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Abstract

Electrical stimulation of neural systems is a key tool for understanding neural dynamics and

ultimately for developing clinical treatments. Many applications of electrical stimulation

affect large populations of neurons. However, computational models of large networks of

spiking neurons are inherently hard to simulate and analyze. We evaluate a reduced mean-

field model of excitatory and inhibitory adaptive exponential integrate-and-fire (AdEx) neu-

rons which can be used to efficiently study the effects of electrical stimulation on large neural

populations. The rich dynamical properties of this basic cortical model are described in detail

and validated using large network simulations. Bifurcation diagrams reflecting the network’s

state reveal asynchronous up- and down-states, bistable regimes, and oscillatory regions

corresponding to fast excitation-inhibition and slow excitation-adaptation feedback loops.

The biophysical parameters of the AdEx neuron can be coupled to an electric field with real-

istic field strengths which then can be propagated up to the population description. We show

how on the edge of bifurcation, direct electrical inputs cause network state transitions, such

as turning on and off oscillations of the population rate. Oscillatory input can frequency-

entrain and phase-lock endogenous oscillations. Relatively weak electric field strengths on

the order of 1 V/m are able to produce these effects, indicating that field effects are strongly

amplified in the network. The effects of time-varying external stimulation are well-predicted

by the mean-field model, further underpinning the utility of low-dimensional neural mass

models.

Author summary

Weak electrical inputs to the brain in vivo using transcranial electrical stimulation or in

isolated cortex in vitro can affect the dynamics of the underlying neural populations.

However, it is poorly understood what the exact mechanisms are that modulate the activ-

ity of neural populations as a whole and why the responses are so diverse in stimulation

experiments. Despite this, electrical stimulation techniques are being developed for the

treatment of neurological diseases in humans. To better understand these interactions, it

is often necessary to simulate and analyze very large networks of neurons, which can be
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computationally demanding. In this theoretical paper, we present a reduced model of cou-

pled neural populations that represents a piece of cortical tissue. This efficient model

retains the dynamical properties of the large network of neurons it is based on while being

several orders of magnitude faster to simulate. Due to the biophysical properties of the

neuron model, an electric field can be coupled to the population. We show that weak elec-

tric fields often used in stimulation experiments can lead to entrainment of neural oscilla-

tions on the population level, and argue that the responses critically depend on the

dynamical state of the neural system.

Introduction

A paradigm which has proven to be successful in physical sciences is to systematically perturb

a system in order to uncover its dynamical properties. This has also worked well for the differ-

ent scales at which neural systems are studied. Mapping input responses experimentally has

been key in uncovering the dynamical repertoire of single neurons [1, 2] and large neural pop-

ulations such as in vitro cortical slice preparations [3]. It has been repeatedly shown that non-

invasive in vivo brain stimulation techniques such as transcranial alternating current stimula-

tion (tACS) can modulate oscillations of ongoing brain activity [4–6] and brain function [7, 8]

and have enabled new ways for the treatment of clinical disorders such as epilepsy [9] or for

enhancing memory consolidation during sleep [10]. Moreover, electrical input to neural popu-

lations can also originate from the active neural tissue itself, causing endogenous (intrinsic)

extracellular electric fields which can modulate neural activity [11, 12].

However, a complete understanding of how electrical stimulation affects large networks of

neurons remains elusive. For this reason, we present a computational framework for studying

the interactions of time-varying electric inputs with the dynamics of large neural populations.

Unlike in vivo and in vitro experimental setups, in silico models of electrical stimulation offer

the possibility of studying a wide range of neuronal and stimulation parameters and might

help to interpret experimental results.

For analytical tractability, theoretical research of the effects of electrical stimulation has

relied on the use of mean-field methods to derive low-dimensional neural mass models [13–

16]. Instead of simulating a large number of neurons, these models aim to approximate the

population dynamics of interconnected neurons by means of dimensionality reduction. At the

cost of disregarding the dynamics of individual neurons, it is possible to make statistical

assumptions about large random neural networks and approximate their macroscopic behav-

ior, such as the mean firing rate of the population.

Analyzing the state space of mean-field models has helped to characterize the dynamical

states of coupled neural populations [17, 18]. Due to their computational efficiency, mean-

field neural mass models are also typically used in whole-brain network models [19, 20], where

they represent individual brain areas. This has made it possible to study the effects of external

electrical stimulation on the ongoing activity of the human brain on a system level [21, 22].

Naturally, neural population models have to strike a balance between analytical tractability,

computational cost, and biophysical realism. Thus, relating predictions from mean-field mod-

els to networks of biophysically realistic spiking neural populations is a challenging task. In

order to bridge this gap, we present a mean-field population model based on a linear-nonlinear

cascade [23, 24] of a large network of spiking adaptive exponential integrate-and-fire (AdEx or

aEIF) neurons [25]. The AdEx neuron model in particular quite successfully reproduces the

sub- and supra-threshold voltage traces of single pyramidal neurons found in cerebral cortex
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[26, 27] while offering the advantage of having interpretable biophysical parameters. In our

neural mass model, the set of parameters that determine its state space is the same set of

parameters of the corresponding spiking neural network. This offers a straightforward way to

relate the population dynamics as predicted by the mean-field model, including the effects of

electrical inputs, to the biophysical parameters of the AdEx neuron.

In the following, we consider a classical motif of two delay-coupled populations of excit-

atory and inhibitory neurons that represents a cortical neural mass (Fig 1). We explore the rich

dynamical landscape of this generic setup and investigate the effects of slow somatic adaptation

currents on the population dynamics. We then apply time-varying electrical input currents to

the excitatory population and observe frequency- and amplitude-dependent effects of the

interactions between the stimulus and the endogenous oscillations of the system. We estimate

the equivalent extracellular electric field amplitudes corresponding to these effects using previ-

ous results [28] of a spatially extended neuron model with a passive dendritic cable.

The main goals of this paper are thus twofold: Our main theoretical goal is to assess the

validity of the mean-field approach in a wide range of parameters and with non-stationary

electrical inputs in order to extend its validity to a more realistic case. Building on this, our sec-

ond objective is to estimate realistic external field strengths at which experimentally relevant

field effects are observed, such as attractor switching, frequency entrainment, and phase

locking.

Predictions from mean-field theory are validated using simulations of large spiking neural

networks. A close relationship of the mean-field model to the ground-truth model is estab-

lished, proving its practical and theoretical utility. The mean-field model retains all dynamical

states of the large network of individual neurons and predicts the interaction of the system

with external electrical stimulation to a remarkable degree.

Our results confirm that weak fields with field strengths in the order of 1 V/m that are typi-

cally applied in tACS experiments can phase lock the population activity to the stimulus.

Slightly stronger fields can entrain oscillation frequencies and induce population state switch-

ing. This also reinforces the notion that endogenous fields, generated by the activity of the

brain itself, are expected to have a considerable effect on neural oscillations.

Fig 1. Schematic of the cortical motif. Coupled populations of excitatory (red) and inhibitory (blue) neurons. (a) Mean-field neural mass model

with synaptic feedforward and feedback connections. Each node represents a population. (b) Schematic of the corresponding spiking AdEx

neuron network with connections between and within both populations. Both populations receive independent input currents with a mean mext
a

and a standard deviation sext
a

across all neurons of population α 2 {E, I}.

https://doi.org/10.1371/journal.pcbi.1007822.g001
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We believe that our results can help to understand the rich and plentiful observations in

real neural systems subject to external stimulation and may provide a useful tool for studying

the effects of electric fields on the population activity.

Results

The cortical mass model

We consider a cortical mass model which consists of two populations of excitatory adaptive

(E) and inhibitory (I) exponential integrate-and-fire (AdEx) neurons (Fig 1). Both populations

are delay-coupled and the excitatory population has a somatic adaptation feedback mecha-

nism. The low-dimensional mean-field model (Fig 1a) is derived from a large network of spik-

ing AdEx neurons (Fig 1b).

For the construction of the mean-field model, a set of conditions need to be fulfilled: We

assume the number of neurons to be very large, all neurons within a population to have equal

properties, and the connectivity between neurons to be sparse and random. Additional

assumptions about the mathematical nature and a detailed derivation of the mean-field model

is presented in the Methods section.

Bifurcation diagrams: A map of the dynamical landscape

The E-I motif shown in Fig 1 can occupy various network states, depending on the baseline

inputs to both populations. By gradually changing the inputs, we map out the state space of the

system, depicted in the bifurcation diagrams in Fig 2. Small changes of the parameters of a

nonlinear system can cause sudden and dramatic changes of its overall behavior, called bifur-

cations. Bifurcations separate the state space into distinct regions of network states between

which the system can transition from one to another. In our case, the dynamical state of the

E-I system depends on external inputs to both subpopulations, which are directly affected by

external electrical stimulation and other driving sources, e.g. inputs from other neural popula-

tions such as other brain regions.

Comparing the bifurcation diagrams of the mean-field model (Fig 2a and 2c) to the ground

truth spiking AdEx network (Fig 2b and 2d) demonstrates the similarity between both dynam-

ical landscapes. Transitions between states take place at comparable baseline input values and

in a well-preserved order.

Since the space of possible biophysical parameter configurations is vast, we focus on two

variants of the model: one without a somatic adaptation mechanism, Fig 2a and 2b, and one

with finite sub-threshold and spike-triggered adaptation in Fig 2c and 2d. Both variants feature

distinct states and dynamics.

Bistable up- and down-states without adaptation. Fig 2a and 2b show the bifurcation

diagrams of the E-I system without somatic adaptation. There are two stable fixed-point solu-

tions of the system with a constant firing rate: a low-activity down-state and a high-activity up-
state. These macroscopic states correspond to asynchronous irregular firing activity on a

microscopic level [13] (see S1 Fig). In accordance with previous studies [29–31], at larger

mean background input currents, there is a bistable region in which the up-state and the

down-state coexist. At smaller mean input values, the recurrent coupling of excitatory and

inhibitory neurons gives rise to an oscillatory limit cycle LCEI with an alternating activity

between the two populations. Example time series of the population rates of E and I inside the

limit cycle are shown in Fig 2e and 2f (top row). The frequency inside the oscillatory region

depends on the inputs to both populations and ranges from 8 Hz to 29 Hz in the mean-field

model and from 4 Hz to 44 Hz in the AdEx network for the parameters given (see S4 Fig).
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Fig 2. Bifurcation diagrams and time series. Bifurcation diagrams depict the state space of the E-I system in terms of the mean external input currents

C � mext
a

to both subpopulations α 2 {E, I}. (a) Bifurcation diagram of mean-field model without adaptation with up and down-states, a bistable region bi
(green dashed contour) and an oscillatory region LCEI (white solid contour). (b) Diagram of the corresponding AdEx network with N = 50 × 103 neurons.

(c) Mean-field model with somatic adaptation. The bistable region is replaced by a slow oscillatory region LCaE. (d) Diagram of the corresponding AdEx

network. The color in panels a—d indicate the maximum population rate of the excitatory population (clipped at 80 Hz). (e) Example time series of the

population rates of excitatory (red) and inhibitory (blue) populations at point A2 (top row) which is located in the fast excitatory-inhibitory limit cycle

LCEI, and at point B3 (bottom row) which is located in the slow limit cycle LCaE. (f) Time series at corresponding points for the AdEx network. All

parameters are listed in Table 1. The mean input currents to the points of interest A1-A3 and B3-B4 are provided in Table 2.

https://doi.org/10.1371/journal.pcbi.1007822.g002
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All macroscopic network states of the AdEx network are represented in the mean-field

model. The bifurcation line that marks the transition from the down-state to LCEI appears at a

similar location in the state space, close to the diagonal at which the mean inputs to E and I are

equal, in both, the mean-field and the spiking network model. However, the shape and width

of the oscillatory region, as well as the amplitudes and frequencies of the oscillations differ. In

Fig 2e and 2f (top row), the differences are due to the location of the chosen points A2 in the

bifurcation diagrams, which are not particularly chosen to precisely match each other in

Table 2. Values of the mean external inputs to the excitatory (mext
E ) and the inhibitory population (mext

I ) in units of nA for points of interest in the bifurcation dia-

grams Fig 2.

Point Mean-Field model AdEx network Dynamical state

C � mext
E C � mext

I C � mext
E C � mext

I

A1 0.24 0.24 0.22 0.12 down

A2 0.26 0.1 0.32 0.3 LCEI

A3 0.41 0.34 0.4 0.24 bi

B3 0.8 0.36 0.76 0.24 LCaE

B4 0.76 0.4 0.68 0.24 down

https://doi.org/10.1371/journal.pcbi.1007822.t002

Table 1. Summary of the model parameters. Parameters apply for the Mean-Field model and the spiking AdEx

network.

Parameter Value Description

σext
1.5 mV/

ffiffiffiffiffiffi
ms
p

Standard deviation of external input

Ke 800 Number of excitatory inputs per neuron

Ki 200 Number of inhibitory inputs per neuron

cEE, cIE 0.3 mV/ms Maximum AMPA PSC amplitude [67]

cEI, cII 0.5 mV/ms Maximum GABA PSC amplitude, [67]

JEE 2.4 mV/ms Maximum synaptic current from E to E

JIE 2.6 mV/ms Maximum synaptic current from E to I

JEI −3.3 mV/ms Maximum synaptic current from I to E

JII −1.6 mV/ms Maximum synaptic current from I to I

τs,E 2 ms Excitatory synaptic time constant

τs,I 5 ms Inhibitory synaptic time constant

dE 4 ms Synaptic delay to excitatory neurons

dI 2 ms Synaptic delay to inhibitory neurons

C 200 pF Membrane capacitance

gL 10 nS Leak conductance

τm C/gL Membrane time constant

EL −65 mV Leak reversal potential

ΔT 1.5 mV Threshold slope factor

VT −50 mV Threshold voltage

Vs −40 mV Spike voltage threshold

Vr −70 mV Reset voltage

Tref 1.5 ms Refractory time

a 15 nS Subthreshold adaptation conductance

b 40 pA Spike-triggered adaptation increment

EA −80 mV Adaptation reversal potential

τA 200 ms Adaptation time constant

https://doi.org/10.1371/journal.pcbi.1007822.t001
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amplitude or frequency but rather in the approximate location in the state space. Overall, the

AdEx network exhibits larger amplitudes across the oscillatory regime (S2 Fig) and the excit-

atory amplitudes are larger than the inhibitory amplitudes (S3 Fig). Another notable difference

is the small bistable overlap of the up-state region with the oscillatory region LCEI in the mean-

field model (Fig 2a) which could not be observed in the AdEx network.

Somatic adaptation causes slow oscillations. In Fig 2c and 2d, bifurcation diagrams of

the system with somatic adaptation are shown. Compared to Fig 2a and 2b (without adapta-

tion), the state space, including the oscillatory region LCEI, is shifted to the right, meaning that

larger excitatory input currents are necessary to compensate for the inhibiting sub-threshold

adaptation currents. The most notable effect that is caused by adaptation is the appearance of a

slow oscillatory region labeled LCaE in Fig 2c and 2d. The reason for the emergence of this

oscillation is the destabilizing effect the inhibiting adaptation currents have on the up-state
inside the bistable region [29–31]. As the mean adaptation current builds up due to a high pop-

ulation firing rate, the up-state “decays” and the system transitions to the down-state. The

resulting low activity causes a decrease of the adaptation currents which in turn allow the activ-

ity to increase back to the up-state, resulting in a slow oscillation. These low-frequency oscilla-

tions range from 0.5 Hz to 5 Hz for the parameters given.

The bifurcation diagrams in Fig 3 show how the emergence of the slow oscillation depends

on the adaptation mechanism. Increasing the subthreshold adaptation parameter primarily

shifts the state space to the right whereas a larger spike-triggered adaptation parameter value

enlarges oscillatory regions. Both parameters cause the bistable region to shrink until it is even-

tually replaced by a slow oscillatory region LCaE. Again, the state space of the mean-field

model (Fig 3a) reflects the AdEx network (Fig 3b) accurately.

Time-varying stimulation and electric field effects

To describe the time-dependent properties of the system, we study the effects of time-varying

external stimulation and the interactions with ongoing oscillatory states. External stimulation

is implemented by coupling an electric input current to the excitatory population. This addi-

tional input current may be a result of an externally applied electric field or synaptic input

from other neural populations. For the cases without adaptation, we can calculate an equiva-

lent extracellular electric field strength that correspond to the effects of an input current (see

Methods).

Since due to the presence of apical dendrites, excitatory neurons in the neocortex are most

susceptible to electric fields [32], only time-varying input to the excitatory population is con-

sidered. This choice is also motivated in the context of inter-areal brain network models where

connections between brain areas are usually considered between excitatory subpopulations.

Given the multitude of possible states of the system, its response to external input critically

depends on the dynamical landscape around its current state. It is important to keep in mind

that the bifurcation diagrams (Figs 2 and 3) are valid only for constant external input currents.

However, they provide a helpful estimation of the dynamics of the non-stationary system

assuming that the bifurcation diagrams do not change too much as we vary the input parame-

ter mext
e ðtÞ over time.

Fig 4a–4f show how a step current input pushes the system in and out of specific states of

the E-I system. A positive step current represents a movement in the positive direction of the

mext
e -axis in Fig 2. Fig 4a and 4b show input-driven transitions from the low-activity down-state

to the fast oscillatory limit cycle LCEI. Similar behavior can be observed in Fig 4c and 4d where

we push the system’s state from LCEI to the up-state, effectively being able to turn oscillations

on and off with a direct input current.
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Inside the bistable region, we can use the hysteresis effect to transition between the down-
state and the up-state and vice versa. After application of an initial push in the desired direc-

tion, the system remains in that state, reflecting the system’s bistable nature.

With adaptation turned on, a slow oscillatory input current can entrain the ongoing oscilla-

tion. In Fig 4g and 4h, the oscillation is initially out of phase with the external input but is

quickly phase-locked. Placed close to the boundary of the slow oscillatory region LCaE, we

show in Fig 4i and 4j how an oscillatory input with a similar frequency as the limit cycle peri-

odically drives the system from the down-state into one oscillation period.

Close inspection of Fig 4b shows that the fast oscillation in the AdEx network has a varying

amplitude, in contrast to the mean-field model Fig 4a. This difference is due to noise resulting

from the finite size of the AdEx network and decreases as the network size N increases. (see

S8 Fig) All of the state transitions take longer for the AdEx network, as it is visible in Fig 4d for

example. Additionally, transitions to the up-state and the slow limit cycle LCaE are

Fig 3. Transition from multistability to slow oscillation is caused by somatic adaptation. Bifurcation diagrams depending on the external input

currents C � mext
a

to both populations α 2 {E, I} for varying somatic adaptation parameters a and b. The color indicates the maximum rate of the

excitatory population. Oscillatory regions have a white contour, bistable regions have a green dashed contour. (a) Bifurcation diagrams of the mean-

field model. On the diagonal (bright-colored diagrams), adaptation parameters coincide with (b). (b) Bifurcation diagrams of the corresponding AdEx

network, N = 20 × 103. All parameters are listed in Table 1.

https://doi.org/10.1371/journal.pcbi.1007822.g003
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accompanied by transient ringing activity (Fig 4f and 4h), which is not well-captured by the

mean-field model.

Frequency entrainment with oscillatory input. To study the frequency-dependent

response of the E-I system, we vary the amplitude and frequency of an oscillatory input to the

excitatory population (Fig 5). The unperturbed system is parameterized to be in the fast limit

cycle LCEI with its endogenous frequency f0.

Fig 4. State-dependent population response to time-varying input currents. Population rates of the excitatory population (black) with an additional

external electrical stimulus (red) applied to the excitatory population. (a, b) A DC step input with an amplitude of 60 pA (equivalent E-field amplitude:

12 V/m) pushes the system from the low-activity fixed point into the fast limit cycle LCEI. (c, d) A step input with amplitude 40 pA (8 V/m) pushes the

system from LCEI into the up-state. (e, f) In the multistable region bi, a step input with amplitude 100 pA (20 V/m) pushes the system from the down-
state into the up-state and back. (g, h) Inside the slow oscillatory region LCaE, an oscillating input current with amplitude 40 pA and a (matched)

frequency of 3 phase-locks the ongoing oscillation. (i, j) A slow 4 Hz oscillatory input with amplitude 40 pA drives oscillations if the system is close to

the oscillatory region LCaE. For the AdEx network, N = 100 × 103. All parameters are given in Table 1. The parameters of the points of interest are given

in Table 2.

https://doi.org/10.1371/journal.pcbi.1007822.g004
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The external stimulus with frequency fext entrains the ongoing oscillation in a range around

f0, the resonant frequency of the system. Here, the ongoing oscillation essentially follows the

external drive and adjusts its frequency to it (Fig 5a). A second (narrower) range of frequency

entrainment appears as fext approaches 2f0, representing the ability of the input to entrain oscil-

lations at half of its frequency. Due to interference of the frequencies of ongoing and external

oscillations, the spectrum has peaks at the difference of both frequencies which appear as X-

shaped patterns in the frequency diagrams. The AdEx network shows a similar behavior (Fig

5b), albeit the range of entrainment is smaller than in the mean-field model, despite the stimu-

lation amplitude being twice as large.

For stronger oscillatory input currents, the range of frequency entrainment is widened con-

siderably. In Fig 5c and 5d, the input dominates the spectrum at very low frequencies. The

peak of the spectrum reverts back to approximately f0 if the external frequency fext is close to

the first harmonic 2f0 of the endogenous frequency. We see multiple lines emerging in the fre-

quency spectra which correspond to the harmonics and subharmonics of the external

Fig 5. Frequency entrainment of the population activity in response to oscillatory input. The color represents the log-normalized power of the

excitatory population’s rate frequency spectrum with high power in bright yellow and low power in dark purple. (a) Spectrum of the mean-field model

parameterized at point A2 with an ongoing oscillation frequency of f0 = 22 Hz (horizontal green dashed line) in response to a stimulus with increasing

frequency and an amplitude of 20 pA. An external electric field with a resonant stimulation frequency of f0 has an equivalent strength of 1.5 V/m. The

stimulus entrains the oscillation from 18 Hz to 26 Hz, represented by a dashed green diagonal line. At 27 Hz, the oscillation falls back to its original

frequency f0. At a stimulation frequency of 2f0, the ongoing oscillation at f0 locks again to the stimulus in a smaller range from 43 Hz to 47 Hz. (b) AdEx

network with f0 = 30 Hz. Entrainment with an input current of 40 pA is effective from 27 Hz to 33 Hz. Electric field amplitude with frequency f0
corresponds to 2.5 V/m. (c) Mean-field model with a stimulus amplitude of 100 pA (7.5 V/m at 22 Hz). Green dashed lines mark the driving frequency

fext and its first and second harmonics f1H and f2H and subharmonics f1SH and f2SH. Entrainment is effective from the lowest stimulation frequency up to

36 Hz at which the oscillation falls back to a frequency of 20 Hz. New diagonal lines appear due to interactions of the endogenous oscillation with the

entrained harmonics and subharmonics. (d) AdEx network with stimulation amplitude of 140 pA (8.75 V/m at 30 Hz). For the AdEx network,

N = 20 × 103. All parameters are given in Tables 1 and 2.

https://doi.org/10.1371/journal.pcbi.1007822.g005
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frequency and its interaction with the endogenous frequency f0, creating complex patterns in

the diagrams. Differences between the spectrograms of the AdEx network in Fig 5d and the

mean-field model Fig 5c can be largely attributed to the fact that the AdEx network consis-

tently needs stronger inputs to obtain the same effect as in the mean-field model. This results

in horizontal lines in areas where frequency entrainment is not effective and in faint and short

diagonal lines between the lines that represent the (sub-)harmonics which are caused by inter-

actions with the (sub-)harmonics. In the mean-field model, we mainly observe clear diagonal

lines, indicating successful entrainment. Another source for the differences is the inherently

noisy dynamics of the AdEx network, due to its finite size (see S8 Fig).

Overall, there is a good qualitative agreement of the frequency spectra of both models,

reflecting that interactions of time-varying external inputs and ongoing oscillations are well-

represented by the mean-field model.

Phase locking with oscillatory input. Here we quantify the ability of an oscillating exter-

nal input current to the excitatory population to synchronize an ongoing neural oscillation to

itself if both frequencies, the driver and the endogenous frequency, are close to each other (fre-

quency matching). An example time series of a stimulus entraining an ongoing slow oscillation

is shown in Fig 4h.

In Fig 6, we find phase locking by measuring the time course of the phase difference

between the stimulus and the population rate. If phase locking is successful, the phase differ-

ence remains constant. In Fig 6a, the region of phase locking for an external input of frequency

fext is centered around the endogenous frequency f0 of the unperturbed system. Increasing the

stimulus amplitude widens the range around f0 at which phase locking is effective, producing

Arnold tongues in the diagram. An example time series of successful phase locking inside this

region is shown in Fig 6c at point 1. If the input is not able to phase-lock the ongoing activity,

a small difference between the driver frequency fext and f0 can cause a slow beating of the activ-

ity with a frequency of roughly the difference |fext − f0|. Thus, a small frequency mismatch can

produce a very slowly oscillating activity (Fig 6c at points 2-4). Fig 6d at point 2 shows the

same drifting effect in the AdEx network. Due to finite-size noise in the AdEx network, an

irregular switching between synchrony and asynchrony can be observed at the edges of the

phase locking region in Fig 6d at point 3. Compared to the mean-field model, the frequency of

the beating activity in the AdEx network is less regular (Fig 6d at point 4).

In the phase locking diagrams Fig 6a and 6b, the equivalent external electric field ampli-

tudes are shown. Small amplitudes (0.2 V/m for the mean-field model, 0.5 V/m for the AdEx

network) are able to phase-lock the ongoing oscillations if the frequencies roughly match.

Discussion

In this paper, we explored the dynamical properties of a cortical neural mass model of excit-

atory and inhibitory (E-I) adaptive exponential integrate-and-fire (AdEx) neurons by studying

their response to external electrical stimulation. Results from a low-dimensional mean-field

model of a spiking AdEx neuron network were compared with large network simulations (Fig

1). The mean-field model provides an accurate and computationally efficient approximation

of the mean population activity and the mean membrane potentials of the AdEx network if all

neurons are equal, the number of neurons is large, and the connectivity is sparse and random.

The mean-field model and the AdEx network share the same set of biophysical parameters

(see Methods). The biophysical parameters of the AdEx neuron allow us to model realistic

external electric currents and extracellular field strengths [28]. In the mean-field description,

this allows us to model stimulation to the whole population in various network states.
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Bifurcation diagrams (Fig 2) provide a map of the possible states as a function of the exter-

nal inputs to both, excitatory and inhibitory, populations. A comparison of the diagrams of the

mean-field model to the corresponding AdEx network model reveals a high degree of similar-

ity of the state spaces. Each attractor of the AdEx network is represented in the mean-field

model in a one-to-one fashion which allows for accurate predictions of the state of the spiking

neural network using the low-dimensional mean-field model.

We have focused our attention on bifurcations caused by changes of the mean external

input currents which can represent background inputs to the neural population or electrical

inputs from external stimulation. It is worth noting that other parameters, such as coupling

strengths and adaptation parameters, can cause bifurcations as well. Overall, the specific shape

of the dynamical landscape depends on numerous parameters. However, extensive parameter

explorations indicated that the accuracy of the mean-field model as well as the overall structure

of the bifurcation diagrams presented in this paper was fairly robust to changes of the coupling

strengths and therefore representative for this E-I system (see S5 and S6 Figs).

Fig 6. Phase locking of ongoing oscillations via weak oscillatory inputs. The left panels show heatmaps of the level of phase locking for (a) the mean-

field model and (b) the AdEx network for different stimulus frequencies and amplitudes. Dark areas represent effective phase locking and bright yellow

areas represent no phase locking. Phase locking is measured by the standard deviation of the Kuramoto order parameter R(t) which is a measure for

phase synchrony. White dashed lines correspond to electric fields with equivalent strengths in V/m. (c) Time series of four points indicated in (a) with

the excitatory population’s rate in black and the external input in red (upper panels). In the lower panels, the Kuramoto order parameter R(t) is shown,

measuring the phase synchrony between the population rate and the external input. Constant R(t) represents effective phase locking (phase difference

between rate and input is constant), fluctuating R(t) indicates dephasing of both signals, hence no phase locking. (d) Corresponding time series of

points in (b). Both models are parameterized to be in point A2 inside the fast oscillatory region LCEI. Insets show zoomed-in traces from 15 to 16

seconds. For the AdEx network, N = 20 × 103. All parameters are given in Table 1.

https://doi.org/10.1371/journal.pcbi.1007822.g006
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Without a somatic adaptation feedback mechanism, the population rate can occupy four

distinct states: a down-state with very low activity, an up-state with constant high activity rep-

resenting an asynchronous firing state of the neurons (see S1 Fig), a bistable regime where

down-state and up-state coexist and an oscillatory state where the activity alternates between

the excitatory and the inhibitory population at a low gamma frequency.

Somatic adaptation causes slow network oscillations

The AdEx neuron model allows for incorporation of a slow potassium-mediated adaptation

current, typically found in cortical pyramidal neurons [33]. Due to somatic adaptation, in the

bistable region, the up-state loses its stability. The bistable region transforms into a second

oscillatory regime (Fig 3) in which the population activity oscillates at low frequencies between

0.5 Hz and 5 Hz. This oscillatory region coexists with the fast excitatory-inhibitory oscillation.

Other computational studies have focused on the origin of this adaptation-mediated oscillation

[29–31], the interaction of adaptation with noise-induced state switching between up- and

down-state [29, 34, 35] and how adaptation affects the intrinsic timescales of the network

[36, 37].

Electric field effects and relation to experimental observations

Using the bifurcation diagrams (Fig 2), we mapped out several points of interest that represent

different network states. The type of reaction to external stimulation depends on the current

state of the system, as seen in the population time series during stimulation in Fig 4. Close to

edges of attractors, direct currents can cause bifurcations and trigger a sudden change of the

dynamics, such as transitions from a low activity down-state to a state with oscillatory activity.

In vitro stimulation experiments with electric fields [3] have shown that (time-constant)

direct fields are able to switch on and off oscillations at field strengths of 6 V/m. In Fig 4, we

could observe this at 8 − 12 V/m, when the system if placed close to the oscillatory state. This

difference in amplitudes can be attributed to the chosen initial state of the system and could be

reduced if the background inputs were parameterized closer to the limit cycle.

Inside oscillatory regions, oscillatory input causes phase locking and frequency entrain-

ment. Frequency entrainment is the ability of an external stimulus to force the endogenous

oscillation to follow its frequency. To study how frequency entrainment depends on the fre-

quency and amplitude of the stimulus, we analyzed frequency spectrograms of the population

activity when subject to external oscillating stimuli with increasing frequencies (Fig 5). We

observed shifts of the peak frequency around the endogenous frequency at amplitudes corre-

sponding to field strengths of 1.5 V/m in the mean-field model and 2.5 V/m in the AdEx net-

work. Similar effects have been reported in in vitro experiments, where the frequency of the

ongoing oscillations changed along with the stimulus frequency [3, 38–40].

Interestingly, the field amplitudes at which frequency entrainment is visible are on the same

order of endogenous fields in the brain, generated by the neural activity itself. Electrophysio-

logical experiments show that these fields can be as strong as 3.5 V/m [11] and that ephaptic

coupling plays a significant role in the brain [12]. Our findings support this observation from a

theoretical perspective, since one of our main results is that considerable effects on the popula-

tion dynamics are expected at these field strengths.

We also observed frequency entrainment of the subharmonics of the endogenous oscilla-

tion as it was shown in in vitro experiments in Refs. [3, 39] and its harmonics in Ref. [38]. This

effect could be valuable for experimental conditions where it is impractical to use stimulation

frequencies close to the endogenous frequency of ongoing oscillations in the studied neural
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system. The range of frequency entrainment around the natural frequency of the endogenous

oscillation widens as the stimulus amplitude increases, which was also observed in similar

computational studies [41, 42].

If the stimulus frequency is close to the endogenous frequency (frequency matching), an

oscillatory stimulus can force the ongoing oscillation to synchronize its phase with the stimu-

lus, known as phase locking, phase entrainment, or coherence. Phase locking of ongoing brain

activity to a stimulus has been observed in multiple noninvasive brain stimulation studies,

including Refs. [43–45], and it has been shown to affect information processing properties of

the brain [7, 8] as particularly sensory information processing depends on phase coherence of

oscillations between distant brain regions [46, 47]. Compared to frequency entrainment, very

weak input currents are able to phase lock ongoing oscillations. In agreement with these exper-

iments, we find phase locking to be effective at electric field strengths of around 0.5 V/m (Fig

6), which is in the range of typical field strengths generated by transcranial alternating current

stimulation (tACS) [48].

To summarize: Our results confirm the interesting notion that, while weak electric fields

with strengths in the order of 1 V/m that are typically applied in tACS experiments have only a

small effect on the membrane potential of a single neuron [32], the effects on the network how-

ever, and therefore on the dynamics of the population as a whole, can be quite significant,

which was also observed experimentally [49]. This indicates that field effects are strongly

amplified in the network. Considering slightly stronger fields, our results suggest that endoge-

nous fields, generated by the activity of the brain itself, are expected to have a considerable

effect on neural oscillations, facilitating phase and frequency synchronization across neighbor-

ing cortical brain areas.

Validity of the mean-field method and limitations of our approach

We found all observed input-dependent effects in the AdEx network to be well-represented by

the mean-field model, which demonstrates its accuracy also in the non-stationary case. How-

ever, partly due to the difference of parameters that define the states in the bifurcation dia-

grams, the AdEx network consistently requires larger input amplitudes in order to cause the

same effect size as observed in the mean-field model (Figs 5 and 6). Although it was not inves-

tigated here, we hypothesize that the number of neurons might play an important role in how

much external inputs are amplified within a network.

Related to this is the fact that our approximation assumes the number of neurons to be infi-

nitely large. Therefore, differences between the mean-field model and the AdEx network in the

case without external stimulation also depend on the network size. However, we find good

agreement between the bifurcation diagrams for as low as N = 4 × 103 neurons (S7 Fig). With

increasing network size, the amplitudes of oscillations in the AdEx network shown in Fig 4b

approach the predictions of the mean-field model and become less irregular (S8 Fig).

Comparing the bifurcation diagrams of both models (Fig 2), the shape of the oscillatory

region as well as the frequencies of the oscillations differ (see S4 Fig). We suspect that the oscil-

latory states are where the steady-state approximations that are used to construct the mean-

field model break down due to the fast temporal dynamics in this state. Hence, both models

have notable differences between the oscillatory regions.

Sharp transitions between states cause transient effects that are visible as ringing oscillations

in the population firing rate, typically observed in simulations of spiking networks (such as in

Fig 4f and 4h) or experimentally [50]. The poor reproduction of these oscillations in our

model is likely due to the use of an exponentially-decaying linear response function instead of

a damped oscillation which would be a better approximation of the true response (c.f.
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Ref. [23]). This constitutes a possible improvement of our work. Recent advancements in

mean-field models of cortical networks [51] can account for its finite size as well as reproduce

transient oscillations caused by sharp input onsets.

Another important limitation of our method is the assumption of homogeneous and weak

synaptic coupling in the mathematical derivation of our mean-field model. Synapses in the

brain are known to be log-normally distributed [52] with long tails, implying the existence of

few but strong synapses. Other computational papers have specifically focused on the effect of

strong synapses on the population activity (cf. [53] and [54]). Therein, the incorporation of

strong synapses causes the emergence of a new asynchronous state in which the firing rates of

individual neurons fluctuate strongly, similar to chaotic states studied in networks of rate neu-

rons [55], which are qualitatively different from the up-state that we observed (see S1 Fig). In

Ref. [53], the author shows that firing rate models similar to what we consider break down and

cannot capture the large fluctuations present in this state. We therefore conclude that our

mean-field model is limited to describing only weak synaptic coupling.

Furthermore, a number of assumptions were made in our model of electric field interac-

tion. Most importantly, we have chosen typical morphological and electrophysiological

parameters of a ball-and-stick neuron model to represent pyramidal cells in layer 4/5 of cor-

tex (see Methods). Despite the simplicity of the ball-and-stick model, it was shown in

Ref. [28] that it can reproduce the somatic polarization of a pyramidal cell in a weak and uni-

form field. This was then translated into effective input currents to point neurons which lack

any morphological features. In addition to the crude assumption that all neurons have the

same simple morphology (effects of a more complex morphology were studied in Ref. [56]),

we also assumed perfect alignment of the dendritic cable to the external electric field. While

the latter might be a good approximation for a local region of the cortex it is not the case for

the brain as a whole with its folded structure. It has been shown that the somatic polarization

of a neuron strongly depends on the angle between the neuron’s main axis and the electric

field [32].

We only focused on field effects that are caused by the dendrite. Although we expect that, in

principle, axons could contribute to the somatic polarization in a weak and uniform electric

field, their contribution could be relatively small, since most cortical axons are not geometri-

cally aligned with each other the way that dendrites are organized in the columnar structure of

the cortex [57].

Finally, we assumed that the field effects are only subthreshold such that our results do not

generalize to stimulation scenarios with strong electric fields that can elicit action potentials by

themselves.

Conclusion

Overall, our observations confirm that a sophisticated mean-field model of a neural mass is

appropriate for studying the macroscopic dynamics of large populations of spiking neurons

consisting of excitatory and inhibitory units. To our knowledge, such a remarkable equiva-

lence of the dynamical states between a mean-field neural mass model and its ground-truth

spiking network model has not been demonstrated before. Our analysis shows that mean-field

models are useful for quickly exploring the parameter space in order to predict states and

parameters of the neural network they are derived from. Since the dynamical landscapes of

both models are very similar, we believe that it should be possible to reproduce a variety of sta-

tionary and time-dependent properties of large-scale network simulations using low-dimen-

sional population models. This may help to mechanistically describe the rich and plentiful

observations in real neural systems when subject to stimulation with electric currents or
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electric fields, such as switching between bistable up and down-state or phase locking and fre-

quency entrainment of the population activity.

Bifurcations, as studied in dynamical systems theory, offer a plausible mechanism of how

networks of neurons as well as the brain as a whole [58, 59] can change its mode of operation.

Understanding the state space of real neural systems could be beneficial for developing electri-

cal stimulation techniques and protocols, represented as trajectories in the dynamical land-

scape, which could be used to reach desirable states or specifically inhibit pathological

dynamics.

Due to the variety of possible macroscopic network states that arise from this basic E-I

architecture, it is critical to consider the state of the system in order to comprehend and pre-

dict its response to external stimuli. This might explain the numerous seemingly inconclusive

experimental results from noninvasive brain stimulation studies [5, 6] where it is hard to

account for the state of the brain before stimulation. In conclusion, additional to the stimulus

parameters, the response of a system to external stimuli has to be understood in context of the

dynamical state of the unperturbed system [3, 42, 60].

Materials and methods

Neural population setting

In order to derive the mean-field description of an AdEx network, we consider a very large

number of N!1 neurons for each of the two populations E and I. We assume (1) random

connectivity (within and between populations), (2) sparse connectivity [61, 62], but each neu-

ron having a large number of inputs [63] K with 1� K� N, (3) and that each neuron’s input

can be approximated by a Poisson spike train [64, 65] where each incoming spike causes a

small (c/J� 1) and quasi-continuous change of the postsynaptic potential (PSP) [66] (diffusion
approximation).

The spiking neuron model

The adaptive exponential (AdEx) integrate-and-fire neuron model forms the basis for the deri-

vation of the mean-field equations as well as the spiking network simulations. Each population

α 2 {E, I} has Nα neurons which are indexed with i 2 [1, Nα]. The membrane voltage of neuron

i in population α is governed by

C
dVi

dt
¼ IionðViÞ þ IiðtÞ þ Ii;extðtÞ; ð1Þ

IionðVÞ ¼ gLðEL � VÞ þ gLDTexp ð
V � VT

DT
Þ � IAðtÞ: ð2Þ

The first term of Iion (Eq 2) describes the voltage-depended leak current, the second term the

nonlinear spike initiation mechanism, and the last term IA, the somatic adaptation current.

Ii,ext(t) = μext(t) + σext ξi(t) is a noisy external input. It consists of a mean current μext(t) which

is equal across all neurons of a population and independent Gaussian fluctuations ξi(t) with

standard deviation σext (σext is equal for all neurons of a population). For a neuron in popula-

tion α, synaptic activity induces a postsynaptic current Ii which is a sum of excitatory and

inhibitory contributions:

IiðtÞ ¼ CðJaEsi;aEðtÞ þ JaIsi;aIðtÞÞ; ð3Þ

PLOS COMPUTATIONAL BIOLOGY Mean-field models of neural populations under electrical stimulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007822 April 23, 2020 16 / 30

https://doi.org/10.1371/journal.pcbi.1007822


with C being the membrane capacitance and Jαβ the coupling strength from population β to α,

representing the maximum current when all synapses are active. The synaptic dynamics is

given by

dsi;ab
dt
¼ �

si;ab
ts
þ
cab
Jab
ð1 � si;abÞ

X

j

Gij

X

k

dðt � tkj � dabÞ: ð4Þ

si,αβ(t) represents the fraction of active synapses from population β to α and is bound between

0 and 1. Gij is a random binary connectivity matrix with a constant row sum Kα and connects

neurons j of population β to neurons i of population α. With the constraint of a constant in-

degree Kα of each unit, all neurons of population β project to neurons of population α with a

probability of pαβ = Kα/Nβ and α, β 2 {E, I}. Gij is generated independently for every simula-

tion. The first term in Eq 4 is an exponential decay of the synaptic activity, whereas the second

term integrates all incoming spikes as long as si,αβ< 1 (i.e. some synapses are still available).

The first sum is the sum over all afferent neurons j, and the second sum is the sum over all

incoming spikes k from neuron j emitted at time tk after a delay dαβ. If si,αβ = 0, the amplitude

of the postsynaptic current is exactly C � cαβ which we set to physiological values from in vitro
measurements [67] (see Table 1).

For neurons i of the excitatory population, the adaptation current IA,i(t) is given by

tA
dIA;i
dt
¼ aðVi � EAÞ � IA;i; ð5Þ

a representing the subthreshold adaptation and b the spike-dependent adaptation parameters.

The inhibitory population doesn’t have an adaptation mechanism, which is equivalent to set-

ting these parameters to 0. When the membrane voltage crosses the spiking threshold, Vi� Vs,
the voltage is reset, Vi Vr, clamped for a refractory time Tref, and the spike-triggered adapta-

tion increment is added to the adaptation current, IA,i IA,i + b. All parameters are given in

Table 1.

Finally, we define the mean firing rate of neurons in population α as

raðtÞ ¼
1

Na

1

dt

XNa

i¼0

Z tþdt

t
dðt0 � tki Þdt; ð6Þ

which measures the number of spikes in a time window dt, set to the integration step size in

our numerical simulations.

The mean-field neural mass model

For a sparsely connected random network of AdEx neurons as defined by Eqs 1–5, the distri-

bution of membrane potentials p(V) and the mean population firing rate r can be calculated

using the Fokker-Planck equation in the thermodynamic limit N!1 [13, 68]. Determining

the distribution involves solving a partial differential equation, which is computationally

demanding. A low-dimensional linear-nonlinear cascade model [24, 69] can be used to cap-

ture the steady-state and transient dynamics of a population in form of a set of simple ODEs.

Briefly, for a given mean membrane current μα with standard deviation σα, the mean of the

membrane potentials �V a as well as the population firing rate rα in the steady-state can be calcu-

lated from the Fokker-Plank equation [70] and captured by a set of simple nonlinear transfer

functions F(μα, σα) (shown in Fig 7a and 7b).

These transfer functions can be precomputed (once) for a specific set of single AdEx neuron

parameters. All other parameters, such as input currents, network parameters and synaptic
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coupling strengths, as well as the parameters that govern the somatic adaptation mechanism,

the membrane timescale, and the synaptic timescale are identical and directly represented in

the equations of the mean-field model. Thus, for any given parameter configuration of the

AdEx network, there is a direct translation to the parameters that define the mean-field model.

This also allows for direct comparison of both models under changes of said parameters.

The reproduction accuracy of the linear-nonlinear cascade model for a single population

has been systematically reviewed in Ref. [23] and has been shown to reproduce the dynamics

of an AdEx network in a range of different input regimes quite successfully, while offering sig-

nificant increase in computational efficiency.

Rate equations. The derivation of the equations that govern the mean μα and variance s2
a

of the membrane currents, the mean adaptation current �IA, and the mean �sab and variance s2
s;ab

of the synaptic activity are presented further below. The full set of equations of the mean-field

model reads:

ta
dma
dt
¼ msyn

a
ðtÞ þ mext

a
ðtÞ � maðtÞ; ð7Þ

msyn
a
ðtÞ ¼ JaE�saEðtÞ þ JaI�saIðtÞ; ð8Þ

s2

a
ðtÞ ¼

X

b2fE;Ig

2J2
ab
s2
s;abðtÞ ts;btm

ð1þ rabðtÞÞ tm þ ts;b
þ s2

ext;a; ð9Þ

d�IA
dt
¼ t� 1

A ðað�VEðtÞ � EAÞ � �IAÞ þ b � rEðtÞ; ð10Þ

d�sab
dt
¼ � t� 1

s;b �sabðtÞ þ ð1 � �sabðtÞÞ � rabðtÞ; ð11Þ

ds2
s;ab

dt
¼ ð1 � �sabðtÞÞ

2
� rabðtÞ þ t

� 2

s;b ðrabðtÞ � 2ts;bðrabðtÞ þ 1ÞÞ � s2

s;abðtÞ; ð12Þ

for α, β 2 {E, I}. All parameters are listed in Table 1. The mean rαβ and the variance ραβ of the

Fig 7. Precomputed quantities of the linear-nonlinear cascade model. (a) Nonlinear transfer functionF for the mean population rate (Eq 15) (b)

Transfer function for the mean membrane voltage (Eq 10) (c) Time constant τα of the linear filter that approximates the linear rate response function of

AdEx neurons (Eq 7). The color scale represents the level of the input current variance σα across the population. All neuronal parameters are given in

Table 1.

https://doi.org/10.1371/journal.pcbi.1007822.g007

PLOS COMPUTATIONAL BIOLOGY Mean-field models of neural populations under electrical stimulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007822 April 23, 2020 18 / 30

https://doi.org/10.1371/journal.pcbi.1007822.g007
https://doi.org/10.1371/journal.pcbi.1007822


effective input rate from population β to α for a spike transmission delay dαβ are given by

rabðtÞ ¼
cab
Jab

Kb � rbðt � daÞ; ð13Þ

rabðtÞ ¼
cab
Jab
� rabðtÞ: ð14Þ

rα is the instantaneous population spike rate, cαβ defines the amplitude of the post-synaptic

current caused by a single spike (at rest, sαβ = 0) and Jαβ sets the maximum membrane current

generated when all synapses are active (at sαβ = 1).

To account for the transient dynamics of the population to a change of the membrane cur-

rents, μα can be integrated by convolving the input with a linear response function. This func-

tion is well-approximated by a decaying exponential [23, 24, 69] with a time constant τα
(shown in Fig 7c). Thus, the convolution can simply be expressed as an ODE (Eq 7) with an

input-dependent adaptive timescale τα that is updated at every integration timestep. In Eq 7,

msyn
a
ðtÞ, as defined by Eq 8, represents the mean current caused by synaptic activity and mext

a
ðtÞ

the currents caused by external input.

The instantaneous population spike rate rα is determined using the precomputed nonlinear

transfer function

ra ¼ Fðma; saÞ: ð15Þ

The transfer function F is shown in Fig 7a. It translates the mean μα as well as the standard

deviation σα (Eq 9) of the membrane currents to a population firing rate. Using an efficient

numerical scheme [24, 70], this function was previously computed [23] from the steady-state

firing rates of a population of AdEx neurons given a particular input mean and standard devia-

tion. The transfer function depends on the parameters of the single AdEx neuron. Eq 10 gov-

erns the evolution of the mean adaptation current of the excitatory population. Eqs 11 and 12

describe the mean and the standard deviation of the fraction of active synapses caused by

incoming spikes from population β to population α.

Synaptic model. Following Ref. [71], we derive ODE expressions for the population mean

�sab and variance s2
s;ab of the synaptic activity. We rewrite the synaptic activity given by Eq 4 of a

neuron i from population α caused by inputs from population β with α, β 2 {E, I} in terms of a

continuous input rate rβ (diffusion approximation) such that

ts;b
dsi;ab
dt
¼ � si þ

cab
Jab
ð1 � siÞ Karbðt � daÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Karbðt � daÞ
q

xiðtÞ
� �

; ð16Þ

with Kα = ∑j2α Gij being the constant in-degree of each neuron, rβ(t − dα) the incoming delayed

mean spike rate from all afferents of population β, and ξi(t) being standardized Gaussian white

noise. The current Ii(t) of a neuron in population α due to synaptic activity is given by

IiðtÞ ¼
X

b2fE;Ig

CJab si;abðtÞ: ð17Þ

We split the mean from the variance of Eq 16 by first taking the mean over neurons of Eq 16.

The mean synaptic activity �sab≔hsi;abii of population α caused by input from population β is

then given by Eq 11. We get the differential equation of the variance s2
s;ab of si,αβ in Eq 12 by

applying Ito’s product rule [72] on dðs2i;abÞ and taking its time derivative.

Input currents. Additional to the mean currents (Eq 7) in the population, we also keep

track of their variance. Fig 7 shows the population firing rate and mean membrane potential
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for different levels of variance of the membrane currents. Especially the adaptive time constant

τα, which affects the temporal dynamics of the population’s response, strongly depends on the

variance of the input. Please note that the adaptive time constant τα is not related to the

somatic adaptation mechanism. Without loss of generality, we derive the variance of the mem-

brane currents caused by a single afferent population α and later add up the contributions of

two coupled populations (excitatory and inhibitory). Assuming that every neuron receives a

large number of uncorrelated inputs (white noise approximation), we write the synaptic cur-

rent Ii,α(t) in terms of contributions to the population mean and the variance [13, 73–76]:

Ii;aðtÞ ¼ CðmaðtÞ þ saðtÞxiðtÞÞ: ð18Þ

In order to obtain the contribution of synaptic input to the mean and the variance of mem-

brane currents, we (1) neglect the exponential term of Iion in Eq 2 and (2) assume that the

membrane voltages are mostly subthreshold such that we can neglect the nonlinear reset con-

dition. Numerical simulations have proven that these assumptions are justifiable in the param-

eter ranges that we are concerned with [71]. We apply these simplifications only in this step of

the derivation. The exponential term, the neuronal parameters within it, and the reset condi-

tion still affect the precomputed functions (shown in Fig 7) and thus the overall population

dynamics.

We substitute both approximations Eqs 17 and 18 separately into the membrane voltage Eq

1 and apply the expectation operator on both sides, which leads to two equations describing

the evolution of the mean membrane potential. If we require that both approximations should

yield the same mean potential hVi,αi, we can easily see that msyn
a
ðtÞ ¼ Jaahsi;aaðtÞi. Using Ito’s

product rule [72] on dV2 and requiring that both approximations should also result in the

same evolution of the second moment hV2
a
i, we get

s2
a
ðtÞ ¼ 2JaaðhVi;asi;aai � hVi;aihsi;aaiÞ: ð19Þ

Taking the time derivative of Eq 19 and substituting the time derivative of hVα sααi by applying

Ito’s product rule on d(Vαsαα) we obtain

ds2
a

dt
¼ 2J2

aa
s2

s;aaðtÞ � ð
ctaKraaðtÞ þ 1

ts;a
þ

1

tm
Þs2

s;aaðtÞ ð20Þ

Here, s2
s;aa≔hs2i;aai � hsi;aai

2
. The timescale of Eq 20 is much smaller than τα of Eq 7. We can

therefore approximate s2
a
ðtÞ well with its steady-state value:

s2
a
ðtÞ ¼

2J2
aa
tmtas

2
s;aaðtÞ

ðctaKraaðtÞ þ 1Þtm þ ts;a
; ð21Þ

τm = C/gL being the membrane time constant. Adding up the variances in Eq 21 of both E and

I subpopulations and the variance of the external input s2
ext;a, the total variance of the input

currents is then given by Eq 9. The two moments of the membrane currents, μα and σα, fully

determine the instantaneous firing rate rα = hriii (Eq 15), the mean membrane potential

�V a≔hViii, and the adaptive timescale τα (Fig 7).

Adaptation mechanism. The large difference of timescales of the slow adaptation mecha-

nism mediated through K+ channel dynamics compared to the faster membrane voltage

dynamics [77, 78] and the synaptic dynamics allows for a separation of timescales [37] (adia-
batic approximation). Therefore, each neuron’s adaptation current can be approximated by its

population average �IA, which evolves according to Eq 10, where a is the sub-threshold adapta-

tion and b is the spike-triggered adaptation parameter. �V aðtÞ ¼ �V aðma; saÞ is the mean of the
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membrane potentials of the population and was precomputed and is read from a table (Fig 7b)

at every timestep. In the case of a, b> 0, i.e. when adaptation is active, we subtract the current

�IA caused by the adaptation mechanism from the current C � μα caused by the synapses in

order to obtain the net input current. The resulting firing rate of the excitatory population is

then determined by evaluating rE ¼ FðmE �
�IA=C; sEÞ. For inhibitory neurons, adaptation was

neglected (a = b = 0) since the adaptation mechanism was found to be much weaker than in

the case of excitatory pyramidal cells [79].

Obtaining bifurcation diagrams and determining bistability

Each point in the bifurcation diagrams in Figs 2 and 3 was simulated for pairs of external

inputs mext
E and mext

I and the resulting time series of the excitatory population rate of the mean-

field model and the AdEx network were analyzed and the dynamical state was classified.

To classify a point in the state space as bistable or not, in both models, we apply a negative

and a subsequent positive stimulus to the excitatory population and measure the difference in

activity after both stimuli are turned off again. In the AdEx network, a simple step input can

cause over- and under-shoot as a reaction, which is a problem when assessing the stability of a

basin of attraction around a fixed point. To overcome this problem, we constructed a slowly-

decaying stimulus (in contrast to previous work [80], where bistability was identified using a

step current). An inverted example of this stimulus is shown in Fig 4e and 4f. Using this stimu-

lus, we first made sure that the population rate is in the down-state (the initial state) with an

initial negative external input current that slowly decays back to zero. We then kicked the

activity into the up-state (the target state) with a positive input and then let the current slowly

decay to zero again. A slowly-decaying stimulus (in contrast to a step stimulus) ensures that

transient effects such as over- and undershooting are minimized that would otherwise disturb

the target state. As a result, the stability of the target state can be observed. We determined

whether the up-state is stable or the activity has decayed back into the down-state by compar-

ing the 1 s mean of the population rates after both stimuli have decayed. We classified a state

as bistable if the rate difference after both kicks and subsequent relaxation phases was greater

than 10 Hz. This threshold value was chosen to be smaller than every observed difference

between the up- and the down-state. We confirmed the validity of this method for the mean-

field model by using a continuation method to determine the stability of the fixed-point states,

which provided the same bifurcation diagrams.

Determining frequency spectra of the population activity

In the bifurcation diagrams in Figs 2 and 3, regions were classified as oscillating if the time

series showed oscillations during the last 1 s after the first (negative) stimulus pushed the sys-

tem into the down-state. The power spectrum of this oscillation was computed using the

implementation of Welch’s method [81] scipy.signal.welch in the Python package

SciPy (1.2.1) [82]. A rolling Hanning window of length 0.5 s was used to compute the spec-

trum. If the dominant frequency was above 0.1 Hz and its power density was above 1 Hz we

classified the state as oscillating. Visual observation of the time series confirmed that these

thresholds classified the oscillating regions well. In cases where the transient of 1 s was too

short such that the activity state of the population jumped from the down-state to the up-state
within this period, misclassifications of these points as oscillatory states caused artifacts at the

right-hand border of the bistable region to the up-state.
In Fig 5, we determined frequency entrainment by observing changes of the frequency spec-

trum of the population activity rE. Each run was simulated for 6 s. We waited for 1 s for tran-

sient effects to vanish before turning on the oscillating stimulus and measured the power
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spectrum of the remaining 5 s. A rolling Hanning window of length 1 s was used. For better

visibility, the power was normalized between 0 and 1 on a logarithmic scale and plotted with a

linear colormap.

Measuring phase locking using the Kuramoto order parameter

In Fig 6 we quantified the degree of phase locking of an oscillatory input current with the E-I

system’s ongoing oscillation. We calculated the Kuramoto order parameter [83] to measure

phase synchrony. The Kuramoto order parameter R is given by:

RðtÞ ¼
1

Nosc

XNosc

j¼1

eiFjðtÞ
�
�
�
�
�

�
�
�
�
�
: ð22Þ

In our case, the number of oscillators Nosc = 2 and Fj 2 [0, 2π) is the instantaneous phase of

the stimulus (j = 1) and the population activity rE (j = 2). We define the instantaneous phase Fj

at time t as

FjðtÞ ¼ 2p
t � tn
tn � tn� 1

; ð23Þ

where tn is the time of the last maximum and tn−1 the penultimate one. To robustly detect the

oscillation maxima of the noisy AdEx network population rate, the time series was first

smoothed using the Gaussian filter scipy.ndimage.filters.gaussian_filter
implemented in SciPy. The Gaussian kernel had a standard deviation of 5 ms. Then, the max-

ima were detected using the peak finding algorithm scipy.signal.find_peaks_cwt
with a peak-width between 0.1 and 0.2 ms.

For R = 1, perfect (zero-lag) phase synchronization is reached; if R� 0, the oscillations are

maximally desynchronized. To measure phase locking in Fig 6a and 6c, we calculated the stan-

dard deviation in time of R(t) after transient effects vanished for t> 1.5 s. A low standard devi-

ation means that the phase difference between the input and the ongoing oscillation stays

constant.

Calculating equivalent electric field strengths

Our results can be used to estimate the necessary amplitude of an external electric field to

reproduce the effects of electrical input currents. An external field at the location of a neural

population might be produced by endogenous electric fields due to the activity of a neural pop-

ulation or external stimulation techniques such as transcranial electrical stimulation (tES) with

direct (tDCS) or alternating (tACS) currents. The lack of a spatial extension of point neuron

models such as the AdEx neuron makes it impossible to directly couple an external electric

field that could affect the internal membrane voltages. Following Ref. [28], we obtain an equiv-

alent electrical input current C � mext
E ðtÞ to a point neuron by matching it to reproduce the

effects of an oscillating extracellular electric field on a spatially extended ball-and-stick (BS)

model neuron of a given morphology. We calculated the equivalent current amplitudes for the

exponential integrate-and-fire (EIF) neuron, which is the same as the AdEx neuron without

somatic adaptation (a = b = 0). In the case with adaptation, the translation from current to

field works for high frequency inputs only and the approximation breaks down for slowly

oscillating inputs. Thus, we have limited our estimated field strengths to the case without

adaptation.

The amplitude of the equivalent input current that causes the same subthreshold depolariza-

tion of a (linearized) EIF neuron as the somatic depolarization caused by the effects of an

PLOS COMPUTATIONAL BIOLOGY Mean-field models of neural populations under electrical stimulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007822 April 23, 2020 22 / 30

https://doi.org/10.1371/journal.pcbi.1007822


oscillatory electric field on the BS neuron’s dendrite is then calculated using

Iext ¼ A
UBSðf Þ
zEIFðf Þ

�
�
�
�

�
�
�
�: ð24Þ

A is the amplitude of the electric field in V/m, UBS(f) is the frequency-dependent polarization

transfer function of the BS neuron and zEIF(f) is the impedance of the EIF neuron which are

both given by

UBSðf Þ ¼ gað2e
� z ld � gÞ=d ð25Þ

zEIFðf Þ ¼
1

gLð1 � e
Vr � VT
DT Þ þ 2piC � f

ð26Þ

with the following substitutions:

w ¼ 2pf ; gm ¼ ðpddÞ=rm; ga ¼ ðpðdd=2Þ
2
Þ=ra ð27Þ

cm ¼ Cmddp; gs ¼ ðpd
2

s Þ=rs; cs ¼ Cmpd
2

s ð28Þ

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gm þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
m þ w2c2

m

p

2ga

s

; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� gm þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
m þ w2c2

m

p

2ga

s

ð29Þ

z ¼ aþ ib; g ¼ 1þ expð� 2ldzÞ; d ¼ gðcswiþ gsÞ þ zgað2 � gÞ: ð30Þ

The BS neuron we used to estimate electric field strengths has the following parameters: The

soma has a diameter of ds = 10 μm, a specific membrane capacitance of Cm = 10 mF/m2 and a

membrane resistivity of ρs = 2.8 Om2. The dendritic cable has a length of ld = 1200 μm, a diam-

eter of dd = 2 μm (as in the typical range of cortical pyramidal cells [32, 84]), a membrane resis-

tivity of ρm = 2.8 Om2 and an axial resistivity of ρa = 1.5 Om.

Using these parameters, an step input using an electric field with an amplitude of 1 V/m

changes the somatic membrane potential by about 0.5 mV from its resting potential of −65

mV which is in agreement with in vitro measurements [32]. The curves shown in Fig 8 trans-

late an electric field of a given amplitude and frequency to a corresponding input current and

vice versa. An increase of the mean membrane current by 0.1 nA corresponds to an increase of

the static electric field strength by 20 V/m.

Numerical simulations

The mean-field equations were integrated using the forward Euler method. In Fig 2, each time

series for a set of external inputs mext
E and mext

I in the bifurcation diagrams was obtained after

t = 5 s simulation with an integration timestep of dt = 0.05 ms. In Fig 3 we simulated each

point for t = 10 s with dt = 0.01 ms. For Fig 5 we simulated for t = 30 s with dt = 0.05 ms.

The spiking network model was implemented using BRIAN2 [85] (2.1.3.1) in Python. The

equations were integrated using the implemented Heun’s integration method. An integration

step size of 1 ms was used. In all network simulations, Ne = Ni. For the bifurcation diagrams in

Fig 2, we used N = 50 × 103 (i.e. 25 × 103 per population), a total simulation time of t = 6 s and

in Fig 3, N = 20 × 103 and t = 6 s. The stimulation experiments in Fig 4 used N = 100 × 103,

t = 3 s. The spectra in Fig 5 used N = 20 × 103, t = 6 s. Phase locking plots in Fig 6 used

N = 20 × 103, t = 20 s.
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Benchmarking the AdEx network with N = 100 × 103 on a single core took around 104

times longer to run than the corresponding mean-field simulation. This does not include the

time required for initializing the simulation, such as setting up all synapses, which can also

require a comparable amount of time. The computation time scales nearly linearly with the

number of neurons.

An implementation of the mean-field model is available as a Python library in our GitHub

repository https://github.com/neurolib-dev/neurolib. The Python code of the comparison to

AdEx network simulations, the stimulation experiments, as well as the data analysis and the

ability to reproduce all presented figures in this paper can be found at https://github.com/

caglarcakan/stimulus_neural_populations.

Supporting information

S1 Fig. Spiking network activity and statistics. (a) Population firing rate rE of the excitatory

population in Hz (upper panels) and raster plots of 100 randomly chosen excitatory neurons

(lower panels) in three different network states A2, A3 and B3, located in the bifurcation dia-

grams Fig 2. A2 is located in the fast excitatory-inhibitory limit cycle LCEI, A3 in the high-

activity asynchronous irregular up-state, and B3 in the adaptation-mediated slow limit cycle

LCaE. (b) The upper panel shows the distribution of coefficients of variation (CV) of the inter-

spike-intervals (ISI) calculated as the variance of ISIs divided by the mean ISI of excitatory

neurons for all three states. The lower panel shows spike count distributions. For each neuron,

the spike count was calculated from the inverse of the mean of the ISI distribution. Simulations

were run with N = 100 × 103 neurons for 10s each. The statistics were computed for t> 500

ms for the neurons shown in (a). All parameters are given in Table 1.

(TIF)

S2 Fig. Bifurcation diagrams with maximum rate of the inhibitory population. (a) Bifurca-

tion diagram of the mean-field model without adaptation with up and down-states, a bistable

region bi (green dashed contour) and an oscillatory region LCEI (white solid contour). (b) Dia-

gram of the corresponding AdEx network. (c) The mean-field model with somatic adaptation

Fig 8. Conversion between electric field amplitudes and equivalent input currents. Each curve shows the

frequency-dependent amplitude of an equivalent input current in pA to an exponential integrate-and-fire neuron with

parameters as defined in Table 1 when the electric field amplitude acting on an equivalent ball-and-stick neuron is held

constant. Electric field amplitudes in V/m are annotated for each curve.

https://doi.org/10.1371/journal.pcbi.1007822.g008
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has a slow oscillatory region LCaE. (d) Diagram of the corresponding AdEx network. The color

indicates the maximum population rate of the inhibitory population (clipped at 80 Hz). All

parameters are given in Table 1.

(TIF)

S3 Fig. Bifurcation diagrams depicting the difference of excitatory and inhibitory ampli-

tudes. (a) Bifurcation diagram of the mean-field model without adaptation with up and down-
states, a bistable region bi (green dashed contour) and an oscillatory region LCEI (white solid

contour). (b) Diagram of the corresponding AdEx network. (c) The mean-field model with

somatic adaptation has a slow oscillatory region LCaE. (d) Diagram of the corresponding AdEx

network. The color indicates the difference of excitatory and inhibitory amplitudes (clipped

from -100 Hz to 100 Hz). All parameters are given in Table 1.

(TIF)

S4 Fig. Bifurcation diagrams with the dominant oscillation frequency of the excitatory

population. (a) Bifurcation diagram of the mean-field model without adaptation. (b) Diagram

of the corresponding AdEx network. (c) Mean-field model with somatic adaptation. (d) Dia-

gram of the corresponding AdEx network. The color indicates the difference of excitatory and

inhibitory amplitudes (clipped at 35 Hz). All parameters are given in Table 1.

(TIF)

S5 Fig. Bifurcation diagrams of the mean-field model for changing coupling strengths.

Stacked bifurcation diagrams depending on the mean input current to populations E and I

showing dynamical states for intervals of JEE and JII (outer axis), JIE and JEI (inner axis) by val-

ues of 0.5 V/ms. The middle rows and columns correspond to the default value of the corre-

sponding parameter (see Table 1). White contours are oscillatory areas LCEI, green dashed

contours are bistable regions. Diagram in the middle (blue box) corresponds to bifurcation

diagram Fig 2a. a = b = 0. For all other parameters, see Table 1.

(TIF)

S6 Fig. Bifurcation diagrams of the AdEx network model for changing coupling strengths.

Stacked bifurcation diagrams for a subset of the values depicted in S4 Fig depending on the

mean input current to populations E and I showing dynamical states for changing JEE and JII
(outer axis), JIE and JEI (inner axis) by intervals of 0.5 mV/ms. The middle rows and columns

correspond to the default value of the corresponding parameter (see Table 1). In this figure, all

of the four coupling parameters have been varied independently. Empty plots were not com-

puted. White contours within the plots denote the boundaries of the oscillatory areas LCEI,

green dashed contours the boundaries of bistable regions. Position in the middle (blue box)

corresponds to bifurcation diagram Fig 2b. Number of neurons N = 20 × 103, a = b = 0. For all

other parameters, see Table 1.

(TIF)

S7 Fig. Finite-size effects on bifurcation diagrams of the AdEx network with increasing

number of neurons N. Bifurcation diagrams depict the state space of the E-I system without

adaptation in terms of the mean external input currents C � mext
a

to both subpopulations α 2 {E,

I}. Up (bright area) and down-states (dark blue area), a bistable region bi (green dashed con-

tour) and an oscillatory region LCEI (white solid contour) are visible. All parameters are given

in Tables 1 and 2.

(TIF)

S8 Fig. Finite-size effects in the AdEx network on E-I oscillation amplitudes. Oscillation

amplitudes in the limit cycle LCEI fluctuate due to finite-size effects in the AdEx network.
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The system is parameterized in point A1 and pushed into the limit cycle by a constant input

as in Fig 4b. (a) Traces of the population firing rates are shown (black) with the oscillation’s

maxima marked (red dots) for an increasing number of neurons N in each panel (excitatory

plus inhibitory). (b) The left panel shows the mean amplitude and the standard deviation as a

function of the population size N on a semi-logarithmic scale. With increasing N, the ampli-

tude of the oscillation decreases. The right panel shows the coefficient of variation (CV) of

the amplitudes on a semi-logarithmic scale. The CV decreases with increasing number of

neurons. Each point was measured from 20 realizations of 2 seconds of oscillatory activity.

One randomly chosen realization for each N is shown in (a). All parameters are given in

Tables 1 and 2.

(TIF)
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