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Abstract

A large European multi-country Salmonella enterica serovar Enteritidis outbreak associated with Polish eggs was character-
ized by whole-genome sequencing (WGS)-based analysis, with various European institutes using different analysis workflows 
to identify isolates potentially related to the outbreak. The objective of our study was to compare the output of six of these 
different typing workflows (distance matrices of either SNP-based or allele-based workflows) in terms of cluster detection 
and concordance. To this end, we analysed a set of 180 isolates coming from confirmed and probable outbreak cases, which 
were representative of the genetic variation within the outbreak, supplemented with 22 unrelated contemporaneous S. enterica 
serovar Enteritidis isolates. Since the definition of a cluster cut-off based on genetic distance requires prior knowledge on the 
evolutionary processes that govern the bacterial populations in question, we used a variety of hierarchical clustering methods 
(single, average and complete) and selected the optimal number of clusters based on the consensus of the silhouette, Dunn2, 
and McClain–Rao internal validation indices. External validation was done by calculating the concordance with the WGS-based 
case definition (SNP-address) for this outbreak using the Fowlkes–Mallows index. Our analysis indicates that with complete-
linkage hierarchical clustering combined with the optimal number of clusters, as defined by three internal validity indices, the 
six different allele- and SNP-based typing workflows generate clusters with similar compositions. Furthermore, we show that 
even in the absence of coordinated typing procedures, but by using an unsupervised machine learning methodology for cluster 
delineation, the various workflows that are currently in use by six European public-health authorities can identify concordant 
clusters of genetically related S. enterica serovar Enteritidis isolates; thus, providing public-health researchers with compara-
ble tools for detection of infectious-disease outbreaks.

Data Summary

The whole-genome sequencing data of the isolates used in 

this study are available in various public genomic databases, 

under the accession numbers indicated in Table S1 (available 

with the online version of this article). The distance matrices 

of these isolates, which were used in the statistical analysis, 

are included in Tables S2–S7.

Introduction

Foodborne pathogens are an important cause of morbidity 
and mortality, with non-typhoidal Salmonella enterica being 
one of the major foodborne disease agents. In 2017, 91 662 
human cases of salmonellosis were reported in the European 
Union, representing an increase relative to recent previous 
years where the salmonellosis notification rates have shown 
a decreasing trend [1, 2].

http://mgen.microbiologyresearch.org/content/journal/mgen/
https://creativecommons.org/licenses/by-nc/4.0/legalcode
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Microbial typing is an essential tool for informing infectious-
disease epidemiological investigation, providing a method 
for identification, surveillance, outbreak investigation and 
tracing of pathogenic micro-organisms. Microbial typing 
involves clustering – a form of unsupervised pattern recog-
nition, which can be used to partition the input information 
(genetic information of the strains of interest) into clusters 
and has been applied to taxonomic challenges in biology 
for over 50 years [3]. Assigning isolates to genetic clusters 
composed of strains likely to be epidemiologically related 
often utilizes distance-based clustering approaches such as 
hierarchical agglomerative clustering [4–9], with average 
and single linkage, or modifications hereof, often being 
the preferred methods [4, 10, 11]. While more accurate 
and modern methods of inferring phylogenetic relation-
ships among microbial isolates exist, such as maximum 
parsimony [12], maximum likelihood [13] and Bayesian 
[14], hierarchical clustering has the advantage of shorter 
computational time, so that it is even used in newly devel-
oped tools aiming to analyse large collections of micro-
bial isolates [15]. In the process of assigning isolates to a 
certain cluster, a distance or similarity cut-off/threshold is 
typically used for cluster definition [16, 17]. Appropriate 
selection of similarity thresholds for clustering depends 
on interpreting variability in mutation rate, recombination 
rate and surveillance strategies across different microbial 
species and environmental settings. Furthermore, due to 
differences in the resolution of the various whole-genome 
sequencing (WGS) typing approaches and workflows, a 
direct comparison based on a fixed threshold is often not 
possible [18].

The increasing speed and decreasing operational and acqui-
sition cost of WGS have made it a powerful high-resolution 
tool for epidemiological surveillance and outbreak investi-
gations, and it is rapidly replacing traditional phenotyping 
and genotyping methods [19–23]. However, the methodo-
logical variety by which WGS data can be analysed may 
represent a significant hurdle in providing epidemiologists 
and decision makers with robust, interpretable informa-
tion for action. A widely used analytical approach for WGS 
typing is based on protein-encoding alleles. Whole-genome 
multilocus sequence typing (wgMLST) generally takes an 
assembled genome as input and the alleles are subsequently 
identified based on nucleotide identity to a defined scheme 
[24, 25]. Downstream phylogenetic analysis is performed 
on the sequences of the shared loci or using distances 
computed based on the number of shared alleles, which 
are subsequently clustered. Another analytical approach 
is variant calling, which can be reference-free [26, 27] or 
reference-based, with the latter being more common in 
practice. Reference-based variant calling involves aligning 
the sequenced reads to a closely related reference genome 
(mapping) to identify SNPs [26–28]. The DNA sequences 
shared between the sequenced isolates and the reference 
genome can then be analysed based on differing SNPs. 
Currently, both SNP [17, 28, 29] and allele-based [30–34] 
workflows are routinely used for outbreak investigation and 

surveillance purposes. The pragmatics of the routine epide-
miological surveillance of various potentially pathogenic 
micro-organisms is that, often, there is not a single, stand-
ardized workflow being used by different public-health 
institutions; instead, each institution develops its own 
workflow, according to the local resources and necessities. It 
is, however, unclear how robust some of these WGS-based 
typing workflows (i.e. the SNP- and gene-based workflows 
that are the subject of our analysis) are with respect to 
quantifying relatedness of microbial isolates and whether 
the clusters generated can be unambiguously used for 
epidemiological surveillance. This is particularly impor-
tant since differences in cluster definition and similarity 
thresholds (i.e. at what point can isolates be considered 
part of the same cluster) can impact on case definitions and 
cluster composition for outbreak detection and outbreak 
investigation. Across the world, researchers are addressing 
this issue by comparing workflows commonly used in prac-
tice by various institutions for different micro-organisms 
[5, 7, 18, 35].

The objective of the present study was to compare the 
output of six SNP- or allele-based typing workflows 
currently in use by European public-health institutions in 
terms of cluster detection, and to establish the parameters 
and methodology that can facilitate the comparison of these 
workflows. To this end, we used a dataset selected from 
a recent large-scale multi-country outbreak of S. enterica 
serovar Enteritidis [8, 36] supplemented by a number of 
unrelated isolates for the genetic context, on which we used 
hierarchical agglomerative clustering with three different 
linkage methods: single, average and complete.

Impact Statement

Detection of closely related isolates is key in surveil-
lance and control of pathogenic bacteria, as it allows 
tracing of potential outbreaks of infectious disease. 
While harmonization of workflows for genetic typing of 
the micro-organisms would facilitate the detection, in 
practice, the workflows are diverse in input and imple-
mentation. Therefore, it becomes relevant to assess their 
comparability. Our research shows that six distinct work-
flows, in use by several European institutions, can iden-
tify concordant clusters of genetically related Salmonella 
enterica serovar Enteritidis; thus, allowing identification 
of cross-border outbreaks. By using an unsupervised 
machine learning methodology and internal validation 
indices, we show that it is possible to detect an optimal 
number of clusters that separate outbreak from non-
outbreak isolates. The clustering of the data can be done 
without a predefined distance for delineation of clus-
ters and, thus, independently of knowledge from prior 
outbreaks.
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Methods
Strain set
The dataset analysed here is compiled from available whole-
genome sequences from a large-scale European outbreak 
with S. enterica serovar Enteritidis sequence type (ST)11 
spanning 14 countries [37]. A probable case was defined as a 
laboratory-confirmed S. enterica serovar Enteritidis infection 
with outbreak multiple loci variable-number tandem repeat 
analysis (MLVA) profiles 2-9-7-3-2 or 2-9-6-3-2 that occurred 
from 1 May 2016 through 1 October 2017. A confirmed case 
was considered to be an infection with a S. enterica serovar 
Enteritidis isolate sharing the same single-linkage t5-level 
SNP address based on WGS analysis using SNP workflow 1 
described in the next section [38] (i.e. isolates that cluster 
together using single-linkage hierarchical clustering and a 
cut-off/threshold value of five SNPs for defining clusters) 
that occurred from 1 May 2016 through 1 October 2017; this 
definition was subsequently reinforced by epidemiological 
investigation [8]. As a result of using this ‘gold-standard’ 
definition, two major single-linkage clusters were defined as 
outbreak clusters – cluster 1 and cluster 2 [8, 36]. In total, 
isolates from 175 confirmed and 5 probable cases were 
selected for the current study, based on their representative-
ness for the genetic diversity observed during the outbreak. 
A number of other whole-genome sequences (n=22), not 
linked to the outbreak, were selected to reflect the genetic 
diversity of S. enterica serovar Enteritidis ST11 isolates with 
the MLVA profiles 2-9-7-3-2 or 2-9-6-3-2 circulating during 
the timespan of the outbreak in the representative countries 
[17]. Genetic diversity was assessed based on single-linkage 
clustering [4].

Sequencing and workflows
Six different post-sequencing bioinformatics workflows were 
used to analyse the dataset. These workflows were used for 
epidemiological surveillance during the outbreak where we 
drew our dataset from, and they are still in use by the respec-
tive institutions. The results of all workflows were expressed as 
Hamming distance matrices [39] among the bacterial isolates 
within the dataset. These distance matrices were used to test 
the concordance of the different workflows. For readability 
and consistency, we will use throughout the article the term 
'workflow' to refer to the distance matrix it generated.

SNP-workflow 1 (SNP1)
Paired-end fastq files were quality trimmed and STs, based 
on the 7-loci multilocus sequence typing (MLST) scheme, 
determined using most software v 1.0 (​github.​com/​phe-​
bioinformatics/​MOST). vcf files were created using PHEnix 
software (​github.​com/​phe-​bioinformatics/​PHEnix): short 
reads were mapped to an internal reference genome for S. 
enterica serovar Enteritidis, GenBank accession number 
AM933172, using bwa-mem [40]. sam files from bwa were 
sorted and indexed into bam files using SAMtools [41]. gatk 
v2.7 [42] was run in UnifiedGenotyper mode to create the 
vcf files with high-quality SNPs (>90 % consensus, minimum 
depth 10×, Mapping Quality (MQ)≥30). The total number 

of variant positions (1036) was used in the calculation of the 
Hamming distance matrix. Isolates Eng23, NL3, Scot3 and 
Scot28 were omitted from the distance matrix calculation 
as they appeared to be mixed sequences of more than one 
bacterial strain. SNP distances and clusters were determined 
and stored using SnapperDB software [4]. Single-linkage clus-
tering was performed on the pairwise SNP difference between 
all isolates at 7 distance thresholds (250, 100, 50, 25, 10, 5 and 
0 SNPs), resulting in a 7 digit ‘SNP address’ for each isolate, 
where each number confers membership in a cluster at each 
distance threshold [4].

SNP-workflow 2 (SNP2)
The fastq files were analysed as described elsewhere [43]. 
Briefly, the raw reads were trimmed using Trimmomatic v0.35 
(the first two bases from every read, TruSeq adapters, reads 
<36 bp removed, reads clipped when the mean quality over 
3 bp <22) and mapped to the reference (GenBank accession 
number AM933172) using bwa-mem v0.7.12–5 [40]. After 
marking duplicates with Picard v1.113–2, SNPs were called 
using gatk v3.60 [42] with default settings. The high-quality 
SNP profiles were converted to fasta (>90 % consensus, 
minimum depth 10×). Isolates Eng8, Eng59 and Scot63 were 
removed from further analyses as they yielded poor assem-
blies (>300 contigs). The differences between isolates were 
determined, ignoring mismatches between filtered SNPs. The 
total number of SNPs used in the calculation of the Hamming 
distance matrix was 1128.

cgMLST workflow 1 (MLSTcg1) and wgMLST workflow 
(MLSTwg)
The raw reads were trimmed to remove adaptor and barcode 
sequences (added during library generation) and low-quality 
reads using Trimmomatic v0.36 (min. Phred score 25). They 
were assembled with SPAdes v3.7.1 in BioNumerics version 
v7.6.2 (bioMérieux) including post-assembly optimization 
by mapping reads back onto the assembly and keeping the 
consensus. The cgMLST and wgMLST analyses were done 
based on the assembly as well as assembly-free calls using 
the schemes in BioNumerics including 3002 and 15 874 loci, 
respectively. Isolates Eng8, Eng51, Eng52, Eng63, Scot6, Scot7, 
Scot8, Scot9 and Scot14 were excluded from the analysis as 
<90 % of the core loci were detected in each of them. In addi-
tion, isolate NL3, with almost double the expected genome 
length and high number of loci with multiple alleles, was 
excluded. The Hamming distance matrix among the isolates 
was calculated with pairwise removal of the missing loci.

cgMLST workflow 2 (MLSTcg2)
fastq files were uploaded to EnteroBase (http://​enterobase.​
warwick.​ac.​uk). Once received on the EnteroBase server, 
reads were parsed with metadata using MetaParser and 
then automatically processed using a versioned pipeline 
(V3). QAssembly, the assembly process, included read pre-
processing, quality trimming for short reads using Sickle 
(keeping a maximum of 120× coverage for assembly), 
assembly using SPAdes and bwa, post-correction and 
filtering. Low-level contamination was removed and the 

http://enterobase.warwick.ac.uk
http://enterobase.warwick.ac.uk
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Fig. 1. Flowchart of the methodology used for the analysis of the bacterial isolates selected for this study.

quality checked using Kraken (v0.10.5-beta) [44]. Once the 
assembly had been carried out and passed the quality-control 
criteria (number of bases between 4 and 5.8Mbp, the sequence 
length of the shortest contig at 50% of the total genome 
length (N50) >20 kb, no. of contigs <600, proportion of Ns 
<3 %, correct species assignment in Kraken), cgMLST typing 
was performed using the 3002 loci EnteroBase cgMLST V2 
[25]. The fasta files were used to carry out a blast search 
(version 2.2.31), a blastn search was carried out with the 
nucleotide reference sequences, and a usearch (version 
8.0.1623) search was carried out with any available amino acid 
reference sequences. The search results were combined and 
parsed, and from this the alleles at the loci of interest in the 
target sequences were identified. Isolates Eng8, Eng51, Eng52, 
Eng63, Scot6, Scot7, Scot8, Scot9 and Scot14 were excluded 
from the analysis as <90 % of the core loci were detected in 
each of them. In addition, isolate NL3, with almost double 
the expected genome length and high number of loci with 
multiple alleles, was excluded. The Hamming distance matrix 
among the isolates was calculated with pairwise removal of 
the missing loci.

Ad hoc cgMLST workflow 3 (MLSTcg3)
Paired-end fastq files were first quality trimmed and then 
de novo assembled using CLC Main Workbench (Qiagen; 
version 10.0) with default settings. Ridom SeqSphere 

software (Ridom; version 4.1.9) was used to define an ad 
hoc cgMLST set and to perform the gene-by-gene anal-
ysis. Based on 7-loci MLST, a closest finished reference 
genome was selected: strain P125109 (GenBank accession 
number NC_011294). To determine the cgMLST gene set, 
a genome-wide gene-by-gene comparison was performed 
using the MLST_target definer function of SeqSphere 
with default parameters [45]. Alleles for each locus were 
automatically assigned by the SeqSphere+ software to 
ensure a unique nomenclature. Isolates Eng8, Eng59 and 
Scot63 were removed as they showed less than 90 % core 
genome similarity with S. enterica serovar Enteritidis. The 
total number of loci used in the calculation of the distance 
matrix was 4042. The Hamming distance matrix among the 
isolates was calculated using the parameter ‘pairwise ignore 
missing values’. A summary representation of the workflows 
and statistical analysis can be found in Fig. 1.

Correlation of genetic distances
As a first indicator of the congruence of the six typing work-
flows, we calculated the linear correlations of the genetic 
distances in the corresponding distance matrices (lower 
half of the matrices, with diagonals excluded) as Spearman 
correlation coefficients. The higher values of this index indi-
cate a better congruence of the compared typing workflows.
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Clustering and internal validation
The comparison among the six distance matrices was 
performed using the hierarchical clustering with three 
of the most commonly used linkage criteria: single [46], 
average [47] and complete [48]. In order to assess the fit 
of the clustering to the distance matrix, we calculated the 
pairwise cophenetic correlation [3, 49] for each of the 
three clustering algorithms used. Cophenetic correlation 
is a linear correlation coefficient between the cophenetic 
distances obtained from the tree, and the original distances 
used to construct the tree. In other words, it is a measure of 
how faithfully a dendrogram preserves the original pairwise 
distances in the distance matrix. We compared the goodness 
of fit of the three clustering algorithms by means of pairwise 
Pearson correlation for dependent groups with overlapping 
variables, as implemented in the ‘cocor’ package v. 1.1–3 
[50], with P<0.05 indicating a significant difference.

One of the common practices in clustering of microbial 
isolates for epidemiological purposes is using a pre-set 
distance threshold that has been derived from previous 
outbreaks [5, 8, 51]. While the comparison of two molec-
ular typing workflows with the same resolution might be 
straightforward, allowing the use of identical thresholds for 
cluster delineation, it becomes less so when the units used 
in the typing process and the resolution are different. The 
concordance of any two workflows is then dependent on 
how a cluster is defined.

The selection of the optimal number of clusters (internal 
validation) was based on the consensus of three internal 
validity indices: silhouette [52], McClain–Rao [53], and 
Dunn2 index [54]. These were calculated using the func-
tions NbClust and ​cluster.​stats in packages NbClust v. 
3.0 [55] and fpc v. 2.1–11.1 [56]. The silhouette index is a 
measure of how appropriately the data have been clustered. 
For each partition, the average silhouette is the average of 
the silhouettes for all objects in the dataset; that is in turn 
defined as the difference between the average distance of 
an object to any other object within the same cluster and 
the smallest average distance of the object to all objects in 
any other cluster [52]. The McClain–Rao index is defined as 
the quotient between the mean within-cluster and between-
cluster distances [53]. The Dunn2 index measures the ratio 
between the minimum average dissimilarity between two 
clusters and the maximum average within-cluster dissimi-
larity [54]. We calculated these internal validity indices for 
a variable number of clusters, from k=3 to k=20, for all six 
workflows. The rationale behind these indices is to identify 
cluster sets that are compact and well separated. Thus, the 
number of clusters where the Dunn2 and silhouette indices 
were at maximum values, and the McClain–Rao at minimum 
values, were considered to be optimal and further analyses 
were based hereupon. It is, however, seldom that multiple 
validity indices validate the same number of clusters as the 
optimum, and it is often a consensus hereof that is used, 
with values approaching the maximum or the minimum 
ones, respectively, scoring a higher rank. The consensus 

of the three validity indices was calculated by aggregated 
ranking with cross-entropy Monte Carlo algorithm and 
Kendall distance, as implemented in package RankAggreg 
v. 0.6.5 [57].

Concordance
Concordance among the six typing workflows (relative 
validation)
For each of the clustering algorithms and the optimal number 
of clusters (as identified with the methodology described in 
the previous section), we performed a relative validation by 
assessing the concordance of each distance matrix with each 
of the other five. We represented the concordance between 
pairs of distance matrices as plots of dendrograms facing 
each other – also known as tanglegrams – using the function 
with the same name implemented in package dendextend 
v. 1.10.0 [58]. For the quantification of the concordance 
of the branches in the two facing dendrograms, we have 
calculated Baker’s gamma index [59], which is defined as 
the rank correlation between the stages at which pairs of 
objects combine in each of the two dendrograms. While 
Baker’s gamma gives a global measure of concordance, it 
cannot assess the concordance of the membership for each 
of the isolates in the various identified clusters. This second 
aspect we quantified by using the Fowlkes–Mallows index 
[60], as implemented in package profdpm v. 3.3 [61]. The 
visualization of the concordance among all six workflows 
was built with the function ‘alluvial’ in the package with the 
same name, v. 0.1–2 [62], and it was based on the optimal 
number of clusters for each of the clustering algorithms.

Concordance with the outbreak definition (external 
validation)
Normally, an external dataset is used for validation of the 
clusters, which in the case of an outbreak would consist 
of epidemiological data. For this outbreak, the case defini-
tion was given based on single linkage with a threshold of 
five, and identification of two major clusters as outbreak 
clusters. Therefore, we performed the external validation 
by comparing the two largest clusters in each of the work-
flows and clustering method with the outbreak clusters as 
defined above. We calculated the sensitivity of the WGS 
workflows as the TP/(TP +FN), and the specificity as the 
TN/(TN +FP), where TP=the number of true positives, 
isolates that were identified as coming from outbreak cases 
in each of the workflows as well as in the external valida-
tion dataset, FN=the number of false negatives, isolates that 
were assigned by each of the workflows as non-outbreak 
while in the external validation dataset they were defined 
as coming from outbreak cases, TN=the number of true 
negatives, isolates that were identified as non-outbreak in 
each of the workflows as well as in the external validation 
dataset, and FP=the number of false positives, isolates that 
were assigned by each of the workflows as coming from 
outbreak cases while in the external validation dataset they 
were assigned as non-outbreak. We assessed the concord-
ance of the clusters corresponding to the outbreak clusters 
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Table 1. Data used in the clustering analysis and the values 
corresponding to the optimal partition for each of the three hierarchical 
clustering methods used

Optimal_k, the optimal number of clusters as identified based on the 
silhouette, McClain–Rao and Dunn2 index; diameter, the maximum 
within-cluster distance; separation, minimum between-clusters 
distance.

Workflow Clustering Optimal_k Diameter Separation

SNP1 Average k14 14 14

SNP2 Average k12 16 3

MLSTcg1 Average k12 13 10

MLSTcg2 Average k13 15 9

MLSTcg3 Average k13 13 12

MLSTwg Average k13 13 10

SNP1 Complete k14 14 14

SNP2 Complete k13 13 1

MLSTcg1 Complete k13 9 6

MLSTcg2 Complete k13 11 7

MLSTcg3 Complete k13 13 12

MLSTwg Complete k13 18 10

SNP1 Single k14 14 14

SNP2 Single k12 16 3

MLSTcg1 Single k11 17 10

MLSTcg2 Single k13 15 9

MLSTcg3 Single k13 13 12

MLSTwg Single k13 13 10

1 and 2 for all workflows in our study by calculating the 
Fowlkes–Mallows index. All statistical analyses were 
performed in R version 3.4.3 [63].

Results
Sequence quality control
As part of the quality control, each institution decided to 
remove some of the isolates from the dataset as these did not 
correspond to their quality criteria. The resulting distance 
matrices had, therefore, variable sizes: SNP1 198×198 (Table 
S2), SNP2 199×199 (Table S3), MLSTcg1 192×192 (Table S4), 
MLSTcg2 198×198 (Table S5), MLSTcg3 199×199 (Table S6), 
MLSTwg 192×192 (Table S7). The precise subset of isolates 
retained by each workflow is indicated in Tables S2–S7 and a 
summary hereof in Table S1, where the presence of an isolate 
is indicated by 1 and absence by 0; 187 isolates of the initial 
dataset were shared by all workflows. We chose not to limit 
the analyses to the 187 isolates common to all workflows; 
instead, in order to recreate the commonly occurring situation 
in practice, where the number of isolates varies among the 
workflows (depending, among others, on the quality criteria 
used), we performed the analyses with a variable number of 
isolates. In pairwise comparisons between the workflows, 
the number of isolates used was the intersection of the two 
workflows. The number of SNPs and genes included in the 
various workflows were also variable and this was reflected 
in the distances among the isolates (Table 1).

Correlation of genetic distances
The genetic distances were highly correlated, even between the 
SNP- and allele-based workflows, with most of the Spearman 
coefficients of correlation >0.99. The correlation was weaker 
for the SNP2 distances, where Spearman correlation coef-
ficients had values lower than 0.95, but still above 0.9 (Fig. 2).

Clustering
The cophenetic correlation was high for all three methods 
(Table S8), with the highest median value displayed by the 
average clustering (0.994 range: 0.925–0.997) and comparable 
median values for single (0.991 range: 0.607–0.995) and 
complete (0.991 range: 0.920–0.994) linkage. Average linkage 
showed significantly better fit to the distance matrices than 
either single or complete linkage (Table S8). Complete linkage 
had a better fit for the workflows incorporating the whole 
genome (wgMLST and SNP), while single linkage had a better 
fit for the workflows based on a subset of genes (cgMLST; 
Table S8); the differences between the two methods were, 
however, not statistically significant. Therefore, we assessed 
the optimal number of clusters for all three methods.

The optimal number of clusters for the various workflows 
showed higher variations for the average-linkage (12–14) 
and single-linkage algorithms (11–14), and it was almost 
unanimous for complete linkage (13 for all workflows and 14 
for SNP1) (Table 1, Fig. 3). In the case of the SNP1, MLSTwg, 

MLSTcg2 and MLSTcg3 workflows, all three clustering algo-
rithms yielded the same optimal number of clusters.

The concordance among the six workflows, at the optimal 
number of clusters as indicated above, was calculated using 
the Fowlkes–Mallows index (for reproducibility, all partitions 
are given in Table S10, for the six workflows, three clustering 
algorithms used and k=3–20). Complete linkage yielded the 
best concordance results when applied to the entire dataset, 
as it would also be intuitively expected from the consistent 
number of optimal clusters found for all workflows by this 
linkage algorithm.

There was no significant difference between the three algo-
rithms regarding the concordance of the outbreak isolates; the 
confirmed cases falling in clusters 1 and 2 of the outbreak were 
confirmed by all workflows using all clustering algorithms 
(Table S9). When average- or single-linkage clustering were 
employed, SNP1, MLSTcg3 and MLSTwg could distinguish 
the presence of three clusters, where SNP2, MLSTcg1 and 
MLSTcg2 could only identify two main ones (Fig. 4a, c). The 
highest Fowlkes–Mallows index was observed for the pair 
SNP1:MLSTwg (0.96).
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Fig. 2. Pairwise correlation between the genetic distances of the various workflows. The diagonal shows the density plots of the 
distances in each of the six workflows. The upper half of the plot indicates the Spearman coefficients of correlation for each combination 
of distance matrices. In the dotplots, the x-axis represents the genetic distance among isolates, as measured by the workflow indicated 
on the column label; the y-axis represents the genetic distance among isolates, as measured by the workflow indicated in the row label. 
Only the distances between isolates that are present in both workflows of a pairwise comparison are depicted in the figure.

With complete-linkage hierarchical clustering, all work-
flows placed the isolates in the same clusters, with values of 
Fowlkes–Mallows index between 0.95 and 1, as can be seen 
in Fig. 5. Absolute concordance (Fowlkes–Mallows index=1) 
for the entire partition was observed for the pairs SNP2/
MLSTcg3 and MLSTcg1/MLSTwg. The lowest concordance 
(Fowlkes–Mallows index=0.952) was observed between the 
partitions MLSTcg1 and MLSTwg and those of MLSTcg3 and 
SNP2 (Table S11).

In pairwise comparisons of the dendrograms corresponding 
to the six workflows, the concordance, as measured by Baker’s 
gamma, had mostly values above 0.9; with the average best 
concordances obtained with complete linkage (Table S11). 
We observed that for all the distance matrices, the optimal 
number of clusters in complete linkage was found at a similar 

threshold for the SNP-based workflows (14 SNP1, 13 SNP2) 
and at a threshold corresponding to less than 0.04 % allele 
distance (8–9/3002, 12/4042) – 99.6 % similarity [6] for the 
MLST-based workflows (Table 1).

Our data indicate complete concordance in the clustering 
of the S. enterica serovar Enteritidis based on the genetic 
distances, when complete linkage is employed (Fig. 3). This 
is true for SNP-based workflows as well as for allele-based 
workflows (Figs 6 and S1–S14). The few isolates that change 
positions in the two dendrograms do so within the main 
clusters that were identified as optimal.

The sensitivity of all workflows was 100 %. It is the specificity 
that was in all cases under 100 % (Table S9). When single or 
average linkage was employed, the specificity varied between 
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Fig. 3. Internal validity indices for combinations of workflows and clustering algorithms, for k=3–20. The values of all indices are scaled 
and re-centred around 0 for better visualization. Maximum values of Dunn2 and silhouette, and minimum values of McClain–Rao indicate 
optimal number of clusters. The bold black vertical lines indicate the consensus optimal number of clusters as indicated in Table 1. The 
silhouette index is not defined for k>13 in average- and complete-linkage clustering of the SNP2 workflow.

59.1 % for workflow SNP2 and 95.2 % for workflow SNP1. For 
complete linkage, the minimum specificity was observed for 
workflows SNP2 and MLSTcg3 (90.9 %), and the maximum 
for workflows SNP1 and MLSTcg2 (95.2 %).

Discussion
The speed of the molecular typing and the accuracy in iden-
tifying related microbial isolates are essential to outbreak 
detection and investigation. With the availability of WGS, 
a plethora of genomic typing workflows have emerged in 
the last years. In practice, different public-health institutes 
often use different, custom-made, analysis workflows, with 
small variations in the parameters used, that are not always 
straightforward to compare and the resulting differences in 
output difficult to reconcile. This causes, in turn, difficulties 
in setting single case definitions in multi-country outbreak 
settings. The question is then how can the outputs of the 
various workflows be reconciled? Should that not be the 
case, which workflows are best to use? Harmonization of the 
methodology to analyse the output data of these workflows 
is an important aspect in infectious-disease surveillance and 
consequent control of pathogenic micro-organisms spread. 
In this study, we attempted to use an objective method to 
compare the results of six different WGS-based typing work-
flows, used by different European public-health institutions, 

in order to see how these differ in terms of clustering results 
and whether there is a good-better-best hierarchy in the 
workflows at all.

Modern WGS typing techniques have a clear advantage 
over the classical genotyping workflows, such as MLST, in 
terms of discriminatory power. While, based on the 7-loci 
MLST [64], all 202 isolates belonged to ST11, based on WGS 
there were between 82, for MLSTcg1, and 132, for MLSTcg3, 
different genotypes identified. Thus, even among WGS typing 
techniques there are large differences in the discriminatory 
power. The intervals within which the distances can vary are 
smaller for the cgMLST workflows, which can be explained 
by the fact that cgMLST covers only part of the genome, and 
it is restricted to coding regions.

Our results indicate that there is a high correlation of the 
genetic distances among the various distance matrices, 
regardless of the measurement unit (gene in MLST-based and 
nucleotide in SNP-based workflows). However, the relations 
between the genetic distances as inferred from the various 
workflows are not always linear. It is generally the case that 
the differences among the output generated by various work-
flows stem from variations in the reference used, the values 
of filtering used for quality and coverage, and the inclusion 
or exclusion of high-density variants, or could be potentially 
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Fig. 4. Correspondence among the partitions of the six workflows following clustering with one of the following algorithms: (a) average 
linkage, (b) complete linkage, (c) single linkage. The grey alluvials stand for the outbreak-linked isolates, while the orange alluvials stand 
for the non-outbreak isolates.

generated by recombination processes (not analysed here). 
Thus, the choices made within the WGS typing workflow will 
lead to differences in distance matrices that are not amenable 
to using the same cut-off/threshold for defining clusters of 
potentially epidemiologically linked isolates. The shape and 
size of the clusters could be in these situations defined using 
internal and relative validation of the clustering.

No clustering method is applicable to all types of genetic data 
and all outbreak situations. An effective and pragmatic approach 
is to compute various partitions with different algorithms and to 
choose the one that best fits the data. While single linkage [46] is 
the method of choice for epidemiological studies and has been 
shown to be the best method for describing the genetic rela-
tionships between populations in a broad range of evolutionary 

histories [11], it is known to have a tendency to produce ‘long 
thin’ clusters in which nearby elements of the same cluster have 
small distances, but elements at opposite ends of a cluster may 
be much farther from each other than two elements of different 
clusters [47]. This behaviour arises since the similarity of two 
clusters is based on the minimum pairwise distance of their 
members. In complete linkage [48], the similarity of two clusters 
is based on the smallest maximum pairwise distance of their 
members, which means that the entire structure of the data 
is reflected in the clustering. Its tendency to reduce the intra-
cluster distances will lead to well-structured, elliptical clusters. 
A compromise between the two methods is the average linkage 
[65], and it has been one of the most popular distance-based 
clustering methods for phylogenetic studies [10].
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Fig. 5. Summary of Fowlkes–Mallows indices of concordance between any two partitions: (a) for pairwise comparisons of the six 
partitions, (b) for pairwise comparisons of each of the six partitions with the reference outbreak clusters. The Fowlkes–Mallows index 
can take values on the interval 0–1, where values closer to 0 indicate absence of correlation, while values closer to 1 indicate close to 
perfect correlation. The asterisks indicate the P values for pairwise t-test: *difference with P<0.05; **difference with P<0.01.

Our analysis aimed to verify the concordance of various 
WGS typing workflows, either SNP- or allele-based, using the 
example of a recent European S. enterica serovar Enteritidis 
outbreak, and applying the three clustering algorithms named 
above. On this dataset, average linkage had the best fit to the 
distance matrices, above single or complete linkage. One of 
the indications of concordance of two datasets is a comparable 
if not equal number of clusters. For the concordance of our 
six workflows, concordant results were obtained with average 
and single linkage. For both clustering algorithms, workflows 
making use of a smaller number of genetic loci – SNP2, 
MLSTcg1, MLSTcg2 – merged two of the clusters that were 
deemed well separated in the SNP1, MLSTcg3 and MLSTwg 
(workflows based on a higher number of genetic loci). This 
indicates that, even among the WGS typing workflows, vari-
ations in resolution will occur and they are relevant in the 
process of clustering. This is illustrated also in Fig. 3, where 
the silhouette index is no longer defined for cluster values 
higher than 13 for workflow SNP2, which had an overall lower 
resolution. Complete linkage yielded the best relative concord-
ance among the workflows, as it allowed the identification of 
a similar number of clusters in all the datasets. This is due to 
the fact that complete linkage tends to produce well defined, 
elliptical clusters [47]. Thus, the chained clusters produced 
by single linkage, and to a lesser extent by average linkage, 
and responsible for the lower specificities observed with these 
algorithms (Table S9), were split in complete linkage.

As consequence of the aforementioned properties, complete-
linkage clustering yielded the best results in the external 
validation process (Table S9), with lower specificity in single 
linkage due to the chaining property of this linkage algorithm. 
The small discordance (one isolate, resulting in a specificity 
of 94.7–95.2 %) of the complete-linkage partitions with the 
outbreak case definition is due to the fact that the latter used 

single-linkage clustering with a 5 SNPs distance threshold, 
originally selected as it could be shown empirically that 
isolates in the same 5 SNP cluster share a common source 
[66]; this threshold corresponds in our analysis to k=15. In 
our approach, the threshold was variable, dependent on the 
workflow, with up to 14 SNPs for the SNP-based workflows. 
The use of a threshold requires previous knowledge on the 
evolutionary processes that govern the bacterial populations 
in various environments, and knowledge on each particular 
outbreak; it is, therefore, cumbersome to infer for all the 
combinations micro-organism and source, requiring exten-
sive epidemiological validations. The use of internal valida-
tion indices makes our approach more general, as it allows a 
transparent identification of the optimal number of clusters, 
independent of prior outbreaks. The clustering of the data 
becomes, thus, a dynamic process, and can accommodate 
the inclusion or removal of isolates, without the need of a 
predefined distance threshold for delineation of the clus-
ters. The even lower specificity (90.9%, two isolates) for the 
SNP2 and MLSTcg3 when using complete-linkage clustering 
(Table S9) was due to the inclusion in one of the outbreak 
clusters of the isolate NL3; this isolate was excluded from 
the other distance matrices as it showed a mixed nucleotide 
sequence due to contamination with other species than S. 
enterica serovar Enteritidis. This situation indicates that even 
complete-linkage clustering is not sensitive enough to exclude 
such outliers from the outbreak clusters. We argue, however, 
that this situation could be easily avoided by a careful cura-
tion (preliminary screening) of the data. In this case, NL3 
was already divergent from the other isolates based on the 
classical 7-loci MLST scheme. Furthermore, if the purpose 
of the clustering is identification of epidemiologically related 
isolates, the dataset can be filtered as to contain only isolates 
belonging to the same clonal complex. In order to identify 
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Fig. 6. Tanglegram of SNP1 and MLSTcg1 clusterings with complete linkage. The outbreak clusters 1 and 2 are shown in red and blue, 
respectively.

mixes of bacteria belonging to the same species or even 
clonal complex, methods directed towards identification of 
heterozygous SNP positions in the genome assembly could 
be used in the future [67, 68].

The comparison of the six WGS typing workflows indicated 
a high concordance in clustering the S. enterica serovar 
Enteritidis isolates within ST11, regardless of whether they 
are reference-based (SNP workflows) or not (MLST work-
flows); in exemplification hereof, the tanglegram of the SNP1 
and MLSTcg1 workflows clustered with complete linkage is 
shown in Fig. 6. The concordance between the SNP-based and 
MLST-based typing workflows has also been described for 
other micro-organisms [7, 18, 35, 69]. It is not surprising that 
the two approaches would agree with each other, as recom-
bination is considered to play a minor role in the evolution 
of S. enterica serovar Enteritidis [70]; the only differences 
in clonal bacteria would stem from the point mutations in 

the non-coding regions. Indeed, this was reflected in the 
distances corresponding to the workflows in our analysis, 
with smaller distances in the cgMLST and wgMLST than in 
the SNP matrices (Fig. 2). There were, however, differences 
in the relative concordance attained with different clustering 
algorithms, and these stemmed primarily from the resolution 
of the workflows.

WGS-based typing has become a regular tool in infectious-
disease epidemiology, complementary to classical epidemio-
logical investigations. Harmonization of the typing schemes 
and workflows for pathogenic micro-organisms is, of course, 
desirable for reproducible results that would allow congruent 
and timely intervention measures for disease control. There 
are already international efforts underway in that direction 
[71]. However, the allele- and SNP-based typing methods 
offer, to a certain extent, complementary advantages and 
information, which is an argument for their parallel use. 
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MLST is an internationally accepted standardized proce-
dure, relatively easy to use on routine screenings by public-
health laboratories, and with curated databases for the some 
important food-borne pathogens [6, 24, 25, 71], while SNP 
typing allows for identification of neutral mutations in the 
non-coding regions of the genome and has the advantage that 
it can be fully automated [4, 72]. Our analysis indicates that 
allele- and SNP-based typing workflows can generate clusters 
with similar compositions and, consequently, these specific 
typing workflows in use in Europe for S. enterica serovar 
Enteritidis have a high concordance. More importantly, we 
show that the methodology for comparing them can be built 
on unsupervised machine-learning tools, without much prior 
knowledge of the epidemiological data. We argue, though, 
that epidemiological information is crucial for outbreak 
investigation and that future studies can only benefit from 
incorporating it. Furthermore, validation of this approach for 
other datasets, preferably with available epidemiological data, 
and micro-organisms with different evolutionary strategies 
is advisable.

To conclude, our analysis shows that, even in the absence of 
coordinated typing procedures, but using a transparent and 
objective methodology for cluster delineation, the various 
workflows that are currently in use by the main European 
public-health authorities can identify highly concordant 
clusters of genetically related S. enterica serovar Enteritidis 
isolates; thus, providing researchers with comparable tools 
for detection of infectious-disease outbreaks.
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