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Abstract
In previous work, we studied the activity of neurons in the dorsolateral (PFdl), orbital (PFo), and polar (PFp) prefrontal cortex
while monkeys performed a strategy task with 2 spatial goals. A cue instructed 1 of 2 strategies in each trial: stay with
the previous goal or shift to the alternative goal. Each trial started with a fixation period, followed by a cue. Subsequently,
a delay period was followed by a “go” signal that instructed the monkeys to choose one goal. After each choice, feedback
was provided. In this study, we focused on the temporal receptive fields of the neurons, as measured by the decay in
autocorrelation (time constant) during the fixation period, and examined the relationship with response and strategy
coding. The temporal receptive field in PFdl correlated with the response-related but not with the strategy-related
modulation in the delay and the feedback periods: neurons with longer time constants in PFdl tended to show stronger
and more prolonged response coding. No such correlation was found in PFp or PFo. These findings demonstrate that the
temporal specialization of neurons for temporally extended computations is predictive of response coding, and neurons
in PFdl, but not PFp or PFo, develop such predictive properties.

Key words: frontal lobe, frontal pole, intrinsic timescales, strategy, working memory

Introduction
Neurons in various cortical areas differ with regard to their
task-related firing activities and the temporal stability of their
firing rates (Ogawa and Komatsu 2010; Murray et al. 2014). Such
temporal stability can be defined as the ability of a neuron to
sustain its firing rate over time. It can be quantified as the
decay constant of the spike-count autocorrelation and can be

considered the neuronal temporal receptive field of integration.
For example, Ogawa and Komatsu (2010) reported higher tem-
poral stability in the baseline activity of neurons in the frontal
eye field (FEF) than in the visual area 4 (V4), consistent with the
finding that neurons in the FEF (Bruce and Goldberg 1985;
Chafee and Goldman-Rakic 2000) but not V4 (Bisley et al. 2004)
sustain their activity in the absence of visual stimulation.
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Similarly, Murray et al. (2014) compared a wide range of cortical
areas and showed that the prefrontal cortex (PF) has the lon-
gest timescale, followed by the posterior parietal cortex and
somatosensory cortex. Based on these data, it has been pro-
posed that the temporal receptive field can be regarded as an
organizing principle of the primate cortex (Chen et al. 2015),
analogous to the spatial receptive field in the visual cortical
hierarchy (Lennie 1998).

Heterogeneity in baseline firing rate stabilities has been
observed across areas and within the same cortical area for
various functional classes of neurons. Specifically, Nishida
et al. (2014) reported that the temporal stability of the baseline
activity of neurons in the lateral intraparietal area (LIP) corre-
lates with their persistent firing activity during a delay period.
Thus, temporal stability appears to reflect the function of corti-
cal neurons, that is, neurons with fast but reliable computa-
tions can capture fast changing stimuli, whereas those that
experience slow integration and maintenance of information
must rely on long timescales.

Consistent with this model, Cavanagh et al. (2016) reported
that the temporal receptive field of neurons in the orbital PF
(PFo) is related to the coding strength of the choice value.
Notably, they did not observe such a relationship in the dorso-
lateral PF (PFdl), notwithstanding its importance in the genera-
tion and maintenance of selective activity (Badre and
D’Esposito 2009), for working memory of various domains
(Funahashi et al. 1989; Brody et al. 2003; Genovesio et al. 2009,
2011; Merchant et al. 2011; Eiselt and Nieder 2016) and for
decision-making processes (Kim and Shadlen 1999; Seo et al.
2007). Thus, the persistent activity in PFdl, which is associated
with the reverberation of activity that is mediated by NMDA
receptors (Wang 2001; Wang et al. 2013), does not appear to rely
on the intrinsic ability of the neurons to sustain activity. One
alternative interpretation is that the functional neuronal
temporal specialization that is determined by the intrinsic
properties of self-sustained activity is not needed for all com-
putations in the PF—only for specific functions in each area,
such as working memory and response-related processes in
PFdl and value computations in PFo. To test this hypothesis, we

analyzed data that were recorded in a visually cued strategy
task from the polar PF (PFp), PFdl, and PFo (Tsujimoto et al.
2010, 2011a,b, 2012). We have reported that response-related
spatial signals appear after presentation of the cue in PFdl,
whereas they emerge only after the response in PFo and PFp
(Tsujimoto et al. 2010, 2012). In this study, we tested whether
long intrinsic timescales are associated with stronger and more
prolonged coding in the 3 areas of the PF.

Materials and Methods
Subjects

Two male rhesus monkeys (Macaca mulatta), 10–11 kg in weight,
were operantly conditioned to perform a visually cued strategy
task before the beginning of the recordings. During the task,
each monkey sat in a primate chair, with its head stabilized
and oriented toward a video monitor 32 cm away. An infrared
oculometer (Arrington Research, Inc., Scottsdale, AZ) recorded
their eye positions. All procedures conformed to the Guide for
the Care and Use of Laboratory Animals and were approved by
the National Institute of Mental Health Animal Care and Use
Committee.

Behavioral Task

Figure 1A shows a schematic of the visually cued strategy task
(Tsujimoto et al. 2010, 2011a, 2012). In each trial, the monkey
had to choose 1 of 2 targets by making a saccade toward it,
according to a shift or stay strategy cue (Fig. 1B). Each trial
began with the appearance of a fixation point (a 0.6° filled white
circle) located at the center of the video screen, with 2 periph-
eral targets (2.0° unfilled white squares) placed 11.6° to the left
and right of the fixation point. After the monkeys attained and
maintained fixation on the central spot for 1.5 s, a cue period of
0.5 s followed. During the cue period, a visual cue appeared at
the fixation point. In each trial, 1 cue was selected pseudoran-
domly from a set of 4: a vertical (light gray) or horizontal rect-
angle with the same dimensions (1.0° × 4.9°) and brightness or
a yellow or purple square with the same size (2.0° × 2.0°)

Figure 1. Behavioral task, cues, and recording sites. (A) Sequence of task events for the visually cued strategy task, temporally ordered from left to right. Each dark

gray rectangle represents the video screen as viewed by the monkey. Dashed lines indicate the target of the monkey’s gaze. (B) Strategy cues presented to the mon-

key. Each colored shape instructed the strategy to be applied. (C–E) Recording zones for PFp (C), PFdl (D), and PFo (E). Fb, feedback; LOS, lateral orbital sulcus; MOS,

medial orbital sulcus; PS, principal sulcus; AS, arcuate sulcus.
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(Fig. 1B). The vertical rectangle and the yellow square
instructed a “stay” strategy. The “stay” strategy required the
monkeys to make a saccade to the same target that was chosen
in the previous trial. Conversely, the horizontal rectangle and
the purple square required a “shift” strategy, wherein the mon-
keys had to make a saccade toward the target that was not
selected in the previous trial. The number of alternative visual
cues and responses (left or right) were approximately equal in
each experimental session. An intertrial interval of 1 s sepa-
rated the end of one trial from the beginning of the next one.

The monkeys were required to fixate on the central point
during the fixation period and the cue period (0.5 s) as well as
during a subsequent delay of 1.0, 1.25, or 1.5 s, pseudorandomly
selected. The fixation window was a ±3° square area that was
centered on the fixation point. Both monkeys maintained fixa-
tion more accurately than required and rarely made a saccade
within the fixation window (Tsujimoto et al. 2009). Fixation
breaks during the cue or delay periods led to abortion of the
trial. During the delay period that followed the cue, the fixation
spot and the 2 peripheral targets were kept on the screen. The
disappearance of the fixation spot constituted a “go” signal that
instructed the monkeys to make a saccadic eye movement
toward 1 of the 2 targets. When the monkeys fixated on one of
the targets (±3.75°), both squares were filled in and became
solid white. Entry of gaze into the response window was
labeled “target acquisition.” The monkeys had to fixate on the
target for 0.5 s (prefeedback period). Fixation breaks during the
prefeedback period led to abortion of the trial. After the pre-
feedback period, feedback was provided as a reward (a 0.2-ml
drop of fluid) in the case of correct responses or as red squares
over both targets for incorrect responses. In the case of an
error, the same cue was presented again in a “correction trial.”
Correction trials were presented until the monkey responded
correctly. Usually, the monkeys did not require more than one
correction trial after making an error (Tsujimoto et al. 2009).

Data Collection

Once the monkeys completed the training phase, we implanted
a recording chamber (10.65-mm inner diameter) over the
exposed dura mater of PFp in the right hemisphere; the activity
was recorded from this chamber. The detailed procedures for
PFp, including the chamber design, and the surgical and record-
ing techniques have been previously described (Mitz et al.
2009). Once data collection from PFp was completed, we
implanted another chamber (18-mm inner diameter) over a
more caudal part of the frontal lobe in the same hemisphere.
The position and angle of this chamber were adjusted, based
on magnetic resonance images, allowing us to access PFdl and
PFo simultaneously through the same chamber (Tsujimoto
et al. 2009). Up to 16 platinum–iridium electrodes (0.5–1.5MΩ at
1 KHz; Thomas Recording, Giessen, Germany) recorded the
single-cell activity simultaneously. The electrodes were
inserted individually using a multielectrode drive (Thomas
Recording), enabling independent control of each electrode.

In typical recording sessions for the caudal chamber,
approximately half of the electrodes were introduced into
PFo, whereas the others were maintained more superficially
in PFdl. A multichannel acquisition processor (Plexon, Dallas,
TX) was used to record the signals from each electrode. We
used a cluster cutting technique (Off Line Sorter, Plexon) to
isolate single-cell potentials online and sort them offline.
Spike sorting was performed based on several criteria, such
as principal component analysis (PCA), minimum interspike

intervals, and close visual inspection of the entire waveform
for each cell.

Histology

The recording sites were reconstructed by histological analy-
sis, complemented by structural MRI. After the data collec-
tion was completed, electrolytic lesions (20 μA for 20 s, anodal
current) were placed in selected locations at 2 depths per
penetration in the caudal chamber. After 10 days, the mon-
key was deeply anesthetized and then perfused through the
heart with 10% (v/v) formol saline. Immediately before and
during the perfusion, we inserted a pin through the center of
the rostral and caudal chambers. The penetration sites and
tracks were reconstructed in Nissl-strained sections, refer-
enced to the recovered electrolytic lesions and the marking
pins that were inserted at the time of the perfusion. By
cytoarchitectonic analysis, we verified that the recording
sites in PFo originated from granular areas. The locations of
recording sites have been illustrated elsewhere (Fig. 1C–E)
(Tsujimoto et al. 2010, 2011a).

Data Analysis

We analyzed the activity of neurons in PFdl, PFo, and PFp
(Tsujimoto et al. 2012; Tsujimoto and Genovesio 2017).
Correction and error trials were discarded from all analyses.
The task periods in the analyses were defined according to the
task events: the fixation period (0.0–1.0 s after fixation onset),
cue period (0.0–0.5 s after cue onset), early–delay period
(0.0–0.5 s after cue offset), late–delay period (0.5–1.0 s after cue
offset), and feedback period. The feedback period was con-
sidered the interval from 0.3 s before feedback onset to 0.2 s
afterward (Tsujimoto et al. 2012). Only neurons that satisfied
the following requirements were analyzed (Ogawa and
Komatsu 2010; Murray et al. 2014):

( )

1. at least 20 completed trials;

2. at least 1 Hz of mean activity during the fixation period;

3. each 50-ms time bin during fixation with nonzero mean activity.

1

The analyses were performed using MatLab (The
MathWorks, Inc., Natick, MA, USA).

Autocorrelation Structure During Fixation Period

To assess the spike-count autocorrelation, we subdivided the
fixation period of each trial into time bins of 50ms. The results
were similar if we applied a change of ±20% on the 50-ms bin
length. For each neuron, the spike-count autocorrelation across
trials between time bins i and j (i, j integer numbers), separated
by a time lag that was equal to |i − j| × Δ (Δ = 50ms), was calcu-
lated using Pearson’s correlation coefficient, ρ (Murray et al.
2014):

ρ
Ν Ν Ν

=
( ( ) ( ))

( ( )) × ( ( ))
=

〈( ( ) − ( ))( ( ) − ( ))〉
( ( )) × ( ( ))

( )
Cov N i N j

Var N i Var N j

i i N j j

Var N i Var N j

,
, 2

where, N(i) and N(j) are the spike-counts in the i and j time bins,
respectively, and ( )N i and ( )N j are the mean spike-counts
across trials for the same time bins. The covariance (Cov) and
variance (Var) were computed across trials for the i and j bins.
The coefficient ρ was calculated using all pair-combinations of
bins at various time lags. To study the autocorrelation structure
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at the population level for each brain area, the coefficient ρ was
averaged across neurons for each time lag. The autocorrelation
decay, as a function of time lag, was fitted to the population of
neurons within each area using an exponential function
(Murray et al. 2014), defined as follows:

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ρ

τ
( Δ) = − Δ + ( )k A

k
Bexp , 3

where, kΔ refers to the time lag between i and j bins (k = |i − j|,
k = 1, 2 … 19), ρ is the Pearson’s correlation coefficient at time
lag Δk , A is the amplitude, τ is the intrinsic timescale (decay
constant), and B is the offset value that reflects the contribution
of long timescales (much longer than our 1-s time window)
(Murray et al. 2014). The same fit procedure was applied to
single-neuron autocorrelation decay to assign the intrinsic
timescales τ that were obtained from Equation (3) to each cell.
This single-neuron analysis reduced further the population of
neurons because neurons that did not satisfy the criteria listed
in (1) and the following restrictions in their autocorrelation
structure were excluded from further analyses:

–

(τ) ( )

1. decline in auto correlation within 150 250 ms
of time lag after fixation onset;

2. intrinsic timescale larger than 0 ms. 4

The first requirement followed some considerations on the
autocorrelation structure of the neurons as a function of the
time lag. Indeed, we observed that neurons showed a maxi-
mum value of their autocorrelation values in the range
between 50 and 150ms time lag after fixation onset. To accom-
modate this feature, the fitting procedure started at that time
lag within the first 150ms time lags (i.e., 50, 100, or 150ms)
after which the autocorrelation value decreased. Once the max-
imum value has been reached, in order to ensure that the expo-
nential fitting curve from Equation 3 described as best as
possible the descent ramp of the autocorrelation structure, we
required no further increasing in the autocorrelation values at
least between 150 and 250ms time lags. This ensured that the
exponential fitting curve was applied to decreasing values of
the autocorrelation—at least in the first time lags just after the
autocorrelation maximum-value—and leading then to a better
estimation of the decay constant.

Concerning the second requirement, a negative or 0 ms
value for τ is meaningless. Moreover, after visual inspection,
neurons that were poorly fit by the exponential function were
discarded (Cavanagh et al. 2016). More precisely, by visual
inspection, we removed a neuron from further analyses if at
least one of the 4 following dynamics was observed: (1) the
autocorrelation values showed an oscillatory behavior as time
lags increased; (2) the autocorrelation values did not decay as
time lags increased; (3) the autocorrelation values were more
linearly decreasing rather than exponentially; and (4) more
than 40% of autocorrelation values (∼8/19 autocorrelation val-
ues) had the fitting curve outside their error bars. The last
requirement implied at least 11/19 autocorrelation values for
which the fitting curve was within the error bars. This was
done to have a trade-off between the willingness to keep the
highest number of neurons and in parallel to guarantee a good
fit result for each of them. After applying this requirement, we
found that our working point was at 80% of the efficiency (i.e.,
the number of accepted neurons out of the number of total
neurons).

Correlation Analysis Between Strength of Neuronal
Selectivity and Intrinsic Timescale

Neuronal selectivity indicates the ability of a neuron to
encode a signal. In particular, the difference in spike activity
between a preferred and anti-preferred condition can be used
as a measure of neuronal selectivity (Tsujimoto et al. 2012).
Preferred and anti-preferred conditions indicate the condi-
tion for which a neuron shows the highest and the lowest
activity, respectively.

To quantify the strength of the selectivity for the spatial
response (right or left) and strategy (stay or shift), we per-
formed a receiver operating characteristic (ROC) analysis,
which quantifies how strongly a neuron encodes a variable
(Dayan and Abbott 2005). The ROC values were defined as the
area under the ROC curve. The ROC values range from 0 to 1,
where 0 and 1 indicate the maximum selectivity for the
opposing preferences. The normalized values of ROC were
computed with respect to the preferred condition—that is,
highest activity—and range from 0.5 (no selectivity) to 1 (max-
imum selectivity).

We performed ROC analysis for a 0.5 s fixed time window
using the task periods in which the ROC value of the population
exceeded chance values for strategy or response, as reported by
Tsujimoto et al. (2012) (see Results). That is, in PFdl, we con-
sidered the cue, early–delay, late–delay, and feedback periods
for the response signal, and the cue and the early–delay periods
for the strategy signal; in PFo, we considered the feedback
period for the response signal and the cue, early–delay, late–
delay, and feedback periods for the strategy signal; and in PFp
we considered only the feedback period for the response signal.
It is worth to note that the feedback period was a perifeedback
period defined across the feedback event including both a pre-
feedback and a postfeedback periods. In both periods, the
response signal is not a predictive signal because the response
has already been made, but only in the postfeedback the mon-
keys were informed on the behavioral outcome.

For each neuron, we computed the normalized ROC values
in the task periods of interest and the intrinsic timescales dur-
ing fixation. To determine whether the intrinsic timescales dur-
ing fixation and the ROC values correlated, we computed the
Pearson’s correlation coefficient between the 2 variables in
each brain area. Next, we compared the Pearson’s correlation
coefficient previously calculated against those obtained from
1000 iterations of the permutations test. For each permutation
test, all the correlation coefficients were recalculated by keep-
ing the intrinsic timescale for each neuron as in the original
analysis but randomizing the ROC values. We fixed a signifi-
cance cutoff at the 95th percentile of the correlation coeffi-
cients from the permutation analysis.

Time Course and Temporal Maintenance of the
Population Activity

To visually illustrate the temporal stability of the neurons within
trials, we sorted the neurons according to increasing timescales
and, using a median split, classified them into 2 groups: long
and short timescale populations, defined as neurons with a time-
scale above and below the median value, respectively (Cavanagh
et al. 2016).

To provide an intuitive and graphical explanation of the
meaning of the autocorrelation for the long and short timescale
populations, within each population, we divided the trials into
high and low activity groups according to the magnitude of the
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neuron spike count calculated in an arbitrary 100-ms interval
during the fixation period. For each trial, we divided the 1.5 s
period after fixation onset into 50-ms successive bins and we
computed the spike count in each time bin. We then averaged
spike counts among trials within an activity group and then
among neurons within long and short timescale populations.
To assess whether the long timescale population exhibited a
more sustained neuronal activity than the short population, we
computed the difference between the mean spike counts of
high and low activity group in each 50-ms time bin, for each
timescale population. We identified a descent ramp, defined as
the difference in mean activity after the arbitrary 100-ms inter-
val from fixation onset. We performed a fit, for each timescale
population, on the descent ramp using an exponential function
to estimate the decay constant of the difference between the
high and low activity groups approaching zero:

α β γ= × [ (− ) + ]y texp / ,

where, y is the dependent variable, that is, the mean activity
difference between high and low activity groups, t is the time,
β is the decay constant, γ is an offset that reflects the contribu-
tion to the mean activity difference at times much longer than
the observation time window and α is an overall multiplication
factor.

To examine the time course of neuronal selectivity, we cal-
culated the normalized ROC values for the long and short time-
scale populations using a sliding window of 200ms, increasing
in steps of 20ms with 2 alignments: cue onset and feedback
onset (Tsujimoto et al. 2012). Subsequently, the normalized
ROC values were averaged across neurons in each timescale
population. In addition, to determine whether the population
selectivity was sustained over time, we performed a cross-
temporal analysis between the non-normalized ROC values in
each timescale population (Cavanagh et al. 2016). These ROC
values were computed in a fixed time bin Δ of 50ms for each
neuron. We defined a matrix of non-normalized ROC values in
which each row was a neuron and each column was the time
bin Δ where the ROC values were computed. The correlation
between 2 population vectors of non-normalized ROC values at
2 time bins, separated by |k| × Δ (k integer number), was com-
puted using Pearson’s correlation coefficient. The correlation
analysis was applied to all pair-combinations of time bins.

Moreover, to investigate a possible difference between the 2
timescale populations, we compared the correlation coeffi-
cients in each pixel of the 2 populations using a Fisher’s r-to-z
transformation.

Results
Figure 1A illustrates the visually cued strategy task that has
been described in our previous work (Tsujimoto et al. 2010,
2011a, 2012) and in more details in Materials and Methods.
Briefly, in this task, each trial started with a fixation period in
which the monkeys were required to maintain fixation on a
central spot. Subsequently, a visual cue was presented (Fig. 1B)
instructing the monkeys either to “stay” with the goal chosen
on the previous trial or to “shift” to a different goal. After the
cue period and a following delay period, the monkeys made a
saccade to a left or right goal and had to maintain fixation of
the chosen goal until feedback was provided.

The behavioral results have been described previously in
detail (Tsujimoto et al. 2009, 2012). Briefly, both monkeys per-
formed the task with an average performance greater than 90%
of correct responses. Both monkeys maintained stable and
accurate fixation throughout both the fixation and cue periods,
within ±1° on more than 90% of the trials.

The database for this study consisted of 1494 neurons (871
and 623 from Monkey 1 and Monkey 2, respectively) that were
recorded during the visually cued strategy task—566 cells were
located in PFp, 551 resided in PFdl, and 377 were in PFo.

The Decay Time Constant in PFp, PFdl, and PFo

To determine temporal hierarchical ordering of the 3 areas, we
assessed the intrinsic temporal properties of their neuronal
populations by estimating the decay time constant (intrinsic
timescale, τ) of the autocorrelation structure in the fixation
period. Only neurons with 20 or more completed trials, at least
1 Hz of mean activity during the fixation period, and nonzero
mean activity in each 50-ms time bin during fixation were ana-
lyzed (see Materials and Methods). In particular, 317/566 neu-
rons in PFp, 367/551 in PFdl, and 294/377 in PFo survived the
previous requirements. Figure 2 shows the autocorrelation val-
ues (averaged across neurons and times) during the fixation
period at various time lags for PFp, PFdl, and PFo. We fitted the

Figure 2. Spike count autocorrelation decay computed using 50-ms time bins in a 1-s time window of the fixation period (mean ± standard error of the mean [SEM]).

The solid lines are the exponential fits. The autocorrelation value of PFp for the shortest time lag of 50 ms shows refractory adaptation and it has been excluded from

the fit procedure. The intrinsic timescale obtained from the exponential fit is shown for each brain area.
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autocorrelation with an exponential function, which allowed
us to have an estimate of the decay time constant (τ) for each
brain area (see Materials and Methods). Notably, PFo (τ = 190
[167, 213]ms) had a shorter τ within 95% confidence level (C.L.)
than PFp (τ = 242 [212, 272]ms), and PFdl (τ = 248 [230, 265]ms).

To exclude the possibility that our results depended on
the coding of previous signals during the fixation period, we
repeated the analysis, considering only the neurons that were
not significantly modulated (one-way ANOVA) by the previous
response in this period (the number of eliminated neurons were:
22/317 in PFp, 39/367 in PFdl, and 22/294 in PFo). We applied the
exponential fit to the reduced neuronal sample and obtained
consistent results within 95% C.L. (τ = 252 [220, 280]ms for PFp,
τ = 250 [232, 267]ms for PFdl, τ = 197 [170, 225]ms for PFo).

To examine the relationship between the intrinsic timescale
and the strength of neuronal selectivity for individual neurons,
we calculated the intrinsic timescale for each neuron during
the fixation period and its ROC value for the periods in which
the ROC value of the population of each area for response and
strategy was significantly above chance levels (Tsujimoto et al.
2012). To assess the intrinsic timescale for each neuron, we dis-
carded most of the neurons by requiring a decline in the auto-
correlation within 150–250ms of time lag after fixation onset
and an intrinsic timescale larger than zero (see Materials and
Methods). In particular, 115/317 neurons of PFp, 149/367 of PFdl,
and 138/294 of PFo survived the previous requirements.
Afterwards, we further selected the remaining neurons by
visual inspection (see Materials and Methods), ending up with
58 neurons in PFp, 84 in PFdl, and 76 in PFo.

Supplementary Figure S1 shows the scatter plot of the mean
firing rate computed during fixation for each neuron within
each brain area against the R2 value obtained from the fit of the
autocorrelation values. We plotted both the neurons included
and those excluded by visual inspection (see Materials and
Methods) from the 3 brain areas. The mean value of R2 was
0.5 ± 0.3 (mean ± standard deviation [SD]) for the discarded
neurons and 0.8 ± 0.1 (mean ± SD) for the included neurons.
These results show that the selection by visual inspection
tended to include neurons with higher R2 but with some excep-
tions. Supplementary Figure S2 shows some examples of these
exceptions. In particular it shows examples of neurons that
were included albeit their relatively low R2 values and others
that were excluded with a relatively high R2.

Relationship With Rate-Coding Strength

To assess the strength of neuronal selectivity, we computed
the normalized ROC values for the response signal in the

feedback period for the 3 areas and in the cue, early–delay and
late–delay periods only for PFdl. For the strategy signal, the nor-
malized ROC values were calculated in the late–delay and feed-
back periods for PFo and in the cue and early–delay periods for
PFdl and PFo, whereas no strategy signal was found in PFp in
any task period (Tsujimoto et al. 2012). The intrinsic timescales
during fixation correlated significantly (P < 0.05) with the nor-
malized ROC values for the response in PFdl during the late
delay (Pearson’s correlation, r = 0.25, P < 0.05, Supplementary
Fig. S3C) and feedback (Pearson’s correlation, r = 0.25, P < 0.05,
Supplementary Fig. S3D) periods. In contrast, we did not
observe any significant correlation in PFp and PFo in the feed-
back period (Supplementary Fig. S3G,H), although both areas
showed significant response selectivity in this period
(Tsujimoto et al. 2012). For the strategy signal, no significant
correlation was observed between the timescales and ROC val-
ues in any PF area (Supplementary Fig. S3E,F,I–L). Table 1 shows
the results of this correlation analysis. Thus, PFdl was the only
area of the PF with a significant correlation (P < 0.05) between
the intrinsic timescales of the individual neurons during fixa-
tion and their response selectivity in subsequent task periods.
We confirmed a significant correlation for PFdl using the
Spearman rank correlation in the late delay (Spearman’s corre-
lation, rs = 0.35, P = 0.001, n = 84), and feedback (Spearman’s
correlation, rs = 0. 37, P = 7 × 10–4, n = 84) periods. We further
confirmed the significance of the Pearson’s correlation obtained
for PFdl in the late–delay and feedback period by implementing
a permutation test (see Materials and Methods).

Afterwards, we compared the correlation coefficients shown
in Table 1 for the response coding during the feedback period
between the 3 areas. We applied the Fisher’s r-to-z transforma-
tion, computing the correspondent z value for the r Pearson’s
coefficient and after comparing the obtained z values. No sig-
nificant difference emerged from the comparison between PFdl
and PFo (z = 1.46, P = 0.14, Fisher’s transformation), PFp and
PFo (z = 0.31, P = 0.76, Fisher’s transformation), PFdl and PFp
(z = 1.69, P = 0.09, Fisher’s transformation), albeit we observed a
significant linear relation in PFdl but not in PFp and PFo.

We investigated whether there was a relationship between
firing rates and estimated intrinsic timescales. We computed
the mean firing rate in the 1-s fixation period that is the base-
line period in which the intrinsic timescale was calculated. We
calculated the correlation between intrinsic timescales and
mean firing rates for the 218 neurons recorded from the 3 brain
areas with a meaningful intrinsic timescale (58 neurons in PFp,
84 in PFdl, and 76 in PFo). No significant correlation emerged
(r = 0.09, P = 0.17, n = 218, Pearson’s correlation). Similarly, look-
ing at each area independently we did not observe a significant

Table 1. Results of the correlation analysis for each PF area between the intrinsic timescales in the fixation period and the ROC values in sub-
sequent periods of the task. The ROC value was computed in each PF area only for the task periods in which that area encoded the spatial
response or the strategy (or both) signal (Tsujimoto et al. 2012). The number of neurons analyzed was 58 for PFp, 84 for PFdl, and 76 for PFo.
The correlation coefficient (Pearson’s coefficient, r) and the corresponding P-value (P) are shown. Only PFdl shows a significant correlation
(P < 0.05) for the response signal during the late–delay and feedback periods

PFdl PFp PFo

Signal
selectivity

Response (right–left) Strategy
(stay–shift)

Response
(right–left)

Response
(right–left)

Strategy (stay–shift)

Task period Cue Early–
delay

Late–
delay

Feedback Cue Early–
delay

Feedback Feedback Cue Early–
delay

Late–
delay

Feedback

Pearson’s
coeff., r

0.06 0.08 0.25 0.25 −0.21 −0.09 −0.04 0.02 −0.07 −0.005 0.16 −0.05

P-value 0.57 0.45 0.02 0.02 0.06 0.44 0.79 0.84 0.54 0.96 0.17 0.67
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correlation between intrinsic timescales and mean firing rates
in PFp (r = 0.06, P = 0.64, n = 58, Pearson’s correlation) and in
PFo (r = −0.19, P = 0.09, n = 76, Pearson’s correlation). A signifi-
cant correlation emerged only in PFdl (r = 0.24, P = 0.03, n = 84,
Pearson’s correlation) and we will later examine the relation-
ship between intrinsic timescale and response coding after
matching the firing rates.

Implication for Neural Function in PFdl

To understand the neural implications of the individual intrin-
sic timescales, we divided the neurons into 2 groups based on
the magnitude of their intrinsic timescale (see Materials and
Methods). Figure 3A–C,E–G shows 2 PFdl neurons with long and
short intrinsic timescales, respectively. Figure 3A,E shows the
decay of the autocorrelation (mean ± SEM) in the fixation
period, defined as the decay constant τ. To illustrate what the

long and short intrinsic timescales represent, we subdivided
the trials of each of the 2 neurons into 2 groups according to
the magnitude of their spike count, computed in an arbitrary
100-ms interval from 400 to 500ms after fixation onset (see
Materials and Methods) (Ogawa and Komatsu 2010; Nishida
et al. 2014). We determined the mean spike count for each neu-
ron within this interval and used this value as a threshold to
separate the trials into low or high firing rate categories. In
other words, trials with a spike count that was lower or higher
than the mean spike count in that interval were classified as
low or high trials activity, respectively. We expected that for a
neuron with a long intrinsic timescale, the difference in the
defined 100-ms interval would persist beyond that time period
more than for a neuron with a short intrinsic timescale, which
should exhibit a sudden decline in the activity difference after
the interval. Indeed, the neuron with long τ (Fig. 3B) exhibited a
difference between high and low activity trials that extended

Figure 3. Example of 2 neurons with long and short intrinsic timescales and population analysis. (A–D) Example neuron with long intrinsic timescale encoding the

response in the delay period and long intrinsic timescale population analysis. (A) Autocorrelation decay in the fixation period. The red line is the exponential fit with

timescale τ = 451ms. (B) Example of high activity maintenance during the fixation period by dividing high and low trials activity. Trials were subdivided in 2 groups

according to the spike count computed in the 100-ms interval from 400 to 500ms after fixation onset, as indicated by vertical dashed lines. The difference in activity

was maintained for nearly the entire fixation period—not merely in the 100-ms interval. Raster plot for low (purple) and high (green) activity trials aligned to fixation

onset. Each dot indicates when a spike occurred. Spike density averages are shown on top of the raster. (C) Raster plot for right (blue) and left trials (red) aligned to

cue onset. Spike density averages are shown on top of the raster. The ROC values for the response are shown at the bottom. (D) Difference between high and low

activity groups for the population of long timescales neurons. Dashed lines indicate the 100-ms interval from 400 to 500ms after fixation onset. The decay constant

(β) from the exponential fit is reported with the 95% C.L. (E–H) Example neuron with short intrinsic timescale and no response-related activity in the delay period and

population analysis. (E) Same analysis as in A. The red line is the exponential fit with timescale τ = 69ms. (F) Example of low activity maintenance during the fixation

period. The low and high activity trials were defined as in B. The difference in activity between the 2 groups of trials did not extend beyond the period after the 100-

ms interval. (G) Same analysis as in C. (H) Same analysis as in D for the population of short timescales neurons.
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beyond the 100-ms interval that was used to split the trials,
whereas the neuron with short τ (Fig. 3F) did not show a persis-
tent difference in activity beyond this interval. Moreover, the
neuron with a long intrinsic timescale encoded the correct
response during the early–delay and late–delay periods
(Fig. 3C). Conversely, the example neuron with the short intrin-
sic timescale was not response-selective in the delay periods
(Fig. 3G). We extended to all neurons of PFdl the same analysis
shown for the example neurons of Figure 3B,F. We computed
the difference between the mean spike counts of the low and
high activity groups in each 50-ms time bin, for each timescale
population (see Materials and Methods). We observed, as
expected, the highest difference between low and high activity
in the 100-ms time bin used to classify the trials. Figure 3D,H
shows the time course of the difference between high and low
activity groups for the long and short timescale populations,
respectively—the error on the difference between high and low
activity was obtained by the error propagation of the difference.
From the exponential fitting procedures, we obtained the fol-
lowing decay constants with the 95% C.L. for the short and long
timescale populations (see Materials and Methods):

β_shortTimescale = 114 (105, 122)ms;
β_longTimescale = 236 (212, 261)ms.

These β parameters represent the time period after which
the initial difference between high and low activity is reduced
by a factor 1/e (e ~ 2.72, Euler’s constant).

These results indicate that for neurons with long intrinsic
timescale the activity was more sustained in time since, as
time increased, the difference between high and low activity
trials decreased slower over time (236ms) than that for neurons
with short intrinsic timescale (114ms).

We also repeated the analysis dividing trials according to
the spike count computed in the 100-ms time bin from 300 to
400ms and in the 200-ms time bin from 300 to 500ms after fix-
ation onset. The results were essentially the same when we
shifted or enlarged the time bin. It proved that the length and
the time from fixation of the selected time bin were not critical
and did not change our main findings.

Next, we compared the temporal dynamics of the ROC val-
ues of the 2 populations with long and short intrinsic time-
scales in PFdl (see Materials and Methods). The population
intrinsic timescales calculated for these groups of neurons
were 130 and 362ms, respectively in the short and long time-
scales populations. We expected based on the correlation
results that the latter would show stronger neuronal response
selectivity than the former population. Figure 4A shows the
time course of the response selectivity during the delay (left)
and feedback periods (right). The population with long intrinsic
timescales (blue line, mean ± SEM) encoded the response more
strongly in the late–delay (Kruskal–Wallis test, P = 0.004) and
feedback (Kruskal–Wallis test, P = 0.005) periods than its coun-
terpart (red line, mean ± SEM). Filtering out the 8/84 neurons
that were selective for the previous trial response from the
analysis (one-way ANOVA) did not affect the difference in
response coding, which remained significant in the late–delay
(Kruskal–Wallis test, P = 0.02) and feedback (Kruskal–Wallis
test, P = 0.003) periods.

To check if an average difference in baseline firing rates
between the short and long intrinsic timescale neurons could
explain differences in response coding, we computed the mean
firing rate during 1-s of fixation for the long and short intrinsic

timescales neurons. We observed a mean firing rate of 12 ±
1 sp/s (mean ± SEM) for the long intrinsic timescale neurons
and of 8 ± 1 sp/s (mean ± SEM) for the short intrinsic timescale
neurons. To investigate whether some neurons with higher
activity in the population of neurons with long intrinsic time-
scale could be responsible for the difference observed in
response coding, we removed from this population the neurons
with the highest firing rate during fixation, in order to match
the mean firing rate of the short timescale population. To
achieve such a match, we ranked the neurons by firing rate and
we removed a number of neurons (10) from this long timescale
population, to reach a mean firing rate equal to 8.1 ± 0.7 sp/s
comparable to the average firing rate of the short timescale
population. We repeated the analysis with this long timescale
population subsample, and the result shown in Figure 4A was
confirmed. Indeed, as previously observed, the population with
long intrinsic timescales encoded the response more strongly
in the late–delay (Kruskal–Wallis test, P = 0.02) and feedback
(Kruskal–Wallis test, P = 0.005) periods than the population
with short intrinsic timescale.

To determine how long the response signal was maintained
over time, we performed a cross-temporal pattern analysis
between the non-normalized ROC values that were computed
in a fixed time window Δ of 50ms for the long and short intrin-
sic timescale populations in PFdl (Cavanagh et al. 2016) (see
Materials and Methods). High correlation between time t and
t + Δ indicates that ROC values were consistent across these
2-time points. A schematic of the ROC correlation is shown in
Figure 4B. Each pixel in the triangle is the correlation coefficient
between the ROC values that were computed for 2 time bins for
each neuron. Figure 4C,E shows the correlation coefficients for
various time lags for the long and short timescale populations,
respectively. For the long timescale population (Fig. 4C,D), we
observed population response coding that was significantly
sustained in both the early–delay and late–delay periods in all
bins (Pearson’s correlation, P < 0.001; Fig. 4D, green triangles).
In contrast, in the short timescale population (Fig. 4E,F), the
correlation was significantly sustained in almost all bins in the
early–delay (Pearson’s correlation, P < 0.001) but only in few
bins in the late–delay period (Fig. 4F, green triangles). These
results show that response coding in neurons with long intrin-
sic timescale was stronger and more consistent and sustained
than in neurons with short intrinsic timescales. To compare
the temporal maintenance of the population response of the 2
timescale populations, we compared the correlation coeffi-
cients in each pixel of the 2 populations using Fisher’s r-to-z
transformation (Fig. 4G). We found that a significant difference
emerged in many pixels in the late–delay period, in which
indeed the response coding for neurons with long intrinsic
timescale was more consistent and sustained than in neurons
with short intrinsic timescales.

Notably, in the long and short timescale populations, there
was no significant correlation between response selectivity in
the delay and feedback periods, indicating that the population
coding in various periods of the task represents distinct pro-
cesses (white rectangle in Fig. 4C,E). To check whether there
was an actual absence of correlation between these 2 task peri-
ods, we correlated the normalized ROC values computed in the
500-ms late–delay with those obtained in the 500-ms feedback
period. No correlation was observed neither in the short time-
scale (r = 0.11, P = 0.47, n = 42, Pearson’s correlation) nor in the
long timescale (r = 0.12, P = 0.44, n = 42, Pearson’s correlation)
populations.
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Figure 4. Intrinsic timescale during fixation predicts neuronal response selectivity in PFdl. (A) Time course of the ROC for the spatial response aligned on the cue (left)

and feedback (right) onsets. The population of neurons with long intrinsic timescale (blue line, mean ± SEM) has higher ROC values for the response than those with

short intrinsic timescale (red line, mean ± SEM). The black lines indicate a significant difference in the late–delay and feedback periods (Kruskal–Wallis, P < 0.05). (B)

Schematic of cross-temporal correlation between ROC values. Each pixel in the triangle is the correlation coefficient between the ROC values computed for 2 time

bins for the neuronal population. Sustained population response coding is reflected by high positive correlation, a transient population response is indicated by low

correlation, and an inversion of population coding is manifested by negative correlation. (C) Cross-correlation between non-normalized ROC values at time t and t + Δ
for PFdl neurons with long intrinsic timescale. Each pixel represents the correlation coefficient between two 50-ms time bins. The population code for the response

was maintained for nearly the entire delay but was more transient in the feedback period. (D) Significant P values of each pixel for Pearson’s correlation coefficient in

C (black pixel, P < 0.001).The green triangles identify the early–delay and late–delay periods. (E) Cross-correlation between non-normalized ROC values at time t and

t + Δ for PFdl neurons with short intrinsic timescale. The population code for the response is inconsistent through the late–delay period. The correlations lose signifi-

cance in the late–delay period. (F) Significant P-values of each pixel for Pearson’s correlation coefficient in E (black pixel, P < 0.001). The green triangles identify the

early–delay and late–delay periods. (G) Comparison between the correlation coefficients at each corresponding pixel (50 ms pixel length) of the short and long time-

scale populations of Fig 4C,E using Fisher’s r-to-z transformation. All pixels with correlation coefficients significantly different between the 2 populations (P < 0.001)

are highlighted in black. It is evident that a significant difference emerged in the late–delay period (green triangle), in which the response coding of the neurons with

long intrinsic timescale was consistent and sustained to a greater extent than in neurons with short intrinsic timescales.
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Discussion
We have examined the relationship between the intrinsic time-
scales, defined as the decay in the autocorrelation function in
the initial fixation period of a visually cued strategy task, and
the response and strategy coding in 3 prefrontal areas in which
they have been previously described (Tsujimoto et al. 2012). We
found that the individual intrinsic timescales predicted the
response-coding strength of neurons in PFdl during the delay
and feedback periods but not in PFo and PFp. Neurons from
PFdl with longer intrinsic timescales tended to develop stronger
and more prolonged response coding in the late–delay period
and a more robust response coding in the feedback period than
those with shorter timescales. However, we did not find a sig-
nificant correlation between population response coding, mea-
sured as ROC values, between the delay and feedback periods,
indicating that the working memory and monitoring processes
are separate in PFdl (white rectangle in Fig. 4C,E) and that the
second is not merely the continuation of the first.

Persistent Delay-Period Activity and Intrinsic Time
Constant in the PF

Persistent activity in PF has been associated to features of its
microcircuits. The persistent activity of neurons with spatial
tuning can be affected by a recurrent neural microcircuit of
pyramidal interconnected neurons within layer III and refined
by lateral inhibition that is mediated by GABAergic interneur-
ons (Goldman-Rakic 1995; Wang 2001). More recently, it has
been shown that persistent activity is mediated specifically by
the NR2B NMDA receptors in layer III and not by AMPA recep-
tors (Wang et al. 2013), as predicted by computational models
on the basis of the slower kinetics of NR2B, which favors persis-
tent firing (Wang 2001).

Our study identified a relationship between the intrinsic
timescales of neurons and their ability to support cognitive
functions. The relationship between the intrinsic timescales of
the neurons and the strength of their response coding in PFdl is
not surprising, considering that PFdl neurons mediate a variety
of high-level cognitive functions that require integration of
past and future events (Fuster et al. 2000; Fuster 2001). PFdl is
involved in sustaining activity, even in the absence of sensory
stimuli; maintaining spatial information in working memory in
trained (Funahashi et al. 1989; Constantinidis et al. 2001) and
untrained monkeys (Meyer et al. 2007); directing spatial atten-
tion (Lebedev et al. 2004; Gregoriou et al. 2014); and maintaining
the goal information of self (Genovesio et al. 2005, 2008, 2012,
2014a; Genovesio and Tsujimoto 2014) and others in time
(Falcone et al. 2016). Although persistent activity is also seen in
the parietal and temporal cortex, parietal (Constantinidis and
Steinmetz 1996) and inferior temporal (IT) (Miller et al. 1993)
neurons represent only the most recent stimulus, whereas
persistent-coding in PF neurons can resist the influence of dis-
tracting stimuli (di Pellegrino and Wise 1993; Miller et al. 1996;
Qi et al. 2010).

Further, PFdl neurons maintain information across trials
with and without working memory demands (Genovesio et al.
2006, 2014b; Histed et al. 2009; Curtis and Lee 2010; Genovesio
and Ferraina 2014; Marcos et al. 2016), and working memory
deficits can depend on the ability to select between currently
and previously relevant locations rather than forgetting
(Tsujimoto and Postle 2012). Outcome information, even when
it is not directly related to task performance, can persist from
one trial to the next until new events occur, such as the

presentation of a new stimulus or mere decay as a function of
time (Marcos et al. 2016). We have found that under a free-
choice condition using a strategy paradigm, the prestimulus
activity before the potential targets are known can bias future
choices (Marcos and Genovesio 2016), suggesting that persis-
tent activity in PFdl can also affect future decisions, likely due
to its significant temporal stability. However, that study did not
examine the relationship between the neuronal timescales and
the response coding. In the current study, we provide evidence
that intrinsic neural properties can support at least the mainte-
nance of response-related information in working memory and
its monitoring after response execution in PFdl. This result sug-
gests that the persistent activity that supports a memory signal
relies on neurons with a higher degree of stable activity.
Nevertheless, the maintenance of the response signal cannot
rely entirely on the intrinsic neural stability but should depend
also on computations at the network level as indicated by a
duration of the persistence of the response coding longer than
what is expected just by the intrinsic timescales.

We also examined the relationship between the intrinsic
timescales and the strategy coding. We did not find any signifi-
cant effect in any area of the PF but, interestingly, we observed
a close to significant negative correlation in PFdl between the
intrinsic timescales and the strategy coding in the cue period.
Possibly, this negative result is due to the brief temporal win-
dow in which the strategy was coded in PFdl and PFo, in con-
trast to the more prolonged delay in response coding in PFdl.
The small and nonsignificant negative correlation observed in
PFdl can be only suggestive of the possibility that neurons with
short timescales might play a role in coding signals that do not
require to be maintained in time. Future experiments should
examine whether neurons can flexibly become temporally spe-
cialized and recruited, based on their intrinsic timescale, when
the time window of a computation is varied.

Comparison Across PFp, PFdl, and PFo

In contrast to PFdl, we did not observe a significant correlation
in the feedback period for PFp and PFo, although both areas
showed comparable response-coding during feedback (Tsujimoto
et al. 2012). PFp and PFo lacked persistent delay-period activity
for spatial responses, as reported by Tsujimoto et al. (2012) and
Padoa-Schioppa and Assad (2006) for PFo. Thus, in these 2 areas,
the response was represented in a narrower time window during
the feedback period, obviating the need for temporally special-
ized neurons with large temporal receptive fields.

Our findings in PFdl and PFo for response coding appear to
contrast with those from Cavanagh et al. (2016), which showed
that the intrinsic timescale was predictive of the reward value
coding strength and its persistence in PFo but not in PFdl. They
suggested that a mechanism of credit assignment is repre-
sented by the ability to maintain the chosen value activity until
the outcome is known. Notably PFo was the only area in their
study with a significant difference in reward value coding
between neurons with long and short timescales, although its
timescale was comparable to PFdl’s timescale. Their findings
indicate that neurons from an area with a high intrinsic time-
scale, such as PFdl, are unable to maintain value information,
although persistent activity in PFdl is important to perform cog-
nitive processes and integrative functions. The contrasting
results between the study of Cavanagh et al. (2016) and ours
suggest that between various areas of the PF, neurons with
higher temporal receptive fields perform different computa-
tions. Thus, the intrinsic timescale is not simply organized in a
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hierarchical manner, as suggested by Murray et al. (2014), in
the anterior cingulate cortex, LIP, and PFdl. Each area must
function over a broad range of timescales so that, for instance,
Yaron et al. (2012) described slow processes in sensory areas,
such as the auditory cortex. Our study also extended the exam-
ination of the intrinsic timescale to PFp, wherein the time con-
stant of PFp was comparable with that of PFdl and higher than
that of PFo.

Further studies should determine whether temporal special-
ization that is similar to that in PFdl could emerge in PFo in
tasks that require rapid learning or during the initial self-
initiated exploration of novel alternatives (Boschin et al. 2015).
The functional specialization of neurons in our study extends
the list of types of functional specialization that have been
identified, based on cortical layer and cell type (Hussar and
Pasternak 2009, 2012; Opris et al. 2011; Pinto and Dan 2015), to
intrinsic timescales. In conclusion, our findings provide evi-
dence of a link between the higher timescales of PFdl—but not
PFo and PFp—neurons and their greater response coding, in
contrast to the more extensive involvement of neurons with
longer time constants in PFo but not in PFdl in value coding
(Cavanagh et al. 2016).

Supplementary Material
Supplementary data is available at Cerebral Cortex online.
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