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Abstract

Genome-wide association studies (GWASs) have the potential to reveal the genetics of microbial phenotypes such as antibi-
otic resistance and virulence. Capitalizing on the growing wealth of bacterial sequence data, microbial GWAS methods aim 
to identify causal genetic variants while ignoring spurious associations. Bacteria reproduce clonally, leading to strong popu-
lation structure and genome-wide linkage, making it challenging to separate true ‘hits’ (i.e. mutations that cause a pheno-
type) from non-causal linked mutations. GWAS methods attempt to correct for population structure in different ways, but 
their performance has not yet been systematically and comprehensively evaluated under a range of evolutionary scenarios. 
Here, we developed a bacterial GWAS simulator (BacGWASim) to generate bacterial genomes with varying rates of mutation, 
recombination and other evolutionary parameters, along with a subset of causal mutations underlying a phenotype of inter-
est. We assessed the performance (recall and precision) of three widely used single-locus GWAS approaches (cluster-based, 
dimensionality-reduction and linear mixed models, implemented in plink, pyseer and gemma) and one relatively new multi-
locus model implemented in pyseer, across a range of simulated sample sizes, recombination rates and causal mutation effect 
sizes. As expected, all methods performed better with larger sample sizes and effect sizes. The performance of clustering and 
dimensionality reduction approaches to correct for population structure were considerably variable according to the choice of 
parameters. Notably, the multi-locus elastic net (lasso) approach was consistently amongst the highest-performing methods, 
and had the highest power in detecting causal variants with both low and high effect sizes. Most methods reached the level of 
good performance (recall >0.75) for identifying causal mutations of strong effect size [log odds ratio (OR) ≥2] with a sample size 
of 2000 genomes. However, only elastic nets reached the level of reasonable performance (recall=0.35) for detecting markers 
with weaker effects (log OR ~1) in smaller samples. Elastic nets also showed superior precision and recall in controlling for 
genome-wide linkage, relative to single-locus models. However, all methods performed relatively poorly on highly clonal (low-
recombining) genomes, suggesting room for improvement in method development. These findings show the potential for multi-
locus models to improve bacterial GWAS performance. BacGWASim code and simulated data are publicly available to enable 
further comparisons and benchmarking of new methods.

Data Summary

1. Genomes used for measuring linkage disequilibrium (LD).

Mycobacterium: 3295 samples susceptible to pyrazinamide, 

downloaded from ftp://​ftp.​patricbrc.​org/​AMR_​genome_​sets/​

Mycobacterium/​pyrazinamide/​Susceptible.

Escherichia: 1582 samples susceptible and resistant to 
gentamicin, downloaded from ftp://​ftp.​patricbrc.​org/​AMR_​
genome_​sets/​Escherichia/​gentamicin.

Streptococcus: 2169 samples resistant to trimethoprim, 
downloaded from ftp://​ftp.​patricbrc.​org/​AMR_​genome_​
sets/​Streptococcus/​trimethoprim/​sulfamethoxazole/​
Resistant.

2. Simulation datasets.

http://mgen.microbiologyresearch.org/content/journal/mgen/
https://creativecommons.org/licenses/by/4.0/deed.ast
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Simulation dataset for sample size 400: https://​figshare.​com/​
articles/​bacterial_​GWAS_​benchmark_​simulations_​Sample_​
size_​400/​9956420.

Simulation dataset for sample size 700: https://​figshare.​com/​
articles/​bacterial_​GWAS_​benchmark_​simulations_​Sample_​
size_​700/​9956426.

Simulation dataset for sample size 1000: https://​figshare.​com/​
articles/​bacterial_​GWAS_​benchmark_​simulations_​Sample_​
size_​1000/​9956429.

Simulation dataset for sample size 2000: https://​figshare.​com/​
articles/​bacterial_​GWAS_​benchmark_​simulations_​Sample_​
size_​2000/​9956441.

Simulation dataset for sample size 3000 and low LD: https://​
figshare.​com/​articles/​bacterial_​GWAS_​benchmark_​simula-
tions_​lowLD_​Sample_​size_​3000/​9956444.

Simulation dataset for moderate LD simulations: https://​
figshare.​com/​articles/​bacterial_​GWAS_​benchmark_​simula-
tions_​Medium_​LD_​dataset/​9956456.

Simulation dataset for high LD simulations: https://​figshare.​
com/​articles/​bacterial_​GWAS_​benchmark_​simulations_​
High_​LD_​dataset/​9956477.

Introduction
Recent progress in sequencing technologies and consequently 
the rapid expansion of bacterial genomic data repositories have 
provided enormous opportunities to identify the genomic 
elements underlying clinically, environmentally and industri-
ally important bacterial phenotypes and their evolutionary 
responses to changing environmental circumstances. Such 
discoveries could immensely improve our knowledge of the 
molecular mechanisms of important microbial phenotypes 
such as antibiotic resistance and virulence; thus, contributing 
to the development of new drugs, vaccines and antibiotics.

By identifying statistical associations between genotype and 
phenotype, genome-wide association studies (GWASs) can 
be used to dissect the genetic components of any measur-
able and heritable phenotype in an unbiased hypothesis-free 
manner. In humans, GWASs have been used to investigate 
genotype–phenotype association since the early 2000s, 
leading to the discovery of more than 149 000 trait-associated 
genomic markers, and in the past 5 years, the number of 
GWAS publications has increased by more than 300 % (1961 
to 7796) [1]. An early application of a GWAS approach to 
bacteria attempted to unravel the genomic elements respon-
sible for transforming harmless Neisseria meningitidis into 
a lethal pathogen causing cerebrospinal meningitis using 
multilocus sequence typing [2]. The difficulties and limita-
tions of bacterial GWASs imposed by population structure 
were appreciated soon thereafter [3]. Nevertheless, over the 
past decade, GWASs applied to SNPs and k-mers (i.e. DNA 
words of length k) in microbial genomes have identified muta-
tions and genes associated with antibiotic resistance [4–10], 
cancer [11], virulence [2, 12, 13] and host preference [14]. 

In contrast to human GWAS, however, bacterial association 
mapping is technically challenging due to the unique charac-
teristics of bacterial populations, and the optimality of current 
approaches has yet to be established.

The objective of a GWAS method is to maximize statistical 
precision and power, in order to identify true causal genomic 
elements, while ignoring spurious associations. To do so, 
GWAS methods must overcome confounding factors, which 
are particularly acute in bacterial populations. The two main 
confounding elements in bacteria are genome-wide linkage 
disequilibrium (LD) interrupted by homologous recombina-
tion tracts, and strong population structure resulting from 
clonal expansions.

Genome-wide LD leads to type I errors (false positives) 
in GWAS tests, because linked non-causal mutations may 

Impact Statement

Microbial populations contain measurable phenotypic 
differences with important clinical and environmental 
consequences, such as antibiotic resistance, virulence, 
host preference and transmissibility. A major chal-
lenge is to discover the genes and mutations in bacte-
rial genomes that control these phenotypes. Bacterial 
genome-wide association studies (GWASs) are families of 
methods to statistically associate phenotypes with geno-
types, such as point mutations and other variants across 
the genome. However, compared to sexual organisms 
such as humans, bacteria reproduce clonally meaning 
that causal mutations tend to be strongly linked to other 
mutations on the same chromosome. This genome-wide 
linkage makes it challenging to statistically separate 
causal mutations from non-causal false-positive asso-
ciations. Several GWAS methods are currently avail-
able, but it is not clear which is the most powerful and 
accurate for bacteria. To systematically evaluate these 
methods, we developed BacGWASim, a computational 
pipeline to simulate the evolution of bacterial genomes 
and phenotypes. Using simulated genomes, we found 
that GWAS methods varied widely in their performance. 
In general, causal mutations of strong effect (e.g. those 
under strong selection for antibiotic resistance) could 
be easily identified with relatively small samples sizes 
of around 1000 genomes, but more complex phenotypes 
controlled by mutations of weaker effect required 3000 
genomes or more. We found that the elastic net (lasso) 
approach, a method that has only recently been applied 
to the GWAS problem, was particularly good at identi-
fying causal mutations in highly clonal populations, with 
strong linkage between mutations – but there is still 
room for improvement. The BacGWASim computer code 
is publicly available to enable further comparisons and 
benchmarking of new methods.

https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_Sample_size_400/9956420
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_Sample_size_400/9956420
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_Sample_size_400/9956420
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_Sample_size_700/9956426
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_Sample_size_700/9956426
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_Sample_size_700/9956426
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_Sample_size_1000/9956429
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_Sample_size_1000/9956429
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_Sample_size_1000/9956429
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_Sample_size_2000/9956441
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_Sample_size_2000/9956441
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_Sample_size_2000/9956441
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_lowLD_Sample_size_3000/9956444
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_lowLD_Sample_size_3000/9956444
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_lowLD_Sample_size_3000/9956444
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_Medium_LD_dataset/9956456
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_Medium_LD_dataset/9956456
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_Medium_LD_dataset/9956456
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_High_LD_dataset/9956477
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_High_LD_dataset/9956477
https://figshare.com/articles/bacterial_GWAS_benchmark_simulations_High_LD_dataset/9956477


3

Saber and Shapiro, Microbial Genomics 2020;6

hitchhike on the same genomic background (‘clonal frame’) 
as a causal mutation. A naïve GWAS approach will find the 
entire set of linked mutations to be associated with the pheno-
type. In bacterial species such as Mycobacterium tuberculosis 
that are virtually non-recombining, most of the genome is in 
complete LD, posing a major risk of type I error. In humans 
and other sexual species, LD is broken down by homologous 
recombination every generation, allowing GWAS tests to map 
the causal variants to a small genomic region. In bacteria, 
LD may span the entire genome, complicating fine mapping 
of causal variants. Even in bacterial species with relatively 
high rates of homologous recombination (e.g. Streptococcus 
pneumoniae), LD may still extend across the entire chromo-
some [15].

Population structure refers to a situation in which 
subpopulations have systematic differences in allele and 
phenotype frequencies [16, 17]. This can result in spurious 
associations between genotypes and phenotypes due to 
shared ancestry rather than causal associations. To control 
for the confounding effect of population structure, microbial 
GWAS tools have adapted single-locus approaches already 
used in human GWASs, including cluster-based techniques 
[6, 12, 18], dimensionality reduction [19–23], linear mixed 
models (LMMs) [4, 8, 10, 24, 25] and, recently, artificial intel-
ligence using multi-locus models [26]. Here, we define single-
locus approaches as models testing the association between 
a phenotype and a single variant at a time, repeated for all 
variants across the genome. In contrast, multi-locus models 
(including several machine-learning approaches) are fitted to 
the entire dataset at once. Although each of these approaches 
has been successful to varying extents, population structure 
is still a challenge in microbial GWASs and no gold standard 
solution has been established.

The power of a GWAS to identify causal variants underlying 
a phenotype is influenced by several other factors, including 
the sample size and the distribution of effect sizes. In human 
GWASs, most of the detected causal variants underlying 
complex phenotypes have an odds ratio (OR) <1.5 [27] due 
to the polygenicity of the traits and the fact that many human 
phenotypes of interest are disease traits that have been largely 
shaped by neutral evolution rather than strong selection. 
In bacteria, however, many phenotypes of interest, such as 
antibiotic resistance or host association, tend to be shaped 
by recent positive selection. Therefore, the genomic elements 
controlling bacterial traits are expected to have larger effect 
sizes [18]. For example, mutations conferring antibiotic resist-
ance in M. tuberculosis [28] and S. pneumoniae [6] tend to 
have large effect sizes (OR >10). However, it has yet to be 
investigated whether smaller effect sizes are detectable and, 
if so, by which methods.

To determine best practices for microbial GWAS, it is essen-
tial to compare current GWAS methods in terms of their 
performance across a range of realistic effect sizes, recombi-
nation rates and sample sizes. For this purpose, here, we have 
developed a simulation platform called BacGWASim, which 
simulates bacterial genomes along a defined phylogenetic 

tree to capture mutation and recombination events in a clonal 
population structure. BacGWASim is tunable for a variety of 
evolutionary parameters in order to simulate a wide range 
of bacterial species. It then simulates bacterial phenotypes 
based on adjustable values of heritability, number of causal 
variants and their effect sizes. The major different classes 
of GWAS methods currently in use were then evaluated in 
terms of their precision [true positives/(true positives+false 
positives)] and power [true positives/[true positives+false 
negatives)] to identify true causal variants in the simulated 
bacterial populations. As an additional performance metric, 
we used the F1 score, defined as the harmonic mean of preci-
sion and power, which has been used elsewhere to evaluate 
the performance of GWAS tools [16]. These metrics are 
informative for the GWAS scenario in which there are rela-
tively few true positives. We focused mainly on the effects 
of sample size, causal variant effect size, LD (recombination 
rates), while other parameters were kept constant. Notably, 
we held the mutation rate constant in order to compare across 
GWAS methods. In practice, mutation rate is an important 
parameter in determining GWAS power (e.g. if there is very 
little genetic diversity, it is unlikely that many GWAS hits 
will be found). In summary, we provide an extensible frame-
work for simulating the evolution of bacterial genotypes and 
phenotypes, and for benchmarking new GWAS approaches 
as they become available.

Methods
Overview of the bacterial GWAS simulator 
(BacGWASim)
BacGWASim was developed with the goal of simulating 
a range of evolutionary parameters that can potentially 
confound microbial GWASs. In this first release, we primarily 
focused on simulating population structure and genome-
wide LD, and evaluating GWAS methods to identify SNPs 
underlying a phenotype. BacGWASim starts with a bacterial 
whole genome and its annotations, and simulates a popu-
lation across a pre-defined or simulated phylogenetic tree 
(Fig. 1a). A binary or continuous phenotype is then assigned 
to each genome in the population based on the emergence 
and evolution of a randomly chosen set of causal variants with 
a user-defined range of effect sizes. BacGWASim simulates 
bacterial genotypes and phenotypes in three main steps: (i) 
generating a phylogenetic tree, (ii) evolving genomes along 
the phylogenetic tree and (iii) simulating phenotypes.

Generating the phylogenetic tree
A neutral model of speciation-extinction developed by 
Genhard [29] implemented in Artificial Life Framework (alf) 
[30] was used for the simulation of phylogenetic trees. This 
model allows for simulation of bacterial populations across 
a wide range of birth rates (λ), death rates (µ) and branch 
length distributions. A custom phylogenetic tree can also be 
provided by the user to provide the option for simulation of 
scenarios inferred from real bacterial populations.
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Fig. 1. Overview of the bacterial GWAS simulation (BacGWASim) pipeline. (a) Taking a bacterial genome and annotations as input, 
evolutionary events are simulated across the branches of the phylogenetic tree (either user-defined or simulated based on a birth–
death model), producing the final genomes and simulated markers as output. A phenotype is then assigned to each simulated sample 
based on the presence/absence of a set of causal SNPs. (b) Binary phenotypic states, shown as red or blue branches, mostly cluster in 
monophyletic subpopulations of closely related individuals due to population structure. The external rings denote the allele (red or blue) 
at each of the simulated causal loci (shown as concentric rings).

Simulation of genome evolution
For simulation of realistic genomic content, BacGWASim 
accepts any bacterial whole genome and the corresponding 
feature annotations as starting input. The elements of the 
genome are then extracted and classified in two groups of 
protein-encoding genes and intergenic regions (defined as 
sequence not annotated as a coding sequence). These two 

categories are often under distinct evolutionary constraints 
and their evolution is best captured by different evolutionary 
parameters. alf was used for the simulation of protein-
encoding genes and dawg v.2 for the intergenic regions [31]. 
These implementations allowed for simulation of three cate-
gories of genomic events: (i) site-level events including codon 
and nucleotide substitution rates, insertion and deletion rates, 



5

Saber and Shapiro, Microbial Genomics 2020;6

and rate variation across sites; (ii) gene-level events including 
gene deletion, duplication and gene fission/fusion; and (iii) 
genome-level events including inversion, translocation and 
recombination through horizontal gene transfer. Equal 
nucleotide diversities across all evolutionary scenarios were 
set by fixing the mutRate parameter to 0.0004 in the alf 
phylogenetic tree simulator in order to remove confounding 
effects of differences in genetic diversity on GWAS. The 
resulting sequences of coding and intergenic regions at the 
tips of phylogenetic tree are then combined, while accounting 
for gene loss and transfer. Synthetic sequencing reads with 
Illumina-specific sequencing errors were generated for each 
simulated sample using the art next-generation sequencing 
read simulator [32]. The empirically measured error rates for 
Illumina paired-end sequencing estimated by Huang et al. 
[33] were used. These synthetic reads were then mapped to 
the reference genome using bwa [34] with default setting and 
the simulated variants were called using GATK Haplotype 
caller by setting ‘ploidy’ to 1 [35].

Phenotype simulation
After genome simulation, a binary or continuous phenotype 
was then simulated for each member of the population based 
on an additive genetic model (equation 1) implemented in 
gcta [36]:

‍
yj = sum

( (
xij−2pi

)
√

2pi
(
1−pi

) × ui

)
+ ej

‍( 1 ) 

where yj is the phenotype liability of individual j, xij is number 
of reference alleles for the ith causal variant of the jth indi-
vidual, pi is the frequency of the ith causal variant, ui is the 
allelic effect of the ith causal variant, and ej is the residual 
effect generated from a normal distribution with mean of 0 

and variance of var (﻿‍
sum

( (
xij−2pi

)
√

2pi
(
1−pi

) × ui

)

‍) (1/h2 - 1), where 

h2 is the heritability of the phenotype defined by the user. 
Cases were sampled from the individuals with phenotype 
liabilities (y) exceeding the threshold of a normal distribution 
truncating the proportion of K (phenotype prevalence defined 
by the user), and controls were sampled from the remaining 
individuals.

A user-defined number of causal variants, minor allele 
frequency cut-off and range of effect sizes in units of OR are 
used to randomly select a set of ‘true’ causal variants from 
the pool of simulated markers. The phenotype labels are then 
simulated according to the presence/absence of the causal 
variants in each genome, user-defined values of heritability 
and prevalence of the desired phenotype. Across all the simu-
lations in this paper, the ratio of case to control was set to 1 
(simu-cc=population size/2−population-size/2), heritability 
was set to 1 (simu-hsq=1) and phenotype prevalence (or 
‘disease prevalence’) was set to 0.5 (simu-k=0.5).

Benchmark datasets and methods of bacterial 
GWAS
Bacterial genomes were simulated within ranges of three 
features of interest, keeping other parameters constant. 
(i) Sample size: bacterial populations with a range of 400 
to 3000 sampled genomes were simulated to evaluate the 
effect of sample size on GWAS. (ii) Recombination rate: 
recombination rates in highly recombining S. pneumoniae 
estimated by Chewapreecha et al. [37] (mean ρ/θ≈0.20) 
were used for simulation of highly recombining populations. 
Moderate- and low-recombining populations were respec-
tively simulated with ρ/θ ratios of 0.1 and 0.001. alf accepts 
the recombination rate (ρ/θ) via the lgtRate parameter. The 
maximum recombination tract length was set to the length of 
each gene considered. To simulate homologous recombina-
tion, the orthRep parameter was set to 1 in all scenarios. (iii) 
Effect size distribution: 18 causal markers with ORs (effect 
sizes) of 2, 3, 4, 7, 10, 11, 15 and 20 (natural logarithm in 
the range of 1 to 3) with minor allele frequency >0.1 were 
randomly chosen for phenotype simulation. The LD values 
between the selected markers were measured using bcftools 
[38] and markers with r2 >0.6 were discarded. This filtering 
step to remove strongly linked causal markers was included 
to ensure that these markers (including those of different 
effect sizes) were identifiable in the simulated datasets. We 
note that causal markers could still be linked to non-causal 
alleles, posing a challenge for GWAS methods to correctly 
identify the causal variant.

To measure the range of LD in real bacterial species, genome 
data were retrieved from the card database [39], SNPs were 
called using Snippy [40] and linkage levels were measured in 
1000 markers using Haploview [26] (Fig. 2). In every set of 
simulations, 100 000 randomly selected markers with minor 
allele frequency >0.01 were retained for GWAS analysis. An 
equal number of markers was selected in each simulation to 
make them comparable without any confounding effect of 
multiple testing across replicates. For each genome simula-
tion, ten sets of randomly chosen markers were then used to 
generate ten replicate phenotype simulations. Using the called 
variants and phenotype labels as benchmark datasets, we then 
used the following methods to perform GWAS.

plink v1.9
This was employed using linkage agglomerative clustering 
based on pairwise identity-by-state (IBS) distances for popu-
lation structure correction, and using Bonferroni corrections 
for multiple tests with the typically accepted genome-wide 
false-positive rate (FPR) of 0.05 [41].

seer 
This was implemented in pyseer v 1.2.0 with multidimensional 
scaling of pairwise k-mer based genetic distances to correct 
for population structure, and using a Bonferroni correction 
(at a genome-wide false discovery rate of 0.05) for the number 
of unique SNP patterns (i.e. only giving one count to a SNP 
with an identical presence/absence profile across genomes). 
In practice, however, the total number of patterns in our 
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simulations were similar to the total number of SNPs (i.e. 
~100 000). We also removed markers tagged with the errors 
‘bad-chisq’, ‘pre-filtering-failed’, ‘lrt-filtering-failed’, ‘perfectly-
separable-data’, ‘firth-fail’ and ‘matrix-inversionerror’ after the 
analysis [19, 42]. In our simulations, however, only two error 
types occurred, ‘bad-chisq’ and ‘high-bse’. These errors likely 
represent spurious associations; therefore, we removed them 
as recommended in the pyseer documentation.

FaST-LMM implemented in pyseer 1.2.0 using pairwise 
variant-based distances
This was used to correct for population structure, using 
unique patterns to estimate significance threshold, and by 
removing the tagged markers mentioned above (as for seer) 
after the analysis [42, 43]. It should be noted that the results 
obtained from the pyseer implementation of FaST-LMM may 
not be exactly the same as the standalone FaST-LMM due to 
the added pre-processing and post-processing steps done in 
pyseer.

FaST-LMM implemented in pyseer 1.2.0 using phylogeny-
based patristic distances
This was used to correct for population structure, using 
unique patterns to estimate significance threshold, and by 
removing the tagged markers mentioned above after the 
analysis [42, 43].

gemma v.98
This was used with pairwise variant-based genetic distances 
to correct for population structure and setting the option ‘gk’ 
to 1 for generating the relationship matrix [44].

Elastic-net multi-locus model implemented in pyseer 
1.2.0
This was used by setting the alpha value to 1, without 
sequence reweighting. By fitting an elastic net regression to 
the data, the top 75 % of markers with coefficients above zero 
were selected, and a P value for each selected marker was 
calculated using a chi-square test [45]. Bonferroni correction 
thresholds were determined based on the number of selected 
markers (ranging between 500 and 1000 across simulations). 
The threshold for genome-wide false discovery rate was set 
to 0.05. It should be noted that by setting the alpha value to 1 
(as done here), the elastic net regression becomes equivalent 
to a lasso regression. By introducing more sparsity than ridge 
regression, lasso regressions are a suitable choice for identi-
fication of important features in high-dimensional datasets 
with many irrelevant features, especially cases where there 
are far more irrelevant dimensions than samples [46], which 
is the case for GWAS. In the pyseer documentation, the terms 
‘univariate’ and ‘multivariate' are used to refer to single-locus 
and multi-locus models, respectively.

The performance of each GWAS method was assessed based 
on the mean values of precision, recall and F1 scores, and the 
corresponding sds across ten replicate simulations for each 
parameter combination, where: precision=true positives/
(true positives+false positives), recall=true positives/(true 

positives+false negatives), and F1=2×(precision×recall)/
(precision+recall). GWAS analysis can be considered as a 
classification task on a highly asymmetric dataset: in the case 
of our simulations, there were 99 984 true negative and only 
16 true positives. Positive hits (whether true or false) were 
defined below a P value threshold of 0.05 after Bonferroni 
correction for 100 000 tests. Therefore, we used precision, 
recall and their harmonic mean (the F1 score) as our main 
performance metric, because they can handle this uneven 
class distribution. We also calculated the FPR (defined here 
as the number of false positives divided by the sum of false 
positives and true negatives).

Results
Simulating bacterial genomes and phenotypes
To systematically benchmark bacterial GWAS approaches, we 
first developed an appropriate simulator of bacterial genomes 
and phenotypes, BacGWASim (see Methods; Fig. 1a). The 
simulator starts from a real reference genome with gene 
annotations and then allows this genome to evolve along a 
user-defined or simulated phylogenetic tree capturing the 
population structure (Fig.  1b). Phenotypes are simulated 
according to a heritability function of causal SNPs, with 
user-defined effect sizes. Realistic sources of noise, such 
as sequencing error and read mapping, are also included. 
Although other evolutionary parameters (e.g. mutation rates) 
are tunable in the simulation, here we varied three key param-
eters with a likely effect on GWAS performance: sample size, 
recombination rate and effect size of causal mutations. We 
began with the genome sequence and phylogenetic tree of a 
well-studied species, S. pneumoniae (although the user could 
alternatively choose to simulate a phylogeny de novo using a 
birth–death process). A range of genome-wide LD was then 
simulated to approximate the range of LD observed in bacte-
rial species with high, moderate and low recombination rates. 
While not an exact match, these simulations approximate 
the LD landscapes of S. pneumoniae, Escherichia coli and M. 
tuberculosis, respectively (Fig. 2). We will begin by focusing 
on the high-recombining, low LD simulations to explore the 
effects of sample and effect sizes on GWAS performance, and 
then revisit the effects of LD to conclude. In all simulations, 
phenotype heritability was set to one, with an equal number of 
cases and controls in each dataset. The BacGWASim codes are 
publicly available at: https://​github.​com/​Morteza-​M-​Saber/​
BacGWASim.

GWAS power to detect variants of large effect 
reaches a plateau at 3000 genomes
Early GWASs were able to identify causal variants of large 
effect with relatively small sample sizes (in the order of 100 
genomes), likely because the phenotypes investigated were 
under strong positive selection [4, 9, 12, 14, 18]. However, 
recent advances in high-throughput sequencing technologies 
now make it feasible to sequence thousands of genomes. To 
evaluate the effect of increasing sample size on the power 
to detect causal mutations within a range of effect sizes, we 

https://github.com/Morteza-M-Saber/BacGWASim
https://github.com/Morteza-M-Saber/BacGWASim
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Fig. 2. Landscape of genome-wide LD in bacterial species compared to BacGWASim simulations. The distribution of linkage, measured 
as r2 scores binned into three categories, is shown as a function of distance in the genome, in kb, within genomes of simulated (left 
panels) and real (right panels) bacteria.
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Fig. 3. Performance of GWAS methods in simulations with low LD. (a, b, c) The boxplots on the left show the median and interquartile 
range, averaged across a range of effect sizes over ten replicates in each scenario (log OR=1 to 3). (a) F1 score of bacterial GWAS 
methods across a range of sample sizes under low LD. (b) Recall rates across the range of sample sizes. (c) Precision rates across the 
range of sample sizes. (d, e, f) The surface plots on the right show recall rates in separate categories of effect sizes.

measured the performance of bacterial GWAS methods 
on a range of sample sizes. In a high-recombining, low LD 
population (Fig. 2e), the elastic net multi-locus model (imple-
mented in pyseer with alpha set to one, making it equivalent 

to lasso regression) was consistently amongst the methods 
with highest F1 scores across the range of sample sizes, with 
scores ranging between 0.44 and 0.60 (Fig. 3a), and precision 
in the range of 0.40 to 0.47 (Fig. 3c). The LMM implemented 
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Fig. 4.  FPRs are generally acceptable across methods. FPRs are shown 
(a) across a range of sample sizes at low LD, and (b) across a range of 
LD in a sample size of 3000 genomes. The typical threshold of FPR=0.05 
is displayed as a dotted red line. Note that the FPR is already corrected 
for multiple tests, since it is calculated based on the number of false 
positives and true negatives identified after Bonferroni correction (see 
Methods). The inset in panel (a) shows the same data as in the main 
image with an adjusted y-axis for better clarity. Boxplots show the 
median and interquartile range, averaged across a range of effect sizes 
over ten replicates in each scenario (log OR=1 to 3).

in gemma and clustering approach implemented in plink 
also showed low rates of false positives comparable to elastic 
nets (Fig. 3c); however, they had lower recall (Fig. 3b). FaST-
LMM implemented in pyseer, despite its high recall (Fig. 3b), 
achieved lower F1 scores due to its relatively high number 
of false positives (Fig. 3c). With relatively small sample sizes 
(<1000), all methods except for elastic net showed poor 
performance in detecting causal variants with low effect 
sizes. Although all methods showed FPRs below the typical 
threshold of 0.05, there was some variation across methods 
(Fig. 4). Elastic nets outperformed other methods at moderate 
and high LD in particular (Fig. 4b).

A general pattern observed across all methods is that after 
a rapid surge in recall rate by increasing the sample size to 
1000, the power improvement slows down and reaches a 
plateau around 3000 samples (Fig. 3b). Breaking down these 

comparisons by effect size shows that, as expected, causal 
markers with low effect size (log OR ≈1) are the most sensitive 
to sample size. The power to detect such variants is <0.1 in 
single-locus methods and <0.35 in elastic nets in samples sizes 
below 1000. Power improves to 0.37–0.48 for single-locus 
methods and 0.68 for elastic nets at a sample size of 3000 
(Fig. 3d). In contrast, recall rate (power) for causal markers 
with higher effect sizes (log OR ≈2 and log OR ≈3) is more 
uniform across methods and reaches a maximum of 0.78 in 
single-locus models and 0.91 in elastic nets, with only 1000 
genomes sampled. Beyond 1000 samples, the increase in recall 
tends to be small, reaching a plateau around 3000 samples for 
most methods (Fig. 3e, f) .

Correcting for population structure
We next investigated how GWAS power varies across the four 
methods to correct for population structure: single-locus 
models including cluster-based approaches, dimensionality 
reduction and LMMs, and the multi-locus model using elastic 
nets. In single-locus models, the association between each 
of the markers (SNPs or k-mers) and the desired phenotype 
is investigated separately. Therefore, the covariance between 
the markers due to population structure needs to be included 
explicitly. Multi-locus models, however, include all the genetic 
variants at once, and by this means, covariance between the 
variants are implicitly included in the analysis. Our findings 
show that the multi-locus elastic net model has superior power 
relative to single-locus models in controlling for population 
structure and genome-wide LD, especially in small sample 
sizes (Fig. 3d, e, f) and when there is strong linkage across the 
genome, as discussed below. We consider each of the single-
locus methods separately below.

Cluster-based approaches
One of the classic methods for controlling the confounding 
effect of population structure is to identify clusters of related 
individuals within the overall population and then test for 
association conditional on these subpopulations. Subpopula-
tions can be inferred using a variety of methods [41, 47–49] 
and then a weighted association test is performed for each 
genomic marker across the defined clusters (e.g. with the 
Cochran–Mantel–Haenszel test). The proportion of popula-
tion structure captured in this approach, however, depends on 
the threshold used for clustering. Choosing a strict threshold 
for clustering will improve the precision of the test, but at 
the expense of reducing the recall score. To measure the 
effect of the choice of clustering threshold on the power of 
cluster-based methods, we performed linkage agglomerative 
clustering based on IBS distances implemented in plink 
across a range of thresholds. The threshold was defined as 
the maximum number of individuals allowed to group in one 
cluster. By relaxing the threshold, a larger number of samples 
with lower genetic similarity are included in each cluster; 
therefore, population structure will not be fully captured. In 
contrast, setting a very strict threshold will make the asso-
ciation test conservative by over-correcting for population 
structure.
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Fig. 5. GWAS performance varies according to different levels of correction for population structure in a dataset of 3000 genomes 
simulated under low LD. (a) Effect of the clustering threshold in terms of the maximum number of individuals per cluster in the GWAS. 
(b) GWAS power (recall) across a range of clustering thresholds for identifying causal markers within separate categories of effect sizes. 
(c) Effect of variation in the number of included principal components (PCs) as covariates used for correction. (d) GWAS power (recall) 
across a range of included PCs for detecting causal markers within separate categories of effect sizes. Shaded regions represent ±1 sd.

Using simulated datasets of 3000 genomes with low LD 
(Fig. 2e), we varied the population structure correction from 
strict (maximum number of two individuals per cluster) to 
weak (up to a hundred individuals per cluster). As expected, 
going from strict to weak correction improves recall (from 
0.56 to 0.75) at the expense of precision, which drops from 
0.57 to 0.38 (Fig.  5a). The choice of clustering threshold 
significantly affects the ability to detect variants of low effect 
(log OR≈1), but has little effect on variants of larger effect 
(Fig. 5b). In the absence of established standards for choosing 
a clustering threshold, our results suggest that the choice may 
not matter for the detection of large-effect variants, but could 
significantly bias the detection of markers with low-effect 
sizes.

Dimensionality reduction
In dimensionality reduction, a relatedness matrix of samples 
is projected onto a lower number of components, and then a 
certain number of these components are chosen as fixed-effect 

factors in the linear regression (or logistic regression in the 
case of binary phenotypes) to account for population struc-
ture. The two most popular and nearly identical methods 
for dimensionality reduction in GWASs are the principal 
component ANOVA-standardized relationship matrix based 
on SNP data [41] and the metric multidimensional scaling 
of genetic similarities based on pairwise distance matrix 
constructed using the shared k-mer content between all 
samples [19]. The former has been widely used in eukaryotic 
GWASs where there is low variation in pan-genome size, 
while the latter is specifically designed for bacterial GWASs 
and uses an alignment-free k-mer based approach to esti-
mate genetic similarities based on core and accessory genome 
distances. Like cluster-based approaches, the proportion of 
population structure controlled in this approach depends 
on the number of components included as covariates in the 
regression analysis. Although there are some recommended 
methods for determining the optimal number of included 
components, such as visual estimation using the scree plot 
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Fig. 6. Performance of LMM-based GWAS methods in a dataset of 
3000 simulated genomes under low LD. (a) Comparison of different 
implementations of LMMs in terms of precision, recall and F1 scores. 
(b) Comparison of the recall (power) of different implementations of 
LMMs in identifying causal markers within separate categories of effect 
sizes. Bar heights show the means across 10 replicate simulations and 
error bars show the sd.

[42], the number of included components is subjective and 
is a matter of sensitivity–specificity trade-off. Including more 
components is likely to improve the precision of GWAS and 
reduce type I error caused by population structure, at the 
expense of decreasing the recall score.

To evaluate the effect of the number of included components in 
a dimensionality reduction-based bacterial GWAS, we tested 
the seer method implemented in pyseer on a simulated high-
recombining dataset of 3000 samples (Fig. 2e). According to 
the scree plot, 4 or 11 are good choices for the number of 
components to be included in this particular analysis, as there 
are subtle but distinct drops after these number of dimen-
sions (Fig. S1, available with the online version of this article). 
However, the F1 score reaches its maximum after inclusion of 
30 dimensions (Fig. 5c). By increasing the number of compo-
nents from 4 to 30, the precision significantly improved from 
0.23 to 0.45, then reaches a plateau. Meanwhile, the recall score 
is relatively unaffected (dropping from 0.79 to 0.73), leading 
to total improvement of the F1 score (from 0.33 to 0.55) with 
an increasing number of components. As expected, recall is 
better for markers of high or medium effect, but recall does 
not vary much with increasing components for any category 
of effect size (Fig. 5d). In general, our results indicate that 
the choice of included components significantly affects the 
performance of dimensionality reduction-based stratification 
correction, and the lack of a standard protocol to identify the 
optimum number of included principal components can limit 
the application of this method.

LMMs
The LMM is an extension of linear regression, which allows 
the inclusion of both fixed and random effects as covariates. 
By using a kinship matrix to model the variance of a random 
effect, LMMs consider the genetic relationships between all 
samples rather than selecting a proportion of the popula-
tion structure (as in the cluster-based and dimensionality-
reduction approaches described above) and has been shown 
to control type I error without loss of power compared to 
GWAS performed without population stratification correc-
tion [15]. gemma [44] and FaST-LMM (a factored spectrally 
transformed LMM, that is essentially an approximation to 
LMM) [43] are two popular LMM-based GWAS methods 
and have been used in recent bacterial GWASs, either as 
standalone methods, or as implemented in BugWAS [24], 
dbgwas [25] or pyseer [42].

To compare the power of LMM-based GWAS methods, we 
tested the performance of gemma and FaST-LMM imple-
mented in pyseer on the same simulated high-recombining 
dataset of 3000 samples (Fig. 2e). pyseer provides the option 
to construct the kinship matrix using either variant-based 
genetic distances or by extracting patristic distances from 
the phylogeny, while gemma recommends using the centred 
genotype matrix. Averaged across effect sizes, gemma is the 
most efficient method to control for type I errors caused 
by population structure and results in the highest F1 score 
(Fig.  6a). In FaST-LMM, the phylogeny-based correction 

for population structure outperforms the genotype matrix, 
mainly due to a boost in precision (Fig. 6a). However, in this 
case the ‘true’ phylogeny (known from the simulation) was 
used, but must be estimated in real applications. Therefore, 
the accuracy of a phylogenetic correction might be lower 
depending on the choice of methods to construct the phylo-
genetic tree. FaST-LMM has slightly higher recall (power) 
than gemma, and its advantage was most pronounced for 
variants with low effect sizes (Fig. 6b). All methods had high 
and nearly equal power (>0.85) in identifying causal variants 
with high effect sizes (log OR ≈2 and log OR ≈3). However, 
FaST-LMM has higher power for detecting variants on the 
low end of the scale investigated here (log OR ≈1) (Fig. 6b).

Current GWAS methods perform poorly under 
moderate to high LD
Higher genome-wide LD is expected to reduce the precision 
of association testing, because hitchhiking non-causal muta-
tions are identified as false positives. To assess the influence 
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Fig. 7. Effect of LD on GWAS performance. (a) F1 score, (b) recall and 
(c) precision of GWAS methods in datasets of 3000 genomes with low, 
moderate and high genome-wide LD levels. Boxplots show the median 
and interquartile range, averaged across a range of effect sizes over 
ten replicates in each scenario (log OR=1 to 3).

of LD on GWAS performance, we tested each method across 
a range of simulated datasets with low, moderate or high 
genome-wide LD (Fig. 2). In general, the elastic net imple-
mented in pyseer (with alpha values equivalent to lasso) 
considerably outperforms other methods at moderate or 
high LD (Fig. 7). At low LD, elastic nets perform similarly to 
gemma, the best single-locus method (Fig. 7a). At high LD, 
elastic nets achieve ∼75 % power, compared to ∼60 % in single-
locus methods (Fig. 7b). All methods suffer a loss of preci-
sion with increasing LD, but elastic nets retain the highest 
precision at high LD (Fig. 7c). Still, the median precision of 
elastic nets at high LD is ∼8 %, suggesting significant room for 
improvement. The FaST-LMM approach using the genotype-
matrix for population structure correction was most severely 
affected by LD, with precision dropping from 0.36 at low LD 
to <0.001 at high LD (Fig. 7c). However, FaST-LMM with the 
phylogeny-based correction showed comparable results to the 
best performing single-locus-model methods. Amongst the 
single-locus models, the mixed model approach implemented 
in gemma tended to perform somewhat better than others 
at moderate or high LD (Fig. 7a). Q-Q plots further indicate 
gemma to be the best performing method across the range of 
LD among the single-locus models (Fig. S2).

Discussion
We developed a platform to simulate bacterial genomes and 
phenotypes based on the emergence and evolution of causal 
variants along a phylogenetic tree. The simulator is tunable for 
relevant evolutionary parameters. Although it was designed 
for benchmarking GWAS tools, it could also be used for other 
applications in bacterial population genomics and epidemi-
ology. Here, we focused on how GWAS method performance 
is affected by sample size, recombination (LD) and causal 
variant effect sizes. We only considered point mutations in 
the core genome as causal variants, but this could be extended 
to causal variants in the pangenome (i.e. gene presence/
absence), which can be identified with k-mer approaches [14] 
such as seer, BugWAS, dbgwas and others. Although a full 
exploration of core and pangenome associations is beyond 
the scope of the current work, we expect our major findings 
to hold when causal variants in the pangenome are included. 
Our evolutionary model is also ‘neutral’ in that it does not 
consider positive selection on causal variants (e.g. antibiotic-
resistance mutations that have a selective advantage). Future 
versions of BacGWASim could explicitly model an increased 
replication rate (clonal expansion) of bacteria encoding causal 
variants, perhaps more realistically capturing the evolution of 
certain phenotypes.

Our results confirmed that currently popular GWAS methods 
perform poorly when applied to bacteria with relatively clonal 
population structures yielding moderate or high LD (e.g. 
E. coli or M. tuberculosis) [24]. In such clonal populations, 
fine-mapping of causal mutations may be impossible and 
identification of phenotype-associated lineages may be the 
best possible outcome [24]. More encouragingly, causal vari-
ants can be detected with relatively high power and precision 
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in higher-recombining populations, akin to S. pneumoniae. 
These results highlight the importance of assessing the LD 
landscape of the target organisms before deciding on a sample 
size and GWAS design. It also suggests significant room for 
improvement in GWAS method development, particularly 
for highly clonal bacteria for which we are currently only 
able to detect lineage-specific associations [24]. Although we 
did not test homoplasy-based methods such as phyC [9] and 
treeWAS [16] due to their computational burden, especially 
with large sample sizes [15], they would be worth evaluating 
in the future. These methods could hold promise, at least for 
special cases where phenotypes are controlled by homoplastic 
mutations and an accurate phylogenetic tree can be inferred. 
Homoplasies do occur in our simulations (Fig. 1b), but their 
rate is not explicitly controlled and their impact, thus, is hard 
to assess. In the future, BacGWASim could be extended to 
explicitly model homoplastic mutations and to assess the 
performance of homoplasy-based methods.

Of the GWAS methods evaluated here, the elastic net multi-
locus model (equivalent to lasso) generally performed best, 
followed by the mixed model approach implemented in 
gemma. The clustering approach implemented in plink also 
performed well, but varied significantly depending on the 
clustering threshold, which can be challenging to optimize. 
Elastic nets implemented in pyseer also provide the possibility 
to perform a GWAS on k-mers or unitigs, whereas this is not 
as easily implemented in gemma or plink. Although elastic 
nets had the highest precision of the methods tested, there 
is significant room for improvement, as mentioned above. 
However, particularly for highly clonal populations, there may 
be a limit to what can be learned from GWAS approaches, and 
some combination of experimental and observational studies 
may be required.

Our results also help explain the success of early bacterial 
GWASs with low sample sizes. We found that, in a high-
recombining population, a sample size ~1000 is sufficient to 
reliably detect causal variants of strong effect (log OR>=2) 
with high power (>0.80). Such strong effect sizes may be 
common for antibiotic-resistance mutations, and other vari-
ants under strong positive selection. However, samples sizes 
>3000 will likely be needed to detect variants of lower effect 
(log OR ~1), which may be more common for more ‘complex’ 
phenotypes with lower heritability. Of course, the sample 
size required to achieve a desired power will vary depending 
on the recombination rate and population structure of the 
organism of interest. Thus, BacGWASim provides a tool for 
study-specific power calculations. Although other simulators 
of bacterial evolution are available, these tend not to model 
phenotype evolution, which is essential for benchmarking 
GWAS methods, nor do they provide as much control 
over genetic variation at the level of nucleotides, genes and 
genomes [50, 51]. We previously developed a power calculator 
for the special case of a homoplasy-based GWAS applied to 
a highly clonal bacterial population with a known phylogeny 
[52]. BacGWASim provides a much more general and flexible 
power calculator.

This work is somewhat limited in initial scope, as we focus 
on a subset of evolutionary parameters which we deem 
most relevant to GWAS benchmarking. Future studies could 
further explore variation in the mutation rate, causal allele 
frequencies, high LD among causal variants, case–controls 
ratios, environmental factors or selective pressures that differ 
between sub-populations. In an age of a rapidly growing array 
of options for performing GWASs, we hope that our results 
are instructive in quantifying general trends, and that our 
simulation platform can continue to be used to benchmark 
novel methods as they appear.
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