows 

that a wide range of sleep and rhythmicity traits are strongly influenced by genetic factors. 

These traits represent a range of characteristics of activity. Parameters describing overall 

levels of activity or sleep were less likely to stand out compared with traits related to 

variability and sleep quality (eg, fragmentation and restless sleep). Of note, estimates of 

heritability are limited by measurement error and, consequently, the phenotypes with higher 

heritabilities may be those that are more reliably measured.

The sleep diaries and actimetry methods were compared in their estimates of mean total 

sleep time. While the estimates were generally in the same ballpark, there were still 

substantial differences with the estimates from GENEActiv and FitBit differing by 33.1 

minutes. It is noteworthy that the actimetry methods were more highly correlated with the 

sleep diary estimate than they were with each other. This suggests that the actimetry 

methods may not be directly comparable although it is not clear whether this is because of 

differences in hardware or scoring algorithms.
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Most prior actimetry studies relied on a small number of standard sleep/wake or circadian 

statistics. The study by Pagani and colleagues22 was unique in its comprehensive assessment 

of a wider range of traits, however, they limited their analyses to previously reported 

statistics. While future studies are needed to determine the utility of the parameters in this 

study, the heritability analyses provide initial support of biological plausibility for a number 

of them.

The twin design provides a solid framework for estimating heritability that has advantages 

over the family design used previously.22 The twins in the current study were not selected 

with regard to any biomedical phenotype and are generally healthy individuals, whereas the 

families studied by Pagani were selected for a high density of individuals with bipolar 

disorder. Thus the present study shows that actimetry traits are heritable beyond the context 

of bipolar disorder, supporting its use as a general endophenotype. Estimation of heritability 

through twin and family studies relies on different assumptions regarding shared 

environment. As such, it is valuable to compare heritabilities estimated via the two methods. 

Unless shared environment is specifically modeled, family studies have an implicit 

assumption that correlations among family members are due only to the additive effect of 

genes. Studies of nuclear families, where all pairs of individuals have equal genetic sharing 

and potentially similar environmental sharing, may have inflated estimates of heritability 

because of confounding with shared environment. Twin studies account for shared 

environment but implicitly assume that environmental sharing is equivalent for MZ and DZ 

pairs. Another consideration is the estimation of narrow sense heritability in family studies 

vs broad sense heritability in twin studies. Thus, to the extent that heritabilities are higher in 

family studies than twin studies we might posit effects of shared environment and to the 

extent that they are higher in twins than in families we might posit non-additive genetic 

components. It should also be noted that heritability is population-specific. Thus the present 

study also has value in that it focuses on a different population from the previously 

published Pagani study.

The large quantity of parameters generated in this study, while a strength, is also a weakness 

in that heritability was computed for a large number of traits and may have led to an inflated 

Type I error rate. However, if a Bonferroni Type I error correction had been applied seven of 

the traits would have survived multiple testing. The novel statistics computed are also as yet 

unproven for utility and relevance. However, this reflects the exploratory nature of this study. 

We plan to further examine and refine this list of candidate endophenotypes in subsequent 

studies. Data loss was also a limitation of this study, with quite a few sets of twins not 

having useable data for the GENEActiv, FitBit or both. There was also variability in the 

amount of data subjects provided, with some wearing the devices for only one of the 2 

weeks, which could add variability across subjects in the robustness of parameter estimates. 

We did not observe any sex differences, nor were there considerable effects of other 

covariates (age, BMI), which may reflect the relative homogeneity of the sample. These 

results will need to be examined in more diverse samples in the future.

In summary, our results show the usefulness of actimetry for behavioral genetic research. 

They provide the means to collect objective, high-frequency data unobtrusively to generate 

statistics with substantial heritability, satisfying one of the proposed criteria for 
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endophenotypes. Actimetry can be used in large samples, as has been showed in the UK 

Biobank, which collected 1 week recordings in >100 000 subjects.34 Future studies will 

need to build on these results to determine which traits are of the most value and satisfy 

other endophenotype criteria and then include them in genetic studies in order understand 

their underlying biology. The results of genetic studies will be particularly informative as to 

whether these endophenotypes do indeed have simpler genetic architecture as opposed to 

clinical symptoms or syndromes. It will also be important to examine these traits 

longitudinally given the known developmental changes that occur in sleep. Speficially, a set 

of different actimetry traits may be more or less useful at certain stages of development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
A, Sample figure of14 days actimetry data from a twin with fitted curve from 

ChronoSapiens. The activity level is indicated in brown picks. Red squares on the top 

indicate when the watch was off-wrist. B, Parameters generated by ChronoSapiens
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FIGURE 2. 
Heritability of PennZzz-detected traits computed in OpenMX by using covariates age and 

body mass index
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FIGURE 3. 
Heritability of ChronoSapiens-detected traits computed in OpenMX by using covariates age 

and body mass index
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FIGURE 4. 
Heritability of rest-activity measures from nparACT computed in OpenMX by using 

covariates age and body mass index
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FIGURE 5. 
Heritability of FitBit traits computed in OpenMX by using covariates age and body mass 

index
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TABLE 1

Descriptive statistics for the sample overall and by zygosity

Overall MZ DZ

Age 21.7 (4.6) 21.2 (3.9) 22.2 (5.1)

BMI 24.3 (5.3) 23.5 (4.9) 25.2 (5.6)

Sex (% female) 53.8% 55.1% 52.6

Ethnicity

 Hispanic 5.0% 8.1% 2.1%

 Non-Hispanic 95.0% 92.0% 97.9%

Race/ethnicity

 White 90.9% 92.0% 87.8%

 African American 3.2% 0.0% 6.1%

 Asian 5.9% 5.6% 6.1%

Education

 0–4 years 1.1% 0.0% 2.0%

 5–8 years 0.0% 0.0% 0.0%

 Some high school 11.8% 14.8% 9.1%

 Completed high school or G.E.D. 17.7% 14.8% 20.2%

 Business or trade school 0.5% 0.0% 1.0%

 1–3 years college 40.6% 50.0% 32.3%

 Completed college 14.4% 10.2% 18.2%

 Post-graduate college 13.9% 10.2% 17.2%

Employment status

 Working, full time 18.7% 12.5% 24.2%

 Working, part time 19.3% 25.0% 14.1%

 Not currently employed 3.2% 3.4% 3.0%

 Student 56.7% 55.7% 57.6%

 Retired 0.0% 0.0% 0.0%

 Disabled 0.0% 0.0% 0.0%

 Other 2.1% 3.4% 1.0%
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TABLE 2

Descriptive statistics for GENEActiv parameters derived from the PennZzz algorithm

GENEActiv traits SD Mean Median Range

Minutes of active wake (MAW) 961.44 970.345 1067.07 279.26

Minutes of quiet wake (mQW) 26.24 78.98 74.67 159.82

Minutes of total wake (TW) 55.39 1040.43 1048.05 339.15

Minutes of intermediate sleep 23.9 120.03 120.76 137.64

Minutes of light sleep (mLS) 45.79 392.97 386.44 233.35

Minutes of deep sleep (mDS) 23.35 69.88 67.8 119.655

Minutes of total sleep (mTS) 61.72 582.53 578.71 280.53

Wake after sleep onset (WASO) in minutes 22.2 138.25 137.02 109.95

Rest episodes duration in hours (REDhrs) 0.871 8.69 8.65 5.15

Sleep efficiency (SE) % 0.034 0.73 0.74 0.17

Mean activity during main rest episode 0.187 0.66 0.62 0.95

Number of sleep episodes 10.14 48.54 48.73 53.37

Mean duration of sleep episodes in minutes 2.405 10.86 10.66 12.47

Number of wake episodes 10.252 48.05 48.25 53.77

Mean duration of wake episodes in minutes 4.046 17.01 16.5 18.37

Sleep during rest episode hours 0.72 6.38 6.38 3.74

Median activity during rest episodes 0.206 0.47 0.39 0.86

Mean variance of activity during main rest episode 0.723 1.25 1.09 4.97

Mean activity during wake 0.49 2.08 2 2.21

Median activity during wake 0.277 0.842 0.81 1.48

Variance of activity during wake 8.73 12.61 9.125 40.28

Number of sleep episodes during main sleep 7.457 30.09 30.24 33.6

Mean duration of sleep episodes during main sleep in minutes 4.07 14.29 13.525 18.66

Number of wake episodes during main sleep 7.477 30.09 30.32 33.6

Mean duration of wake episodes during main sleep in minutes 0.576 3.842 3.71 3.74

Total time in homothermic state in hours 0.47 1.09 1.09 3.38

Total time in homothermic state during wake in hours 0.341 0.65 0.62 2.34

Total time in homothermic state during sleep in hours 0.183 0.671 0.67 1.15
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TABLE 3

Descriptive statistics for GENEActiv parameters derived from ChronoSapiens software

ChronoSapiens_traits SD Mean Median Range

Maximum value of the fitted first harmonic (CoG_MAX-value) 0.14 1.69 1.69 1.95

Timing of the peak of the fitted first harmonic (CoG_MAX-phase) 1.72 15.7 15.7 9.60

Maximum value of the fitted second harmonic (Prim MAX-value) 0.26 1.95 1.69 1.64

Timing of the peak of the fitted second harmonic (Prim MAX-phase) 2.05 −8.31 −8.3 11.30

Time of the primary downward zero transition of the fitted second harmonic (Prim Offset) 1.76 −2.79 −2.85 11.3

Minimum value of the fitted second harmonic (Prim MIN-value) 14.28 9.48 3.7 94.23

Timing of the nadir of the fitted second harmonic (Prim MIN-phase) 2.63 3.59
48.05

3.70
48.25

30.20
53.77

Range of Oscilation (RoO) 83.37 165.68 143.56 519.26

Munich Rhythmicity Index (MRI) 43.53 71.5 61.81 302.71

Alpha_Rho 0.16 1.05 1.02 0.78
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TABLE 4

Descriptive statistics for rest-activity measures from nparACT

Rest-activity traits Mean SD Median Range

Interdaily stability 0.22 0.19 0.11 0.68

Intradaily variability 0.87 0.83 0.28 1.35

Relative amplitude 0.54 0.55 0.13 0.67

L5 (5 hours with minimal activity) 31.4 28.42 12.27 86.14

M10 (10 hours with maximal activity) 108.54 99.18 50.12 425.86
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TABLE 5

Descriptive statistics for FitBit variables

FitBit traits SD Mean Median Range

Sleep duration (min) 40.84 457.72 456.71 268.4

Sleep efficiency 2.26 93.94 94.27 10.57

Minutes after wakeup 0.77 0.95 0.772 4.28

Minutes asleep 36.86 427.89 426.43 212.68

Minutes to fall asleep 3.505 0.79 0 27.75

Awake count 1.47 1.53 1.26 12.29

Awake duration 3.40 3.49 2.69 26.39

Restless count 5.38 13.23 12.65 25.33

Restless duration 12.24 25.32 23.77 73.28
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